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Abstract: The integrity of the final printed components is mostly dictated by the adhesion between
the particles and phases that form upon solidification, which is a major problem in printing metallic
parts using available In-Space Manufacturing (ISM) technologies based on the Fused Deposition
Modeling (FDM) methodology. Understanding the melting/solidification process helps increase
particle adherence and allows to produce components with greater mechanical integrity. We devel-
oped a phase-field model of solidification for binary alloys. The phase-field approach is unique in
capturing the microstructure with computationally tractable costs. The developed phase-field model
of solidification of binary alloys satisfies the stability conditions at all temperatures. The suggested
model is tuned for Ni-Cu alloy feedstocks. We derived the Ginzburg-Landau equations governing
the phase transformation kinetics and solved them analytically for the dilute solution. We calculated
the concentration profile as a function of interface velocity for a one-dimensional steady-state diffuse
interface neglecting elasticity and obtained the partition coefficient, k, as a function of interface
velocity. Numerical simulations for the diluted solution are used to study the interface velocity as
a function of undercooling for the classic sharp interface model, partitionless solidification, and
thin interface.

Keywords: additive manufacturing; phase transformation; diffuse interphase; partitionless solidification

1. Introduction

The further away from Earth, the more difficult it will be to transport all the supplies
and redundant parts the astronauts may require. As a result, a strong ISM capability for
sophisticated and lightweight materials is a must for such missions. NASA has successfully
printed polymer parts on the International Space Station (ISS) using the Fused Deposition
Modeling (FDM) technology. However, metallic component printing techniques for ISM
are still in development [1]. Microgravity ISM cannot be made using typical powder-based
additive manufacturing processes. The FDM process is the most promising technology
for ISM printing of metallic parts. Printing objects with high integrity, which is directly
related to the creation of surface melt for loosely packed metallic powders, is a significant
technological difficulty associated with FDM.

The requirement for new high-fidelity analytical and computational tools to predict the
process-microstructure-property correlation is one of the critical challenges in the reliable
manufacturing of metallic parts utilizing additive manufacturing techniques. The phase-
field approach is a powerful and versatile tool for simulating microstructure evolution
at the mesoscale, and it has recently become a popular method for studying various
microstructure evolutions. Internal variables called order parameters are used to describe
the form and distribution of grains in microstructure. These order parameters remain
constant within the grains. The narrow region, where the order parameters change among
adjacent grains, is known as the interface. The change in order parameters gives the
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time-dependent evolution of the microstructure. Reduction in bulk free energy, interfacial
energy, and elastic energy are some of the driving forces for microstructure evolution.

In the phase-field method framework, generally, two continuum equations, known
as the Cahn-Hilliard nonlinear diffusion equation [2,3] and the Allen-Cahn equation [4],
describe the microstructure evolution. The WBM (Wheeler, Boettinger, and McFadden)
phase-field model has also been introduced, which deals with the isothermal solidification
of a binary alloy. In this model, free energy functional and field equations were developed
for the two types of order parameters, i.e., conserved and nonconserved [5]. The WBM
model considered both local and gradient free energy and was used to study the impact of
solute trapping during rapid solidification [6]. A phase-field model for rapid solidification
of the binary alloys that recovers sharp interface solution has also been developed exhibiting
solute trapping by asymptotic analysis [7], which later was expanded to non-isothermal
solidification of binary alloys [8,9]. Phase-field simulations for dendrite growth coupled
with heat and solute diffusion have been presented for a thin interface [10,11], which is
valid for unequal solutal diffusivities in the solid and liquid.

Hyperspherical phase-field models for rapid solidification neglecting the surface
energy inhomogeneities have recently been developed for diffusionless processes neglecting
elasticity [12], with elasticity [13–15], and with elasticity and surface tension [16] that
satisfy all stability conditions for a three-phase system. Multiphase-field models have been
developed and utilized to study the microstructure of printed Inconel 718 alloy [17] and
solute trapping behavior during rapid solidification [18].

Coupled non-equilibrium phase-field and finite element thermal models are used
to investigate the microstructure evolution during laser powder bed fusion of Ni-Nb
alloy [19]. To predict the solidification structure during the rapid solidification processes,
both interface kinetics and thermal diffusion need to be considered [20]. Finite- [21] and
thin-interface [22] phase-field models have been developed to study highly non-equilibrium
solidification processes and solute trapping during additive manufacturing. A dilute binary
alloy phase-field model [23] has also been developed that maps onto the sharp interface
continuous growth model [24] for various kinetic effects like solute trapping and solute
drag to study the microstructure maps of rapid solidification. The phase-field model was
combined with thermal and solutal diffusion as well as solute trapping effect to predict
the microstructure for rapid solidification of dilute binary alloy. Phase-field models can
also be used to investigate the sensitivity of the final manufactured parts to the variation
in manufacturing conditions [25,26]. Recent progress in the development of phase-field
models capturing the microstructure of printed parts is reviewed in Refs. [27–32].

In this study, we develop a phase-field potential for binary alloys that satisfies the
stability conditions at all temperatures by capitalizing on our models for diffusionless
melting/solidification [12,15,33] and materials growth [34,35]. We analytically solved the
governing equations for dilute solution approximation and calculated interface velocity as
a function of undercooling. We also derived the phase-field model for the thin interface
limit and investigated the solute trapping for different interface velocities. Furthermore, we
studied the effect of diffusivity and nonlocal energy on the equilibrium composition and
the interface velocity. The proposed model, although limited to binary alloys and processes
involving near-equilibrium thermodynamics, such as the fused deposition modeling, pro-
vide the basis for the development of more advanced models taking into account complex
alloys and additive manufacturing processes involving far from equilibrium processes.

2. Phase-Field Model

The phase-field approach can predict the microstructure evolution using a set of
internal conserved and nonconserved field variables, continuous along with the interface.
These variables control the total free energy of the inhomogeneous microstructure system.
To minimize the system’s total energy, following the second law of thermodynamics
and assuming a linear relationship between the rate of change of order parameters and
thermodynamic driving forces, we derive the Ginzburg-Landau (GL) kinetic equations
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governing the evolution of microstructure. The Helmholtz free energy of the system can be
defined as,

ψ = ψl + ψ∇ = ψθ + ψ̆θ + ψ∇, (1)

Here, ψl is the local free energy and ψ∇ is the gradient energy. The local free energy
is expressed as the sum of thermal energy ψθ and the chemical double-well potential
energy ψ̆θ ,

ψθ(θ, c, Y) = Gθ
0 + ∆Gθ

S0(θ, c)q(Y, a), (2)

ψ̆θ(θ, c, Y) = AS0(θ, c)q̆(Y). (3)

Here Gθ
0 , ∆Gθ

S0(θ, c) and AS0(θ, c) are functions of temperature θ and concentration
c, the order parameter, Y changed from 0 to 1 from liquid to solid side, Gθ

0 is the free
energy of the liquid phase, f L(cL), and ∆Gθ

S0(θ, c) = f S(cS) − f L(cL) is the free energy
difference between solid and liquid. f L(cL) and f S(cS) are the free energy densities of
liquid and solid as functions of composition, and AS0(θ, c) is the height of the double-well
potential. q(Y, a) and q̆(Y) are connecting functions,

q(Y, a) = aY2 − 2(a− 2)Y3 + (a− 3)Y4, (4)

q̆(Y) = Y2(1−Y)2. (5)

Here, a is a material free parameter. The mole fraction c is expressed as,

c =
(

cB
S − cB

L

)
q(Y, a) + cB

L , (6)

where, cB
S and cB

L are the compositions of bulk solid and liquid phases, respectively. From
Equations (2) and (3), local free energy is

ψl = ψθ + ψ̆θ = f (c, Y, θ) = Gθ
0 + ∆Gθ

S0(θ, c)q(Y, a) + AS0(θ, c)q̆(Y). (7)

We consider the first derivative of solid and liquid free energies with respect to their
concentration to be equal, i.e.,

f S
cS
[cS(x, t)] = f L

cL
[cL(x, t)]. (8)

Here, subscripts indicate derivatives. So, f S
cS
[cS(x, t)] = d f S/dcS and f L

cL
[cL(x, t)] =

d f L/dcL. Differentiating Equation (8) with respect to cS and rearranging,(
∂cL
∂cS

)
=

f S
cc(cS)

f L
cc(cL)

, (9)

where we used the notations of f L
cc(cL) = d2 f L/dc2

L and f S
cc(cL) = d2 f S/dc2

S. Differentiating
Equation (6) with respect to cL, composition of liquid at the interface,

∂c
∂cL

= q(Y, a)
(

∂cS
∂cL
− 1
)
+ 1. (10)

Putting values from Equation (9),

∂c
∂cL

= q(Y, a)
(

f L
cc(cL)

f S
cc(cS)

− 1
)
+ 1. (11)

Rearranging Equation (11),

∂cL
∂c

=
f S
cc(cS)

[1− q(Y, a)] f S
cc(cS) + q(Y, a) f L

cc(cL)
. (12)
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Similarly, for the solid side,

∂cS
∂c

=
f L
cc(cL)

[1− q(Y, a)] f S
cc(cS) + q(Y, a) f L

cc(cL)
. (13)

Here, cS is the composition of solid at the interface. Differentiating Equation (6) with
respect to Y,

∂c
∂Y

=
(

cB
S − cB

L

)
q′(Y, a). (14)

Now applying chain rule and Putting value from Equations (12) and (14),

∂cL
∂Y

=

(
cB

S − cB
L
)
q′(Y, a) f S

cc(cS)

[1− q(Y, a)] f S
cc(cS) + q(Y, a) f L

cc(cL)
, (15)

Similarly, for the solid side,

∂cS
∂Y

=

(
cB

S − cB
L
)
q′(Y, a) f L

cc(cL)

[1− q(Y, a)] f S
cc(cS) + q(Y, a) f L

cc(cL)
. (16)

The local free energy is

ψl = Gθ
0 + ∆Gθ

S0(θ, c)q(Y, a) + AS0(θ, c)q̆(Y). (17)

Differentiating with respect to Y,

ψl
Y =

∂

∂Y

(
Gθ

0

)
+ q′(Y, a)∆Gθ

S0(θ, c) + q(Y, a)
∂

∂Y

[
∆Gθ

S0(θ, c)
]
+ AS0(θ, c)q̆′(Y) + q̆(Y)

∂AS0(θ, c)
∂Y

. (18)

Substituting from Equations (15) and (16),

∂

∂Y

[
∆Gθ

S0(θ, c)
]
=

∂

∂Y

[
f S(cS)− f L(cL)

]
=

∂

∂Y

[
f S(cS)

]
− ∂

∂Y

[
f L(cL)

]
=

(
∂ f S(cS)

∂cS

)
∂cS
∂Y
−
(

∂ f L(cL)

∂cL

)
∂cL
∂Y

,

⇒ ∂

∂Y

[
∆Gθ

S0(θ, c)
]
=

q′(Y, a) ∂ f L(cL)
∂cL

(
cB

S − cB
L
)[

f L
cc(cL)− f S

cc(cS)
]

[1− q(Y, a)] f S
cc(cS) + q(Y, a) f L

cc(cL)
.

For ∂
∂Y

(
Gθ

0(cL)

)
we have,

∂

∂Y

(
Gθ

0(cL)
)
=

∂

∂Y

(
f L(cL)

)
=

(
∂ f L(cL)

∂cL

)
∂cL
∂Y

=
∂ f L(cL)

∂cL

(
cB

S − cB
L
)
q′(Y, a) f S

cc(cS)

[1− q(Y, a)] f S
cc(cS) + q(Y, a) f L

cc(cL)
.

Now putting the values of ∂
∂Y

[
∆Gθ

S0(θ, c)
]

and ∂
∂Y

(
Gθ

0
)

in Equation (18),

ψl
Y = q′(Y, a)∆Gθ

S0(θ, c) + ∂ f L(cL)
∂cL

(cB
S−cB

L)q′(Y,a) f S
cc(cS)

[1−q(Y,a)] f S
cc(cS)+q(Y,a) f L

cc(cL)

+q(Y, a)

 q′(Y,a)
∂ f L(cL)

∂cL
(cB

S−cB
L)[ f S

cc(cS)− f L
cc(cL)]

[1−q(Y,a)] f S
cc(cS)+q(Y,a) f L

cc(cL)


+AS0(θ, c)q̆′(Y) + q̆(Y) ∂AS0(θ,c)

∂c
∂c
∂Y

⇒ ψl
Y = q′(Y, a)

[
∆Gθ

S0(θ, c) + ∂ f L(cL)
∂cL

(
cB

S − cB
L
)]

+ AS0(θ, c)q̆′(Y)

+q̆(Y) ∂AS0(θ,c)
∂c

(
cB

S − cB
L
)
q′(Y, a)

(19)



Materials 2023, 16, 383 5 of 25

Assuming a second-degree gradient energy term, which is the lowest degree potential
function granting a linear relation between the thermodynamic driving force and ∇Y, we
have [36],

ψ∇ = 0.5
(

βS0∇Y2
)

(20)

Here, βS0 is the gradient energy coefficient. Now, differentiating Equation (20) with
respect to Y,

ψ∇Y = ∇.
[

βS0∇Y
]
. (21)

Substituting the value of free energy and gradient energy in Equation (1),

ψ = Gθ
0 + ∆Gθ

S0(θ, c)q(Y, a) + AS0(θ, c)q̆(Y) + 0.5
(

βS0∇Y2
)

, (22)

and differentiating with respect to Y,

ψY = q′(Y, a)
[

∆Gθ
S0(θ, c) +

∂ f L(cL)

∂cL

(
cB

S − cB
L

)]
+ AS0(θ, c)q̆′(Y)

+q̆(Y)
∂AS0(θ, c)

∂c

(
cB

S − cB
L

)
q̆′(Y) +∇.

[
βS0∇Y

]
.

(23)

The GL equation becomes

1
LY

∂Y
∂t

= −∂ψl

∂Y
+∇.

[
βS0∇Y

]
. (24)

Here, LY is the kinetic coefficient. For simplicity, we assume AS0(θ, c) to be indepen-
dent of c, i.e., ∂AS0(θ, c)/∂c = 0. Using Equation (19), we have

1
LY

∂Y
∂t

= −
{

q′(Y, a)
[

∆Gθ
S0(θ, c) +

∂ f L(cL)

∂cL

(
cB

S − cB
L

)]
+ AS0(θ, c)q̆′(Y)

}
+∇.

[
βS0∇Y

]
.

(25)

Differentiating Equation (17) with respect to c,

ψl
c = q(Y, a)

(
d
dc

[
∆Gθ

S0(θ, c)
])

+
∂

∂c

(
Gθ

0

)
+ q̆(Y)

dAS0(θ, c)
dc

= q(Y, a)
[

d
dc

[
f S(cS)

]
− d

dc

[
f L(cL)

]]
+

d
dc

[
f L(cL)

]
+ q̆(Y)

dAS0(θ, c)
dc

= q(Y, a)
[(

∂ f S(cS)

∂cL

)
∂cS
∂c
−
(

∂ f L(cL)

∂cL

)
∂cL
∂c

]
+

(
∂ f L(cL)

∂cL

)
∂cL
∂c

+ q̆(Y)
dAS0(θ, c)

dc

=

(
∂ f L(cL)

∂cL

)[
q(Y, a)

(
∂cS
∂c
− ∂cL

∂c

)
+

∂cL
∂c

]
+ q̆(Y)

dAS0(θ, c)
dc

.

(26)

Substituting values from Equations (12) and (13),

ψl
c =

∂ f L(cL)

∂cL
+ q̆(Y)

dAS0(θ, c)
dc

. (27)

Differentiating Equation (26) with respect to c considering, ∂
∂c

∂ f L(cL)
∂cL

= ∂cL
∂c

∂2 f L(cL)
∂cL2

ψl
cc =

f L
cc(cL) f S

cc(cS)

[1− q(Y, a)] f S
cc(cS) + q(Y, a) f L

cc(cL)
+ q̆(Y)

d2 AS0(θ, c)
dc2 . (28)
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On the other hand, differentiating ψl
c with respect to Y,

ψl
cY = d

dY

[
d f L(cL)

dcL

]
+ dAS0(θ,c)

dc q̆′(Y)

= d2 f L(cL)
dcL2

∂cL
∂Y + dAS0(θ,c)

dc q̆′(Y)

=
(cB

S−cB
L)q′(Y,a) f S

cc(cS) f L
cc(cL)

[1−q(Y,a)] f S
cc(cS)+q(Y,a) f L

cc(cL)
+ dAS0(θ,c)

dc q̆′(Y).

(29)

The Cahn-Hilliard equation, governing the evolution of conserved variables,

ct = ∇.
D(Y)
ψl cc

∇ψl
c. (30)

Here, D(Y) is the diffusivity. Substituting the value of ψl
c from Equation (26),

∂c
∂t

= ∇
[

D(Y)
ψl cc

∇
{

d f L(cL)

dcL
+ q̆(Y)

dAS0(θ, c)
dc

}]
. (31)

Equations (25) and (31) are the basic equations governing the transformation of binary
alloys. We will consider simplified cases of technological importance in the next four
subsections, i.e., Sections 2.1–2.5, which are included for completeness and can be omitted
if numerical simulations of the model are of interest.

2.1. Dilute Solution Approximation

The dilute solution limit is frequently applicable to engineering problems and to study
the fundamental physical mechanisms governing the phase transformation. Considering a
binary alloy of A and B, the chemical potential of A and B can be approximated as [37],

µL
A = µoL

A + Rθln(1− c); µS
A = µoS

A + Rθln(1− c);
µL

B = µoL
B + Rθln

(
γLc
)
; µS

B = µoS
B + Rθln

(
γSc
)
.

(32)

Here, R is the gas constant, and θ is the temperature of the isothermal system.
γS and γL are the activity coefficients of solid and liquid phases, respectively. They are
a measure of how much the thermodynamic characteristics of that mixture deviate from
those of the ideal mixture. At equilibrium conditions, µL

A = µS
A and µL

B = µS
B. Assuming

liquid phase as a standard state,

µoL
A = 0; µoL

B = 0, (33)

and applying this relation of the thermochemical potential at equilibrium concentration,
we can rewrite Equation (32) as,

µL
A = µS

A ⇒ µoL
A + Rθln

(
1− ce

L
)
= µoS

A + Rθln
(
1− ce

S
)

⇒ µoS
A = Rθln

(
1−ce

L
1−ce

S

)
,

µL
B = µS

B ⇒ µoL
B + Rθln

(
γLce

L
)
= µoS

B + Rθln
(
γSce

S
)

⇒ µoS
B = Rθln

(
ce

L
ce

S

)
+ Rθln

(
γL

γS

)
.

(34)

Here, ce
L and ce

S, are the equilibrium concentration of the liquid side and solid side,
respectively. We can set γL = γS = 1 as these values do not affect the equilibrium state
and the driving force for the transformation. These relations are used to derive the free
energy density of solid and liquid. We use the following form of the free energy density for
the liquid phase [37],

f L(cL) =
[(1−cL)µ

oL
A +cLµoL

B +Rθ{cL ln(cL)+(1−cL)ln(1−cL)}]
Vm

,
⇒ f L(cL) =

Rθ
Vm

[cLlncL + (1− cL)ln(1− cL)].
(35)
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Here, Vm is the molar volume. Differentiating Equation (35) with respect to cL,

f L
cL
(cL) =

Rθ

Vm
ln
(

cL
1− cL

)
. (36)

Again, differentiating Equation (36) with respect to cL,

f L
cc(cL) =

Rθ

Vm

1
(1− cL)cL

. (37)

The free energy density of the solid phase is [37],

f S(cS) =
[(1−cS)µ

oS
A +cSµoS

B +Rθ{cS lncS+(1−cS)ln(1−cS)}]
Vm

,

⇒ f S(cS) =
Rθ
Vm

[
(1− cS)ln

(
1−ce

L
1−ce

S

)
+ cSln

(
ce

L
ce

S

)
+ cSlncS + (1− cS)ln(1− cS)

]
.

(38)

Differentiating Equation (38) with respect to cS,

f S
cS
(cS) =

Rθ

Vm
ln
(

cS
1− cS

1− ce
L

1− ce
S

ce
L

ce
S

)
. (39)

Again differentiating Equation (40) with respect to cS,

f S
cc(cS) =

Rθ

Vm

1
(1− cS)cS

ln
(

1− ce
L

1− ce
S

ce
L

ce
S

)
. (40)

Putting the value from Equations (36) and (39) in Equation (8) and reorganizing,

ce
ScL

ce
LcS

=

(
1− ce

S
)
(1− cL)(

1− ce
L
)
(1− cS)

. (41)

Now,

G(cS, cL) ≡ ∆Gθ
S0(θ, c) +

d f L(cL)

dcL

(
cB

S − cB
L

)
= f L(cL)− f S(cS)− (cL − cS) f L

cL
(cL). (42)

Substituting the value from Equations (35), (36) and (38),

G(cS, cL) =
Rθ

Vm
ln
(
1− ce

S
)(

1− cB
L
)(

1− ce
L
)(

1− cB
S
) . (43)

Using Taylor’s expansion and neglecting the higher-order terms,

G(cS, cL) =
Rθ

Vm
[(ce

L − ce
S)− (cL − cS)]. (44)

At limit where all compositions go to zero Equation (41) can be approximated as

cS
cL

=
ce

S
ce

L
= ke, (45)

where ke is the equilibrium partition coefficient. Substituting cS = kecL and ce
S = kece

L in
Equation (44) we can derive,

G(cS, cL) =
Rθ

Vm
[(ce

L − kece
L)− (cL − kecL)] =

Rθ

Vm

1− ke

me (mece
L −mecL), (46)
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Here, me is the liquids slope in the phase diagram. For the dilute solution [38],

θ = θm −mecL

1 +
(ke − k) + kln

(
k
ke

)
1− ke

− Vm

Rθ

αme

1− ke Vn. (47)

Here, Vn is the interface velocity, and k = cS/cL. For equilibrium condition, ke = k,
and interface velocity, Vn = 0. θm is the melting temperature of the pure solvent. So,
Equation (47) reduces to,

θ = θm −mece
L. (48)

From Equation (46),

G(cS, cL) =
Rθ

Vm

1− ke

me (θm − θ −mecL). (49)

Now from Equation (25),

1
LY

∂Y
∂t

= −
{

q′(Y, a)G(cS, cL) + AS0(θ, c)q̆′(Y)
}
+ q̆(Y)

∂AS0(θ, c)
∂Y

+∇.
[

βS0∇Y
]
. (50)

Substituting the value from Equation (49),

1
LY

∂Y
∂t

= −
{

q′(Y, a)
Rθ

Vm

1− ke

me (θm − θ −mecL) + AS0(θ, c)q̆′(Y)
}
+∇.

[
βS0∇Y

]
. (51)

For a dilute solution, the height of double-well potential is constant. Putting the value
of Equations (37) and (40), in Equation (28),

ψl
cc =

Rθ

Vm

1
(1− q(Y, a))(1− cL)cL + q(Y, a)(1− cS)cS

. (52)

So,

H(Y, cS, cL) ≡
Rθ

Vmψl cc
= (1− q(Y, a))(1− cL)cL + q(Y, a)(1− cS)cS. (53)

Now putting the value of Equations (36) and (53) in Equation (31),

∂c
∂t

= ∇
[

D(Y)H(Y, cS, cL)∇ln
(

cL
1− cL

)]
. (54)

In summary, we derived the kinetic GL equations for the dilute solution approximation,
i.e., Equations (51) and (54), respectively.

2.2. Analytical Solution of Ginzburg-Landau Equation

From Equations (4), (5) and (7) the local free energy is,

ψl = Gθ
0 + ∆Gθ

S0(θ, c)
[

aY2 − 2(a− 2)Y3 + (a− 3)Y4
]
+ AS0(θ, c)

[
Y2(1−Y)2

]
. (55)

Reorganizing Equation (55), assuming a = 0 and Gθ
0 = 0, we have

ψl = AS0(θ, c)Y2
[

1− (6− P)Y
3

+
(4− P)Y2

4

]
, (56)

where,

P(θ, c) =
12∆Gθ

S0(θ, c)
AS0(θ, c)

. (57)
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Differentiating Equation (56) with respect to Y,

∂ψl

∂Y
= AS0(θ, c)Y(1−Y)[2− (4− P)Y]. (58)

Now we calculate the maxima,

∂2ψl(0)
∂Y2 = AS0(θ, c); ∂2ψl(1)

∂Y2 = 2AS0(θ, c)(2− P);

Y3 = 2
4−p ; ψl

3 = ∂2ψl(Y3)
∂Y2 = 4

3
AS0(θ,c)(3−P)

(4−P)3 ,
(59)

where, ψl is maximum at Y3. The 1D time-dependent GL equation is,

∂Y
∂t

= −λ
∂ψ

∂Y
= −λ

(
∂ψl

∂Y
− 2βS0 ∂2Y

∂x2

)
. (60)

Here, λ > 0 is the kinetic coefficient. Now we rewrite Equation (60) in dimensionless
form. The dimensionless potentials and order parameters are,

g = mψl = Bξ2 − ξ3 + ξ4, ξ = kY, (61)

where,

B =
9(4− P)
4(6− P)2 , k =

3(4− P)
4(6− P)

, m =
81(4− P)3

AS0(θ, c)(6− P)4 =
k2B

AS0(θ, c)
, (62)

Here, k can be determined using the condition ∂g
∂ξ = 0. Now we define ξ1 and ξ2,

g = ξ2(ξ − ξ1)(ξ − ξ2),
ξ1 = 0.5

(
1−
√

1− 4B
)
,

ξ2 = 0.5
(
1 +
√

1− 4B
)
.

(63)

Introducing new spatial and time variables,

y =
k√

βS0m
x =

√
AS0(θ, c)

βS0B
x =

2
3

√
AS0(θ, c)

βS0
6− P√
4− P

x, z =
λk2

m
t. (64)

We obtain the dimensionless form of the GL equation,

∂ξ

∂z
= −

(
∂g
∂ξ
− 2

∂2ξ

∂y2

)
. (65)

We only consider time-independent solution so, ∂Y
∂z = 0. The resulting equation is

∂g
∂ξ

= 2
∂2ξ

∂y2 . (66)

Equation (66) is the equation of motion of material point with a mass equal to 2 in the
potential field. An energy integral read,

dξ

dy
=
√

g− g0, (67)

where, g0 is an integral constant. At points dξ
dy = 0, at the center of nucleus g = g0. So,

g∗GL = gGL − go = g− g0 +

(
dξ

dy

)2
= 2(g− g0). (68)
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Equation (66) has a periodic solution with n diffuse interfaces. The total energy per
unit area of n diffuse interface is given by,

e :=
∫ l

−l
g∗GLdy = 2n

∫ l

−l

√
g− g0dξ. (69)

Here, l :=
√

AS0(θ,c)
βS0B L, 2L is the length of a parallelepiped in the x-direction. The

energy e is finite even for an infinite slab. Imposing the boundary conditions at the end of
the slab,

dξ(−l)
dy

=
dξ(l)

dy
= 0, (70)

g(−l) = g(l) = go. (71)

Using Equations (61) and (67),

y(ξ) =
∫ dξ√

(Bξ2 − ξ3 + ξ4 − go)
. (72)

Now we consider g(∞) = g(−∞) = 0, we find P = 0, B = 1
4 , ξ1 = ξ2 = 1

2 .

g = ξ2
(

ξ − 1
2

)2
. The solution of Equation (15) is [39],

ξ(y) =
[
2 +

(
1 + e−

y−yo
2

)]−1
, (73)

Y(x) =

1 + e
−
√

AS0(θ,c)
βS0 (x−xo)

−1

. (74)

The solution is symmetric around x = xo. The interface energy is given by [39],

E =

(
4
3

)√
βS0ψl

3; (75)

The interface thickness is defined as [39],

∆ = p
√

βS0/ψl
3; 2.411 ≤ p ≤ 2.667, (76)

The relationships for the interface energy and width obtained here are vital for de-
termining the free parameters of the model reproducing these experimentally measurable
quantities.

Considering the free energy of liquid and solid as,

f L(cL) = y = 5(x− 7)4 + 30, (77)

f S(cS) = y = 2(x− 3)4 + 10, (78)

Figure 1 shows the free energy curves of solid and liquid by dotted black and solid red
curves, respectively. TL is the common tangent line. Now let us consider x1 ≡ cL and x2 ≡ cS.
Within the interface region, the composition of free energy density is represented as,

ψ = f S(cS) +
[

f L(cL)− f S(cS)
]
q(Y) + AS0(θ, c)q̆(Y). (79)

Here,

q(Y) = 4Y3 − 3Y4; q̆(Y) = Y2(1−Y)2 ; Y =
c− cS

cL − cS
. (80)
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Total energy, ψ is represented by the curve TE in Figure 1. The height of the double-
well potential, AS0(θ, c) is assumed to be constant. As the height goes to zero, the curve
passes through the intersecting point of Equations (77) and (78).
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2.3. Thin Interface Limit

Equations (25) and (31) for the steady-state 1D problem, neglecting diffusivity in solid
and assuming AS0(θ, c) to be constant, for the thin interface limit, where the interface
thickness is small compared to the diffusive boundary layer, become

− V
LY

∂Y
∂x

= −
{

q′(Y, a)
[

∆Gθ
S0(θ, c) +

d f L(cL)

dcL

(
cB

S − cB
L

)]
+ AS0(θ, c)q̆′(Y)

}
+βS0 d2Y

dx2 ;

(81)

−V
∂c
∂x

=
d

dx

[
D(Y)
ψl cc

d
dx

d f L(cL)

dcL

]
. (82)

where, V is the interface velocity. Integrating Equation (82),

Vc(x) +
D(Y)
ψl cc

d
dx

d f L(cL)

dcL
= A, (83)
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A is an integration constant. On the liquid side, Equation (83) gives,

D(Y)
ψl cc

d
dx

d f L(cL)

dcL
= A−VcL,

⇒ D(Y)
ψl cc

ψl
cc

dcL
dx

= A−VcL,

⇒ DL(Y)
dcL
dx

= A−VcL.

(84)

Similarly, for the solid side, we can derive that,

DS(Y)
dcS
dx

= A−VcS. (85)

Assuming DS(Y) to be negligible,

A = VcS, (86)

Putting the value of A in Equation (83) and integrating, we get the chemical potential
profile [38],

fc(x) = f S
c (cS)−V

∫ x

−∞

ψl
cc

D(Y)
[c(x)− cS]dx, (87)

Here, f S
c (cS) is the integration constant, representing the chemical potential of the solid

phase. To calculate the chemical potential of liquid, we assume that the thermodynamic
partitioning of concentration at the interface occurs sufficiently over the width of −λ <
x < λ. Thus, the chemical potential of liquid is

f L
c (cL) = f S

c (cS)−V
∫ λ

−λ

ψl
cc

D(Y)

[
c(x)− ci

S

]
dx, (88)

where ci
S is the composition at the solid side (x = −λ). The chemical potential’s profile

across the interface is given by,

f L
c (cL) = f S

c

(
ci

S

)
−V

∫ λ

−λ

ψl
cc

D(Y)

[
c(x)− ci

S

]
dx, (89)

For equilibrium condition,

∆Gθ
S0(θ, c) + f L

c (cL)
(

cB
S − cB

L

)
= ∆Gθ

S0(θ, ce)− (ce
L − ce

S) f L
cL
(cL), (90)

ψl
cc = ψle

cc, (91)

Now multiplying Equation (81) with dY
dx and integrating from −λ to λ gives,

V
LY

∫ λ
−λ

(
dY
dx

)2
dx = −βS0

∫ λ
−λ

d2Y
dx2

dY
dx dx

+
∫ λ
−λ

(
q′(Y, a)

[
∆Gθ

S0(θ, ce)−
(
ce

L − ce
S
)

f L
cL
(cL)

]) dY
dx dx

+
∫ λ
−λ AS0(θ, c)q̆′(Y) dY

dx dx.

(92)

The first term of the right side of Equation (92),

− βS0
∫ λ

−λ

d2Y
dx2

dY
dx

dx = βS0
∫ 0

0

dY
dx

d
(

dY
dx

)
= 0. (93)



Materials 2023, 16, 383 13 of 25

The middle term of the right side of Equation (92),∫ λ
−λ

(
q′(Y, a)

[
∆Gθ

S0(θ, ce)−
(
ce

L − ce
S
)

f L
cL
(cL)

]) dY
dx dx

=
∫ 0

1

[
∆Gθ

S0(θ, ce)−
(
ce

L − ce
S
)

f S
c
(
ci

S
)]

q′(Y, a)dY

−
∫ 0

1

(
ce

L − ce
S
)[

V
∫ λ
−λ

ψl
cc

D(Y)

[
c(x)− ci

S
]
dx
]
q′(Y, a)dY.

(94)

⇒
∫ λ
−λ

(
q′(Y, a)

[
∆Gθ

S0(θ, ce)−
(
ce

L − ce
S
)

f L
cL
(cL)

]) dY
dx dx

= ∆Gθ
S0(θ, ce)−

(
ce

L − ce
S
)

f S
c
(
ci

S
)

−
∫ 0

1

(
ce

L − ce
S
)[

V
∫ λ
−λ

ψl
cc

D(Y)

[
c(x)− ci

S
]
dx
]
q′(Y, a)dY,

The third term of the right side of Equation (92),∫ λ

−λ
AS0(θ, c)q̆′(Y)

dY
dx

dx = AS0(θ, c)
∫ 0

1
q̆′(Y)dY = 0. (95)

Putting these values from Equations (93)–(95) in (92),

V
LY

∫ λ

−λ

(
dY
dx

)2
dx = ∆Gθ

S0(θ, ce)− (ce
L − ce

S) f S
c

(
ci

S

)
−
∫ 0

1
(ce

L − ce
S)

[
V
∫ λ

−λ

ψl
cc

D(Y)

[
c(x)− ci

S

]
dx

]
q′(Y, a)dY,

(96)

From Equation (14) for equilibrium condition,

dc
dY

= (cS − cL)q′(Y, a) ∼= −(ce
L − ce

S)q
′(Y, a). (97)

So, Equation (96) can be rewritten as,

V
LY

∫ λ

−λ

(
dY
dx

)2
dx = f L(ce

L)− f S(ce
S)− (ce

L − ce
S) f S

c

(
ci

S

)
+
∫ cL

cS

V

[∫ λ

−λ

ψl
cc

D(Y)

[
c(x)− ci

S

]
dx

]
dc,

(98)

From Equation (96) we can show that,

∆Gθ
S0(θ, ce)− (ce

L − ce
S) f S

c

(
ci

S

)
= αV, (99)

where,

α =
1

LY

∫ λ

−λ

(
dY
dx

)2
dx +

∫ 0

1
(ce

L − ce
S)

[∫ λ

−λ

ψl
cc

D(Y)

[
c(x)− ci

S

]
dx

]
q′(Y, a)dY. (100)

From common tangent relation in equilibrium,

f L
cL
(ce

L) = f S
cS
(ce

S) =
f L(ce

L
)
− f S(ce

S
)

ce
L − ce

S
=

∆Gθ
S0(θ, ce)

ce
L − ce

S
. (101)

From Equation (99),

(ce
L − ce

S)
[

f S
cS
(ce

S)− f S
c

(
ci

S

)]
= αV. (102)
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From dilute solution approximation,

f S
cS
(ce

S)− f S
c

(
ci

S

)
=

Rθ

vm

(
1−

ci
S

ce
S

)
. (103)

From Equations (102) and (103),

(
ce

L − ce
S
)[ Rθ

Vm

(
1− ci

S
ce

S

)]
= αV

⇒
(
ce

L − ce
S
)(

1− ci
S

ce
S

)
= V Vm

Rθ α

⇒ ce
L − ce

S −
ci

S
ce

S
.ce

L + ci
S = V Vm

Rθ α

⇒ ce
L(1− ke)− ci

S
ke (1− ke) = V Vm

Rθ α

⇒ ce
Lme −me ci

S
ke = V Vm

Rθ
αme

1−ke

⇒ θm − θ −me ci
S

ke = V Vm
Rθ

αme

1−ke

⇒ θ = θm −me ci
S

ke −V Vm
Rθ

αme

1−ke

θ = θm −me ci
S

ke −Vβ, (104)

where β = Vm
Rθ

αme

1−ke . Equation (104) is the relationship in the classical sharp interface model
between the temperature and composition, proving thermodynamic consistency of the
proposed phase-field model.

2.4. Solute Trapping

Solute trapping is known as the dependence of jump in concentration through the
interface on the interface velocity. The chemical potential depends on the position across the
moving interface. The equality of the chemical potential implies that there is no composition
gradient across the interface. Solute trapping occurs when the chemical potential varies
across the moving interface. We considered a steady-state 1D, Equation (82), dilute solution
with constant diffusivity, Di, in both interfacial region and liquid phase and negligible
diffusivity in the solid. We have,

−V
∂c
∂x

=
d

dx

[
Di

ψl cc

d
dx

d f L(cL)

dcL

]
. (105)

Here, V is the interface velocity. Integrating Equation (105),

Vc(x) +
Di

ψl cc

d
dx

d f L(cL)

dcL
= A. (106)

On the solid side of the interface from Equation (86),

A = Vci
S. (107)

Putting the value of A in Equation (106),

d
dx

d f L(cL)

dcL
= − V

Di

(
c− ci

S

)
ψl

cc. (108)

Now,
d

dx
d f L(cL)

dcL
=

d2 f L(cL)

dcL2
dcL
dx

= f L
cc(cL)

dcL
dx

. (109)
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Substituting the value from Equation (37),

d
dx

d f L(cL)

dcL
=

RT
Vm

1
(1− cL)cL

dcL
dx

. (110)

For dilute alloy, (1− cL)→ 1 and (1− cS)→ 1 . So, from Equation (110),

d
dx

d f L(cL)

dcL
=

RT
Vm

1
cL

dcL
dx

. (111)

Additionally, from Equation (47),

cS(x)
cL(x)

=
ce

S
ce

L
= ke. (112)

Substituting this relation in Equation (6),

c(x) = [1− (1− ke)q(Y, a)]cL. (113)

From Equations (27), (37) and (40),

ψl
cc =

RT
vm

1
(1−cL)cL

1
(1−cS)cS

[1− q(Y, a)] 1
(1−cS)cS

+ q(Y, a) 1
(1−cL)cL

, (114)

which reduces to,

ψl
cc =

RT
vm[1− (1− ke)q(Y, a)]cL

. (115)

Putting the values from Equations (111) and (115) in Equation (108),

RT
Vm

1
cL

dcL
dx

= − V
Di

(
c− ci

S

) RT
vm[1− (1− ke)q(Y, a)]cL

. (116)

Putting the value of c from Equation (113) and simplifying Equation (116),

dcL
dx

+
V
Di

cL =
V
Di

ci
S

[1− (1− ke)q(Y, a)]
. (117)

Equation (117) can be rewritten as,

y′(x) + ay(x) =
ab

1− (1− c) f (x)
, (118)

where, a = V/Di, b = ci
S, c = ke and q(Y, a) = f (x). The general solution of Equation (118)

is

y(x) = ke−ax + e−ax
∫ x

1

abeax′

1− (1− c) f (x′)
dx′. (119)

Putting the values of a, b, and c in Equation (119),

cL(x) = ke−
V
Di

x
+ e−

V
Di

x
∫ x

1

V
Di

ci
Se

V
Di

x′

1− (1− ke)q(x′)
dx′. (120)

Under the boundary condition cL = cS
ke = ci

S/ke at x = −λ, we have

cL(x) =
ci

S
ke e−

V
Di

(x+λ)
+

V
Di

ci
Se−

V
Di

x
∫ x

−λ

e
V
Di

x′

1− (1− ke)q(x′)
dx′. (121)
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Substituting in Equation (113),

c(x) = [1− (1− ke)q(Y, a)]

 ci
S

ke e−
V
Di

(x+λ)
+

V
Di

ci
Se−

V
Di

x
∫ x

−λ

e
V
Di

x′

1− (1− ke)q(x′)
dx′

. (122)

This equation expresses the equilibrium partition coefficient as a function of interface
velocity. Equilibrium partition coefficient k is defined as the ratio of composition of the
solid side to the liquid side of the interface or composition of the solid side of the interface
to the maximum composition across the interface [40]. Equation (122) can be rewritten in
dimensionless form as,

c̃(x) = [1− (1− ke)q(Y, a)]

[
1
ke e−Px̃ + Pe−P(x̃+ 1

2 )
∫ x

−0.5

ePx̃′

1− (1− ke)q(Y)
dx̃′
]

, (123)

where x̃ = x/2λ and c̃ = c/ci
S. Here, interface Péclet number, P = 2λV/D, controls partition

coefficient k. We adopted α = 2.94 and ke = 0.8 with which φ changes from 0.05 to 0.95 at
−λ < x < λ.

Figure 2 shows, for small P values, the value of c̃ = cmax/ci
S is close to equilibrium.

With increasing P, the height of the concentration profile and thickness of the diffusive
boundary layer decrease around the interface.
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Figure 3 shows the variation of partition coefficient, k, as a function of interface Péclet
number P, indicating that the partition coefficient starts from 0.85 and gradually reaches 1
as P increases. From the definition, interface thickness can be defined as,

k(P) =
ke + γP
1 + γP

, (124)

where,

γ =
8(1− ke)

6α ln
(

1
ke

) . (125)
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Partitionless solidification occurs with complete solute trapping. The interface temper-
ature θ is below θo temperature when f S(cS) and f L(cL) become equal. For dilute solution
we have,

θ < θo = θm + c∞
melnke

1− ke , (126)

where c∞ is the bulk composition. During partitionless solidification, the interface ve-
locity is expressed as (θo − θ)/β [41]. For dilute solution 1D phase-field equation from
Equations (44), (46) and (81),

− V
LY

∂Y
∂x

= −
{

q′(Y, a)
Rθ

Vm
[(ce

L − ce
S)− (cL − cS)] + AS0(θ, c)q̆′(Y)

}
+ βS0 d2Y

dx2 . (127)

Additionally, for partitionless solidification, from Equation (113),

cL =
c∞

[1− (1− ke)q(Y, a)]
. (128)

With approximation from Equation (112),

− V
LY

Vm

RT
∂Y
∂x

= −
{

q′(Y, a)ce
L(1− ke)− q′(Y, a)

c∞(1− ke)

[1− (1− ke)q(Y, a)]
+ AS0(θ, c)q̆′(Y)

}
+ βS0 d2Y

dx2 . (129)

Now,
d

dY
ln[1− (1− ke)q(Y, a)] = −q′(Y, a)

(1− ke)

[1− (1− ke)q(Y, a)]
. (130)

Putting the value in Equation (129),

− V
LY

Vm

Rθ

∂Y
∂x

= −
{

q′(Y, a)ce
L(1− ke) + c∞

d
dY

ln[1− (1− ke)q(Y, a)] + AS0(θ, c)q̆′(Y)
}
+ βS0 d2Y

dx2 . (131)

Multiplying with ∂Y
∂x on both sides and integrate from x = −∞ to x = +∞,

− V
LY

Vm
Rθ

∫ +∞
−∞

(
∂Y
∂x

)2
dx

= −
∫ +∞
−∞ q′(Y, a)ce

L(1− ke) ∂Y
∂x dx

−
∫ +∞
−∞ c∞

d
dY ln[1− (1− ke)q(Y, a)] ∂Y

∂x dx
−
∫ +∞
−∞ AS0(θ, c)q̆′(Y) ∂Y

∂x dx +
∫ +∞
−∞ βS0 d2Y

dx2
∂Y
∂x dx.

(132)
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Similarly, from Equations (93) and (95),∫ +∞

−∞
AS0(θ, c)q̆′(Y)

∂Y
∂x

dx = 0, (133)

and, ∫ +∞

−∞
βS0 d2Y

dx2
∂Y
∂x

dx = 0. (134)

Now, ∫ +∞

−∞
q′(Y, a)ce

L(1− ke)
∂Y
∂x

dx =
∫ 1

0
q′(Y, a)ce

L(1− ke)dY = ce
L(1− ke). (135)

Additionally,∫ +∞

−∞
c∞

d
dY

ln[1− (1− ke)q(Y, a)]
∂Y
∂x

dx =
∫ 1

0
c∞

d
dY

ln[1− (1− ke)q(Y, a)]dY = c∞lnke. (136)

Putting the values,

V
LY

Vm

RT

∫ +∞

−∞

(
∂Y
∂x

)2
dx = ce

L(1− ke) + c∞lnke, (137)

Therefore, the condition for partitionless solidification is,

ce
L(1− ke) + c∞lnke > 0. (138)

2.5. Equilibrium and Stability Conditions for the Homogenous Phase

From Equation (19) we get,

ψl
Y = q′(Y, a)

[
∆Gθ

S0(θ, c) +
∂ f L(cL)

∂cL

(
cB

S − cB
L

)]
+ AS0(θ, c)q̆′(Y) + q̆(Y)

∂AS0(θ, c)
∂c

(
cB

S − cB
L

)
q′(Y, a). (139)

For simplicity, let us assume AS0(θ, c) is constant. So ∂AS0(θ,c)
∂c = 0.

ψl
Y = q′(Y, a)

[
∆Gθ

S0(θ, c) +
∂ f L(cL)

∂cL

(
cB

S − cB
L

)]
+ AS0(θ, c)q̆′(Y), (140)

Differentiating Equation (140) with respect to Y we have,

ψl
YY = q′′ (Y, a)

[
∆Gθ

S0(θ, c) + ∂ f L(cL)
∂cL

(
cB

S − cB
L
)]

+q′(Y, a) ∂
∂Y

[
∆Gθ

S0(θ, c) + ∂ f L(cL)
∂cL

(
cB

S − cB
L
)]

+AS0(θ, c)q̆′′ (Y)

(141)

Assuming a = 0, we have,

q(Y) = 4Y3 − 3Y4,

q′(Y) = 12Y2 − 12Y3,

q′′ (Y) = 24Y− 36Y2.

(142)

We calculate the values at Y = 0 and Y = 1,

q(Y = 0) = 0; q′(Y = 0) = 0; q′′ (Y = 0) = 0,

q(Y = 1) = 1; q′(Y = 1) = 0; q′′ (Y = 1) = −12.
(143)
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We also have,
q̆(Y) = Y2(1−Y)2,

q̆′(Y) = 2Y− 6Y2 + 4Y3,

q̆′′ (Y) = 2− 12Y + 12Y2.

(144)

We calculate the values at Y = 0 and Y = 1,

q̆(Y = 0) = 0; q̆′(Y = 0) = 0; q̆′′ (Y = 0) = 2,

q̆(Y = 1) = 0; q̆′(Y = 1) = 0; q̆′′ (Y = 1) = 2.
(145)

From Equation (141),
∂2ψl

∂Y2

∣∣∣∣∣
(Y=0)

= 2AS0(θ, c); (146)

∂2ψl

∂Y2

∣∣∣∣∣
(Y=1)

= 2AS0(θ, c)− 12
[

∆Gθ
S0(θ, c) +

∂ f L(cL)

∂cL

(
cB

S − cB
L

)]
. (147)

Equations (146) and (147) give the value of ∂2ψl

∂Y2 at Y = 0 and Y = 1, respectively. At,
Y = 0, for M→ S phase transformation,

∂2ψl

∂Y2 ≤ 0,

AS0 ≤ 0.
(148)

At Y = 1, for S→ M phase transformation,

∂2ψl

∂Y2 ≤ 0;

AS0 − 6
[
∆Gθ

S0(θ, c) + ∂ f L(cL)
∂cL

(
cB

S − cB
L
)]
≤ 0.

(149)

Now let ∆Gθ
S0(θ, c) = −∆SS0

(
θ − θS0

e
)
, here ∆SS0 < 0 is the difference in entropy

between the solid and liquid phases. θS0
e is the thermodynamic equilibrium melting

temperature of the solid. AS0 = AS0
c
(
θ − θS0

c
)
, where θS0

c is the critical temperature where
liquid loses its stability.

2.6. Numerical Simulation

Let us consider a 1D isothermal system with uniform bulk modulus. The system
temperature with undercooling is given. When the system temperature is lower than the
solidus, the system can reach a steady state. The system can also reach a steady state when
a solute sink exists and sweep over all solute influx from its neighbors. The classical sharp
interface model with negligible diffusivity in solid can be described by [40],

−V
dc
dx

= DL
d2c
dx2 , (150)

V(1− ke)ci = −DL
dc
dx

, (151)

T = Tm −meci − βV, (152)

c(ξ∗) = c∞. (153)
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Here, ξ∗ is denoted as the distance between the solute sin k and the interface. ci is the
concentration at the interface. The exact solution of Equations (150)–(153) is,

c(x) = c∞ + c∞

(1− ke)

(
e−

Vx
DL − e−

Vξ∗
DL

)
1− (1− ke)

(
1− e−

Vξ∗
DL

) , (154)

Then, the interface velocity is determined by,

βV = Tm − T − mec∞

1− (1− ke)

(
1− e−

Vξ∗
DL

) , (155)

In Equation (155) ξ∗ → ∞ implies that interface velocity is positive if solidus tempera-
ture TSol is greater than temperature T, here TSol = Tm −mec∞/ke . Additionally, when ξ∗

has a finite value, the interface velocity is positive if the liquidus temperature is greater
than the temperature T, here TLiq = Tm −mec∞. Again, an exact solution for partitionless
solidification is available. In this case, the interface velocity is given by,

V =
T0 − T

β
, (156)

T0 is the temperature where the free energies of solid and liquid become equal. For
computational work, we considered a diluted solution. Equations (9), (25) and (31) are
used for our model with q(Y) = 4Y3 − 3Y4. The model system was chosen to be Ni-Cu
(0.05 mole fraction alloy). The material parameters used for computation are as follows:
DS = 1× 10−14m2/s, DL = 1× 10−9m2/s, Tm = 1728.0 K, ke = 0.7965, me = 310.9,
TSol = 1708.5 K, TLiq = 1712.5 K, σ = 0.37 J/m2, β = 10 Ks/m, the grid size was 1nm
and between the interface the phase field vary from 0.05 to 0.95. From Equations (155),
(152), (104) and (156) putting the value of TSol and Equation (126), the relations of interface
velocity is expressed as,

βV = TSol − T, (157)

βV = TSol − T + me
( c∞

ke − ci
)

, (158)

βV = TSol − T + mec∞

(
1
ke +

lnke

1− ke

)
, (159)

βV = TSol − T +
me

ke

(
c∞ − ci

S

)
, (160)

Here, Equation (157) is for analytical solution for classical sharp interface mode.
Equation (158) is the sharp interface model with diffusion in liquid only. Equation (159)
is the analytical solution for partitionless solidification, and Equation (160) is for the thin
interface limit at low Péclet number conditions.

3. Results and Discussion

Figure 4 shows the variation of interface velocity as a function of undercooling TSol − T
ignoring the solute sink ( ξ∗ → ∞) . The solid straight line shows the analytical solution
of Equation (155). The curved dashed line shows the analytical solution of partitionless
solidification V = (T0 − T)/β. The dotted line and the green line are calculated from the
thin interface limit and sharp interface limit. For a thin interface, limit the interface velocity
marge with an analytical solution as undercooling decreases. At large undercooling, the
sharp interface limit’s interface velocity is close to the analytical solution of partitionless
solidification.
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Figure 4. Variation of interface velocity, calculated at ξ∗ → ∞ as a function of TSol − T.

Figure 5 shows the variation of interface velocity as a function of the distance between
interface and solute sink ¸∗ in liquid neglecting the kinetic coefficient. The system temper-
ature was 1709 K. The curved line shows the analytical solution of Equation (155). The
physical meaning of zero kinetic coefficients in thin interface alloy means a decrease of
solid composition by phase-field alloy or increase of the solid composition by interface
thickness, bringing the solute trapping effect increases the solid composition.
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Figure 5. Variation of interface velocity calculated neglecting kinetic effect as a function of ξ∗.

Figure 6 shows the variation in solid composition along with the interface for Y < 0.5.
The vertical axis represents the relative difference between the measured solid composi-
tion at the interface ci

S and the equilibrium composition ce
S, scaled by the equilibrium

composition ce
S. Figure 7a show the change in variation of solid composition with a coef-

ficient of phase-field gradient energy, βS0 along with the interface for D∗ = 1. Figure 7b
shows the change in Y with a coefficient of phase-field gradient energy along with the
interface for D∗ = 1 . We did not detect any difference in Deviation of solid composition
and Y profile for different D∗ values. From the plot, we can see that as the coefficient
of gradient energy decreases, the phase-field model approaches the sharp interface limit.
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Figure 8a,b show the deviation of solid composition at the interface with diffusivity:
D∗ = 1, D∗ = 2 and D∗ = 5 for βS0 = 1 and βS0 = 2, respectively. From the figure, we
can say that diffusivity has no effect on solid composition in the interface region.

Materials 2023, 16, x FOR PEER REVIEW 22 of 26 
 

 

with the interface for   𝐷∗ = 1 . We did not detect any difference in Deviation of solid 

composition and 𝛶 profile for different 𝐷∗ values. From the plot, we can see that as the 

coefficient of gradient energy decreases, the phase-field model approaches the sharp 

interface limit. Figure 8a,b show the deviation of solid composition at the interface with 

diffusivity: 𝐷∗ = 1, 𝐷∗ = 2 and 𝐷∗ = 5 for 𝛽𝑆0 = 1 and 𝛽𝑆0 = 2, respectively . From the 

figure, we can say that diffusivity has no effect on solid composition in the interface 

region. 

 

Figure 6. Variation of solid composition along with the interface. 

 

Figure 7. Deviation of solid composition (a) and 𝛶 profile (b) along the interface for dimensionless 

diffusivity 𝐷∗ = 1 for various 𝛽𝑆0 values. 

Figure 6. Variation of solid composition along with the interface.

Materials 2023, 16, x FOR PEER REVIEW 22 of 26 
 

 

with the interface for   𝐷∗ = 1 . We did not detect any difference in Deviation of solid 

composition and 𝛶 profile for different 𝐷∗ values. From the plot, we can see that as the 

coefficient of gradient energy decreases, the phase-field model approaches the sharp 

interface limit. Figure 8a,b show the deviation of solid composition at the interface with 

diffusivity: 𝐷∗ = 1, 𝐷∗ = 2 and 𝐷∗ = 5 for 𝛽𝑆0 = 1 and 𝛽𝑆0 = 2, respectively . From the 

figure, we can say that diffusivity has no effect on solid composition in the interface 

region. 

 

Figure 6. Variation of solid composition along with the interface. 

 

Figure 7. Deviation of solid composition (a) and 𝛶 profile (b) along the interface for dimensionless 

diffusivity 𝐷∗ = 1 for various 𝛽𝑆0 values. 

Figure 7. Deviation of solid composition (a) and Y profile (b) along the interface for dimensionless
diffusivity D∗ = 1 for various βS0 values.

Materials 2023, 16, x FOR PEER REVIEW 23 of 26 
 

 

 

Figure 8. Deviation of solid composition along with the interface with dimensionless 

diffusivity 𝐷∗ = 1, 𝐷∗ = 2, and 𝐷∗ = 5 for (a) 𝛽𝑆0 = 1; (b) 𝛽𝑆0 = 2. 

For the validation of our simulation with the analytical result, we use the analytical 

solution of GL equation Equation (74) and simulation result of 𝛶 with the same material 

properties. Figure 9 shows that the analytical solution coincides with the simulation result. 

So, the simulation results are in excellent agreement with the analytical solution, 

indicating the current implementation of the finite element code.  

 

Figure 9. Comparison of numerical result with the analytical result. Our finite element code 

reproduces matches with the analytical solution. 

4. Conclusions 

We developed a phase-field model for the solidification of binary alloys, which 

satisfies the stability conditions at all temperatures. The proposed phase-field potential is 

composed of local and gradient energy terms, and we derived the GL equations governing 

the solidification kinetics using the second law of thermodynamics followed by the 

Onsager assumption. The phase-field model was reformulated for the dilute 

approximation limit and solved analytically for the 1D problem. We also demonstrate that 

the proposed phase-field model reduced to the sharp-interface solution at the thin 

interface limit.  

Figure 8. Deviation of solid composition along with the interface with dimensionless diffusivity
D∗ = 1, D∗ = 2, and D∗ = 5 for (a) βS0 = 1; (b) βS0 = 2.



Materials 2023, 16, 383 23 of 25

For the validation of our simulation with the analytical result, we use the analytical
solution of GL equation Equation (74) and simulation result of Y with the same material
properties. Figure 9 shows that the analytical solution coincides with the simulation result.
So, the simulation results are in excellent agreement with the analytical solution, indicating
the current implementation of the finite element code.
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4. Conclusions

We developed a phase-field model for the solidification of binary alloys, which satisfies
the stability conditions at all temperatures. The proposed phase-field potential is composed
of local and gradient energy terms, and we derived the GL equations governing the
solidification kinetics using the second law of thermodynamics followed by the Onsager
assumption. The phase-field model was reformulated for the dilute approximation limit
and solved analytically for the 1D problem. We also demonstrate that the proposed phase-
field model reduced to the sharp-interface solution at the thin interface limit.

We developed the relationship between kinetic coefficient and mobility for thin-
interface limit, neglecting diffusivity in the solid phase. Our results indicate that the
solid composition increases with the effect of finite interface thickness and decreases with
finite phase-field mobility. With a zero kinetic coefficient, both these effects are canceled
out that results in equilibrium at the interface.

Using this model for 1D steady-state dilute solution with negligible diffusivity, we
observed the concentration profile as a function of Péclet number, which is a function of
interface velocity. From the analytical solution, it is concluded that with increasing interface
velocity, the concentration profile decreases. The distribution of the partition coefficient
was also obtained. From the relation between interface velocity and partition coefficient, we
can see that with high interface velocity, the value of partition coefficient goes close to unity
for sharp interface model. For 1D dilute solution, we performed numerical simulations.
From simulation results, we can conclude that the concentration profile’s height is inversely
proportional to the coefficient of gradient energy.
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