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Abstract: Early diagnosis and monitoring are essential for the effective treatment and survival of
patients with different types of malignancy. To this end, the accurate and sensitive determination
of substances in human biological fluids related to cancer diagnosis and/or prognosis, i.e., cancer
biomarkers, is of ultimate importance. Advancements in the field of immunodetection and nanoma-
terials have enabled the application of new transduction approaches for the sensitive detection of
single or multiple cancer biomarkers in biological fluids. Immunosensors based on surface-enhanced
Raman spectroscopy (SERS) are examples where the special properties of nanostructured materials
and immunoreagents are combined to develop analytical tools that hold promise for point-of-care
applications. In this frame, the subject of this review article is to present the advancements made
so far regarding the immunochemical determination of cancer biomarkers by SERS. Thus, after a
short introduction about the principles of both immunoassays and SERS, an extended presentation
of up-to-date works regarding both single and multi-analyte determination of cancer biomarkers
is presented. Finally, future perspectives on the field of SERS immunosensors for cancer markers
detection are briefly discussed.

Keywords: Raman spectroscopy; nanomaterials; cancer markers

1. Introduction

The ability to detect disease biomarkers in human body fluids such as blood, urine,
and saliva with high sensitivity and specificity is crucial for both the early diagnosis and
successful treatment of diseases. To this end, immunochemical methods based on antigen-
antibody interactions have been established in everyday clinical practice as the methods
of choice for the sensitive and reliable detection of protein-based cancer biomarkers in
bodily fluids [1]. In addition to their excellent analytical performance (high sensitivity
and specificity and relatively short turnaround times), the widespread use of immuno-
chemical methods for cancer biomarkers detection is also due to their incorporation into
fully automated high-throughput analyzers that are well suited to the heavy workflow of
hospital clinical laboratories. On the other hand, there are solutions with less complexity
and size that are more suitable for use in emergency departments or close to patients in
intensive care units. Therefore, immunochemical methods have monopolized the field of
protein biomarker diagnostics with respect to other analytical techniques, such as mass
spectroscopy. For other types of cancer markers, such as microRNA or circulating tumor
cells, other detection methods, such as molecular (e.g., real-time PCR) and cell sorting
techniques (e.g., flow cytometry), respectively, are the most widely employed [1].
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Various types of immunochemical methods have been developed over the years, using
different types of labels such as enzymes in combination with chromogenic or luminescent
substrates, fluorescent compounds organic or inorganic, noble metal nanoparticles or
nanoparticles of organic or inorganic nature, etc. Despite the diversity of labels and assay
formats, there are some limitations regarding the application of standard immunochemical
techniques outside the laboratory. To fill this gap, over recent decades, immunosensors
have been developed aiming to combine the analytical performance of immunochemical
methods with portability and thus move the analysis from the lab to the field or the patient’s
side [1,2].

Immunosensors are a subcategory of biosensors (Figure 1) in which the biorecognition
element is an antibody or an antigen [1–9]. Thus, compared to other types of biosensors,
such as DNA, enzymatic, or cell sensors, they inherit all the advantages of standard
immunochemical methods, such as the high sensitivity and specificity, the reliability of
the determinations, and the ability to detect the analyte of interest in complex media
with the potential for multiplexed analysis and on-site use. Although antibody-based
biosensors appeared in the literature for the first time in the 1950s, the field greatly expanded
after the mid-1970s [1,2]. Over the years, additional features have been incorporated
into the developed immunosensors, such as the ability for multiplexed determination of
different biomarkers in a single run, the label-free real-time monitoring of binding reactions,
the automatic performance of the assay steps, and the considerable miniaturization of
transducers and related instruments. Furthermore, the implementation of nanomaterials
in both immunoassays and immunosensors, either through their incorporation on the
transducer surface or as labels, considerably improved the detection sensitivity as they
provided for high surface area for the attachment of immunoreagents, thus facilitating the
analyte’s access to the immobilized antibodies and/or lead to signal amplification [10].
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Figure 1. Basic components of a biosensor: (a) the analyte: the substance of interest which is needed
to be detected in the sample; (b) the biorecognition element: a molecule that recognizes specifically
the analyte; (c) the transducer: converts the analyte-biorecognition element binding into a measurable
signal; (d) the signal processing and display: a combination of hardware and software to transform
the transducer response to the analyte concentration in the sample.
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Regarding the transducer part, immunosensing has been combined with both opti-
cal [3–7] and electrochemical transducers [3,8,9] and, to a lesser extent, with other types of
transducers to develop assays for the detection of specific analytes in different matrices.
Optical detection is considered more appropriate for multiplexed analyte detection in
complex matrices, compared to electrochemical detection, since the signal is less affected
by matrix interferences and cross-talk effects between adjacent immunosensors [5,6]. More-
over, there is a great variety of available transduction principles, including colorimetry
and photoluminescence (mainly fluorescence) [3,4], reflectance spectroscopy [11], surface
plasmon resonance (SPR) [5], interferometry [5], and surface-enhanced Raman spectroscopy
(SERS) [12].

In particular, SERS-based immunosensors have been successfully employed in studies
related to in vitro diagnostics [13], environmental monitoring [14], and food quality and
safety assessment [15]. In all these applications, the antigen-antibody interaction contributes
to the high specificity of the assays developed, while detection by SERS provides high
sensitivity that can reach the single molecule level [13]. To this end, the implementation of
appropriate SERS substrates as solid carriers for immunochemical determination of analytes
is critical since it is one of the main factors contributing to increased detection sensitivity
of SERS-based immunosensors as compared to the standard immunochemical techniques,
e.g., enzyme-linked immunosorbent assays (ELISAs) as well as to other types of optical
immunosensors [10,14,16]. An additional advantage of SERS immunosensors compared
to other optical transduction principles is the relatively low cost of SERS substrates (as
compared, for example, to SPR chips) and the ease of their fabrication that does not
require clean room facilities (as compared, for example, to silicon-based interferometric
sensor chips). In this frame, the aim of this review is to present the advances in the
development of SERS-based immunosensors, especially those applied for the detection of
cancer biomarkers. At first, the principle of SERS, the substrates, and Raman tags so far
implemented in immunosensing will be presented, followed by a detailed discussion of
SERS applications in the field of cancer biomarker detection. Finally, the challenges and
future aspects in this application field will be commented on.

2. Surface-Enhanced Raman Spectroscopy (SERS)

Raman spectroscopy is an analytical technique where scattered light is used to measure
the vibrational energy modes of a molecule. It has been named after the Indian physicist
C.V. Raman who, together with his research partner K.S. Krishnan, were the first to observe
Raman scattering in 1928. Raman spectroscopy can be used for the identification of sub-
stances through their characteristic Raman «fingerprint» [17,18]. When electromagnetic
radiation is illuminated on a molecule, the radiation interacts with the electrons, and the
result is Rayleigh elastic scattering and a much weaker inelastic scattering event called
Raman scattering. In Raman scattering, the scattered light is of a different wavelength from
the irradiated (Figure 2a). More specifically, the incident light photon can lose energy by
exciting a vibrational mode in a molecule, and the wavelength of the scattered photon
becomes larger (Stokes), or the incident photon strikes the molecule, which can already
be at an excited vibrational state and the scattered photon shifts to a shorter wavelength
(anti-Stokes) as the molecule goes to its ground vibrational state. It should be noted that
Raman scattering differs from fluorescence, wherein the incident light is entirely absorbed
by the molecule, which is transferred to an excited electronic state from where it goes to a
lower electronic state after a certain period by emission of a photon. The Raman shift does
not depend on the frequency of incident light, but the intensity of the signal can be affected
by the choice of excitation wavelength (Figure 2b).
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Figure 2. Principle of Raman scattering. (a) Raman and Rayleigh scattering. (b) Schematic diagram
of the energy transitions involved in Rayleigh scattering and Raman scattering. Raman scattering
occurs through the interaction of an incident photon with a molecular vibration mode that leads to
gaining (anti-Stokes scattering, blue-shifted) or losing (Stokes scattering, red-shifted) an amount of
energy corresponding to that vibrational mode.

Due to the mechanism involved, Raman spectroscopy allows for the accurate identifica-
tion of organic, inorganic, and biological species, an advantage that lack many other analytical
techniques, such as ultraviolet absorbance and fluorescence spectroscopy [19]. In addition,
Raman spectroscopy requires minimal sample treatment prior to analysis and therefore is
well-fitted for on-site determination, especially since portable instruments have become avail-
able. However, the weak intensity of the Raman spectrum, which is attributed to rare inelastic
scattering, limits its application to fields where the concentration of the analyte of interest is
very low or the matrix is very complex. For this reason, metal substrates made of Au, Ag, Cu,
and other metals have been employed to enhance the local electromagnetic field and increase
the efficiency of Raman scattering by several orders of magnitude, leading to surface-enhanced
Raman spectroscopy. Thus, surface-enhanced Raman spectroscopy (or SERS) bridges Raman
spectroscopy and materials science enabling the non-destructive, ultrasensitive, and selective
detection of analytes of both low [20–23] and high molecular weight [24,25], as well as of
whole cells both in vitro and in vivo [26–29].

Two different mechanisms participate in the SERS effect, i.e., the Raman signal en-
hancement from nanostructured noble metals, the electromagnetic mechanism, and the
chemical mechanism [20]. The electromagnetic mechanism, which is the dominant SERS en-
hancement mechanism, is related to the excitation of plasmons in the metal nanostructures
by the incident light that results locally in an enhanced electromagnetic field which in turn
is responsible for the large enhancement in Raman scattering. The chemical mechanism, on
the other hand, depends strongly on the nature of the molecule and involves the formation
of new molecular states and chemical bonds due to the direct interaction of the molecules
with the SERS surface. In this mechanism, the molecular polarizability tensor is signifi-
cantly enhanced due to a photo-induced charge transfer process between the adsorbed
molecules and the molecular monolayer of the substrate [30]. Thus, molecules immobilized
onto a SERS substrate could be, in principle, directly detected (Figure 3). However, when
an immunochemical technique is employed for the detection of an analyte of interest,
the detection can be label-free or employ detection antibodies or antigens labeled with
molecules known as Raman labels or tags. Thus, the most widely used SERS substrates
and Raman tags are discussed in the next sections.
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the molecules are placed at the surface of a nanostructured metallic substrate.

2.1. SERS Substrates

The performance of a SERS substrate depends both on the metal used and the
metal layer nanostructuring. Generally, gold (Au) and silver (Ag) are the most com-
mon metals used for SERS applications [23]. Amongst these two metals, Au has the
advantage of being inert towards oxidation and, in general, more biocompatible than
Ag [31]. Furthermore, Au nanoparticles present a strong surface plasmon resonance
phenomenon when illuminated with light in the visible and near-infrared wavelength
ranges (approx. 400–1000 nm) [32]. The resonance of Au surface plasmon upon il-
lumination leads to strong Raman signal enhancement (10–14 orders of magnitude
compared to conventional Raman spectroscopy) due to the creation of “hot spots”
on aggregated Au particle clusters [32]. Apart from their plasmonic properties, Au
and Ag nanoparticles are the most widely exploited SERS substrates for biomolecule
detection due to the large surface-to-volume ratio they offer, which enables the immo-
bilization of high quantities of binding molecules to a low volume of nanoparticles,
thus, accelerating the immunochemical reactions with respect to planar substrates.
Another advantage of nanoparticles is the ease of their fabrication as well as the fact
that they can be manipulated by changing the reactant concentration, the temperature
and the ionic strength of the solution, enabling control of their size, shape, aggrega-
tion properties, and surface charge properties [33]. The most extensively-employed
method for the preparation of both Au and Ag nanoparticles relies on sodium citrate
reduction of HAuC14 and AgNO3 solutions, respectively [34]. Nonetheless, up to date,
various modifications of these methods for synthesizing SERS active substrates in
the form of metal nanoparticles with different morphologies, such as nanorods [35],
nanospheres [36], nanocubes [37], and nanocages [38], have been developed. Several
studies have shown that the size and shape of the nanoparticles affect the SERS en-
hancement achieved. For example, it has been reported that SERS enhancement is more
intense when the nanoparticles are rod-shaped compared to spherical [32]. It has also
been shown that considerable enhancement of the Raman signal can be achieved by
increasing the sharpness and roughness of metal nanoparticles due to plasmonic “hot
spot” localization at the sharp edges and nanogaps of these nanoparticles [21,39]. To
this end, nanoflowers, nanostars, and other structures with higher curvature have been
developed and tested as SERS substrates [39–41] (Figure 4).
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image of Ag nanoprisms; (B) SEM image of Ag nanocubes; (C) TEM image of Au nanostars; and
(D) SEM image of Ag nanosheets [39]. Copyright 2015. Reproduced with permission from MDPI.

Apart from using the Au and Ag nanoparticles, after appropriate modification, in
liquid phase assays, deposition of Au and Ag nanoparticles onto planar substrates or in
situ synthesis has been exploited in order to perform solid phase assays. The deposition
of metal nanoparticles can be performed by drop casting, spin-coating, or adsorption
from a solution, while the in situ synthesis can be performed by a variety of methods such
as colloidal lithography, e-beam lithography, electrochemical methods, etching and metal
deposition, etc. [39–43]. Copper nanoparticles have also been implemented as SERS
substrates since they have lower costs compared to Au and Ag nanoparticles but similar
optical properties. Their use, however, is limited due to the fact that they are prone
to oxidization under atmospheric conditions [44]. In addition to metals nanoparticles,
the SERS effect has been reported for a high variety of other materials such as NiO,
Cu2O, Ag2O, AgX (X = Cl, Br, I), ZnO, TiO2, α-Fe2O3, Si, Ge, graphene, and InAs/GaAs
quantum dots [29,40]. The use of these materials for the fabrication of SERS substrates is
gaining ground due to the lower cost of the reagents involved compared to Au and Ag
and the compatibility of most of them with complementary metal-oxide semiconductor
(CMOS) procedures.

2.2. SERS Labels

One of the most remarkable characteristics of detection methods based on SERS is that
an analyte can be identified by its unique Raman spectrum, thus providing for its label-free
detection. Unfortunately, this direct label-free detection is not possible when the analyte is
present in the samples to be analyzed at very low concentrations or if it has a very weak
Raman scattering signal. One method for inducing a strong SERS signal in the absence
of an intrinsic signal from the analyte is to conjugate a Raman reporter molecule onto a
plasmonic metal nanoparticle so as to create a SERS label [45]. As shown schematically in
Figure 5, a typical SERS label consists of the metal nanoparticle, Raman reporter molecules,
a protection layer, and the mean to bind the targeted molecules-analytes. In a nutshell,
SERS labels are essentially Au or Ag nanoparticles or nanostructured surfaces that are co-
functionalized with a Raman tag molecule and an analyte-specific biorecognition molecule
(e.g., antibody, aptamer, lectin, antigen, etc.) to achieve both enhanced SERS signals and
specific binding to targeted molecules-analytes. In such SERS labels, the SERS signal is
enhanced by the localized SPR effect of the nanoparticles to which the Raman reporter
molecules have been immobilized. The addition of one or more protecting layers around
the metal nanoparticles aims to protect the Raman reporter molecules from the outside
environment and/or provide anchor spots for the analyte biorecognition molecules [43].
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Figure 5. Procedure for the fabrication of a typical SERS label: at first, the metal nanoparticles
(Au, Ag, etc.) were modified with the Raman reporter molecules, which are either molecules with
thiol groups that readily react with the metal or are covalently bound onto the metal particles after
chemical functionalization, a protection layer is then applied usually a silicon dioxide layer which
after chemical functionalization provides for the attachment of antibody molecules either through
adsorption or covalent bonding.

In order for a “good Raman scatter” to be considered a “good SERS label,” the molecule
must attach efficiently to the SERS substrate. Some molecules, especially those having a
thiol group, have a strong chemical affinity for metal surfaces and are, therefore, easier to
work with. Other mechanisms of probe attachment include electrostatic interactions, where
charged probes adsorb on an oppositely charged substrate or the substrate is appropriately
functionalized through the introduction of reactive groups that could be then used to cova-
lently bind the Raman reporter molecules [46]. Other desirable properties of a SERS label
are low water solubility and excitation in the near-infrared wavelength region. More specif-
ically, the high water solubility of a SERS label may disrupt the bond between the label and
the substrate, especially in cases where the attachment is based on electrostatic interactions,
thus affecting the stability and reproducibility of the SERS measurements in aqueous sam-
ples. To this end, malachite green isothiocyanate (MGITC), 5,5′-dithiobis(2-nitrobenzoic)
(DTNB), 4-nitrothiophenol (4-NTP), 4-mercaptobenzoic acid (MBA), rhodamine 6G and
crystal violet, are considered as strong and stable SERS labels due to their high affinity with
the metal substrates. Moreover, molecules containing alkyne moieties are considered good
SERS labels due to their characteristic Raman peak at 2100 cm−1, where no other intrinsic
peaks exist, providing high detection specificity [47]. It is also preferable for a label to be
active in near-infrared, such as 3,3′-diethylthiatricarbocyanine (DTTC), due to the fact that
near-infrared lasers provide negligible autofluorescence/absorption interference [48]. It
should be noted that when the modified nanoparticles and nanostructured substrates are
exposed to complex matrices such as the biological samples, their performance with respect
to SERS detection is compromised due to a variety of physical and/or chemical phenomena
that take place (e.g., corrosion, aggregation, unspecific absorption of biomolecules, etc.).
In this case, the interaction between the nanomaterials and samples must be fully under-
stood in order for the SERS-based detection to become a practical and reliable bioanalysis
technique [5,49].

3. SERS-Based Immunosensors

SERS-based immunosensors combine immunoassays with surface-enhanced Raman
scattering as the readout signal. An immunoassay is defined as an analytical method
that takes advantage of the highly specific binding between an antibody and the antigen
against which it has been developed for the quantitative determination of this antigen in a
sample [46], where the antigen can be a low molecular weight synthetic or natural molecule
or a high molecular weight protein molecule. To perform a SERS-based immunoassay, either
the antibody or the antigen (or an antigen derivative) must be immobilized onto the SERS
substrate, then the immunoreaction, i.e., the reaction between the antibody and the antigen
in the sample, takes place. In general, the immunoassays performed in a SERS substrate
follow the same formats and principles as standard microtiter plate immunoassays.

Thus, in accordance with the universal classification for immunoassays, SERS-based
immunoassays could be classified into homogeneous or heterogeneous assays, competitive
or non-competitive assays, and assays employing labels or label-free ones. In homogeneous
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immunoassays, there is no need to physically separate the bound from the free forms
of the immunoreagents since the antibody–antigen binding modifies the signal enabling
their discrimination [50]. Heterogeneous immunoassays, on the other hand, rely on the
separation of the bound and free forms of the immunoreagents after the immunoreaction
since the binding does not affect the signal. After separation, the analytical signal from
the bound or free form of the immunoreagents is quantified and correlated to the analyte
concentration in the sample [50].

The application of a competitive or a non-competitive immunoassay format de-
pends on the nature and the molecular weight of the antigen since it defines the number
of available epitopes, i.e., the specific part of a molecule that the antibody binds to.
Thus, for low molecular weight antigens that have only one epitope, a competitive
immunoassay is the format of choice. As shown in Figure 6, there are two main com-
petitive immunoassay configurations, one based on the competition of the analyte in
the sample with the labeled analyte (or a labeled analyte derivative) for binding to an
immobilized antibody (Figure 6a); and the second based on the competition between the
immobilized analyte (or an analyte derivative) and the analyte in the sample for binding
to a liquid phase antibody (Figure 6b) [51,52]. Due to the competitive immunoassay
principle, the signal determined by the solid-phase bound reagents after completion
of the immunoreaction is inversely proportional to the concentration of the analyte in
the sample. The non-competitive immunoassay is suitable for antigens that have at
least two epitopes, and therefore there are at least two antibodies that recognize these
epitopes specifically [51–53]. One of the antibodies is immobilized onto the SERS sub-
strate, and the immunoreaction between the two antibodies and the analyte results in
“sandwich-like” immunocomplexes (Figure 6c) [51–53]. In this case, the analytical signal
is proportional to the analyte concentration in the sample.
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Figure 6. Schematic presentation of different immunoassay formats: (a) competitive immunoassay
based on immobilized analyte-specific antibody for the binding sites of which compete for the analyte
and an analyte-derivative (label), (b) competitive immunoassay based on immobilized analyte
derivative that competes with the analyte for binding to the specific antibody binding sites, and
(c) non-competitive immunoassay employing two antibodies, one immobilized that captures the
analyte and the other in liquid-phase for bound analyte detection.

Finally, the SERS-based immunoassays could detect the targeted analyte either in a
label-free format or by employing labels. Label-free immunosensing can rely on the analyte
detection after directly binding to the antibody immobilized onto the SERS substrate or
employing a non-competitive immunoassay with no labeled antibodies. On the other hand,
the antibody or the antigen could be immobilized on a nanoparticle modified with a Raman
reporter molecule and implemented in a competitive or non-competitive immunoassay
format for the detection of the analyte. Label-based SERS immunoassays enable highly sen-
sitive detection of the analyte via monitoring the spectra of the Raman reporter molecules
as compared to respective label-free approaches [54,55].
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4. Cancer Biomarkers Immunochemical Detection via SERS

Biomarkers are compounds that are used as indicators to differentiate normal from
disease conditions, and their detection can increase the treatment success rates for many
diseases. Biomarkers include low molecular weight molecules, such as steroid and
thyroid hormones, lipids, etc., proteins including enzymes, structural proteins, protein-
based hormones, etc., DNA fragments, and RNA molecules, as well as every molecule
that its concentration in the biological fluids decreases or increases in response to a
pathological condition.

Especially in the field of cancer, biomarkers play a critical role in disease diagnosis,
prognosis, and therapy monitoring; thus, there is a strong need for the development of
highly sensitive and accurate diagnostic platforms for the detection of these biomarkers
in biological fluids [56,57]. One of the approaches exploited to achieve this goal is the
implementation of SERS-based immunochemical detection of protein cancer markers. In
the following sections, the so-far reported SERS immunoassays for protein cancer marker
detection are presented per targeted marker.

4.1. Prostate Specific Antigen (PSA)

Prostate cancer is the second leading cause of death from cancer in the male population
worldwide. The most commonly used cancer biomarker for prostate cancer diagnosis and
monitoring is prostate-specific antigen (PSA) [58]. PSA is a serine protease that belongs to
the tissue kallikrein family, and it is produced by the prostatic epithelial cells in order to
hydrolyze high molecular weight proteins produced by the seminal vesicles and allow the
liberation of spermatozoa from the semen coagulum during ejaculation. Despite the fact
that PSA is found in other tissues, including the breast, ovary, lung, pancreas, colon, kidney,
and liver, in both men and women, its levels in human serum are low (<4.0 ng/mL in men;
<0.004 ng/mL in women) unless a malignancy or pathological conditions is present. Thus,
PSA levels in male serum above 10 ng/mL are indicative of a serious possibility of prostate
cancer, whereas values between 4.0 and 10 ng/mL are not conclusive since they can be
due to other pathological situations related to prostate such as prostatitis, benign prostate
hyperplasia, etc. [58]. However, PSA is the most appropriate marker to monitor the relapse
of prostate cancer after prostatectomy, and therefore it remains, despite its limitations, the
most specific marker for prostate cancer. The determination of PSA levels in human serum
samples is almost exclusively performed by immunochemical methods and especially by
non-competitive immunoassays run on different platforms and instruments. Due to the
significance of PSA for prostate cancer diagnosis and prognosis, there is a great interest in
developing immunosensors for rapid and accurate PSA determination in human fluids [59].

To this end, one of the first reports regarding cancer markers immunochemical detec-
tion with SERS was about the determination of PSA through a non-competitive immunoas-
say onto a substrate patterned by microcontact printing to define areas modified with
(3-aminopropyl)trimethoxysilane onto which Au nanoparticles could be attached [60]. The
immobilized Au nanoparticles were then modified with an anti-PSA antibody, whereas Au
nanoparticles modified with the Raman reporter molecule rhodamine 6G and an anti-PSA
antibody were used as labels. Detection of PSA to concentration as low as 1 pg/mL was
claimed, but a full evaluation of sensor performance was not conducted.

SERS detection was combined with an enzyme immunoassay to detect PSA in human
serum with a limit of detection (LOD) of 10−9 ng/mL [61]. This ultrasensitive detection
was achieved by performing a non-competitive immunoassay in a 96-well microtiter plate
using a detection antibody immobilized along with catalase onto Au nanoparticles. In
the presence of PSA, the bound-to-wells catalase would oxidize its substrate, H2O2, and
thus, upon the addition of aggregated Au nanoparticles modified with the Raman tag
4-mercaptobenzoic acid (4-MBA), a strong Raman signal was measured. On the other hand,
in the absence or with low concentrations of PSA, most of the hydrogen peroxide was not
consumed by the enzyme, and thus, dissolution of aggregated gold nanoparticles took
place, and the Raman signal was reduced.
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In another approach, silica-coated Ag nanorods modified with the Raman tag 4-MBA
were optimized with respect to their morphology and Raman signal enhancement and then
employed as labels in a non-competitive immunoassay for PSA with the capture antibody
immobilized onto a quartz slide [62]. A LOD of 0.3 fg/mL was determined, and the linear
working range extended up to 30 µg/mL.

A SERS-based microdroplet sensor for wash-free magnetic immunoassay of PSA has
also been reported [63]. The sensor relied on embedding a magnetic bar into a microfluidic
system for the separation of immunocomplexes formed by reacting magnetic beads modi-
fied with an anti-PSA antibody along with the sample and a second antibody immobilized
onto Au nanoparticles labeled with the Raman tag malachite green isothiocyanate, from
the free particles through droplet splitting. When PSA was present in the sample, more
SERS labels were in the form of immunocomplexes and less in the free form. Thus, by
determining the Raman signal from the free labels, the PSA concentration in the sample
was indirectly determined. The LOD was 0.1 ng/mL, and the dynamic range was up to
200 ng/mL.

Another microfluidic device that was designed not to require external pumps was also
implemented for the development of a SERS-based immunoassay for PSA using magnetic
beads modified with the capture antibody and Au nanoparticles modified with the detection
antibody and the Raman tag malachite green isothiocyanate [64]. The immunoreagents
were mixed and reacted in a microfluidic device, and then, the immunocomplexes were
separated by the free molecules by applying a magnetic field to the reaction chamber 5 min
after their introduction. The LOD was determined to be 0.01 ng/mL, and the assay’s
dynamic range extended up to 100 ng/mL, covering both the normal and prostate cancer
range of concentrations, although no results from the analysis of human serum samples
were demonstrated [64].

In another report, it was demonstrated that the addition of Ag nanoparticles on
the surface of graphene oxide enhanced the Raman signal obtained from both the high-
frequency disordered band (D-band) and tangential mode (G-band) bands of GO [65].
Such a surface was used as a substrate for the development of a non-competitive
immunoassay for PSA in which the detection antibody was modified with biotin to
enable the reaction with streptavidin labeled with glucose oxidase. After completion of
the immunoreaction, the surfaces were incubated with the enzyme–substrate, i.e., glu-
cose, and the hydrogen peroxide produced dissolved the deposited onto graphene
silver nanoparticles. Thus, the Raman signal was reduced as the PSA concentration
in the solution increased. The LOD achieved following this method was calculated at
0.23 pg/mL, while the assay dynamic range was from 0.5 to 5.00 pg/mL [65]. The SERS
immunosensor developed was tested using a number of human serum samples (six in
total), which were appropriately diluted prior to analysis so that their concentration
fell within the assay’s dynamic range, indicating the potential of the method developed
for the analysis of human serum samples.

A non-competitive SERS-based immunoassay for the quantitative detection of PSA
was developed by combining Ag nanoparticle aggregates with an inbuilt Raman reporter
molecule (2-naphthalenethiol) encapsulated in a polystyrene-block-poly(acrylic acid) layer
and modified with an antibody against PSA with Au nanowires on a silica wafer also
modified with an antibody against PSA [66]. By employing Ag nanoparticle aggregates
instead of single Ag nanoparticles, an enhancement factor of 10 was achieved, which
was further increased by a factor of 1.34 when a substrate with gold nanowires was
employed instead of a plain silica surface. Thus, a LOD for PSA of 1 fg/mL was achieved
combined with a very wide working range that extended up to 1 µg/mL (nine orders of
magnitude) [66].

In a more complex approach, a non-competitive PSA immunoassay was developed
using one antibody coupled to magnetic Au nanoparticles and another coupled to ZnO-Au
nanocomplexes [67]. After immunoreaction, magnetic separation was applied to wash and
concentrate the immunocomplexes. Then, the ZnO–Au nanocomplexes were dissolved
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with HCl, and the solution of Zn2+ ions created was applied to a silica wafer coated with
Au nanoparticles modified with the Raman tag toluidine blue and then covered with a
polyacrylamide gel containing a zinc finger peptide. Upon incubation with the solution of
Zn2+ ions, the zinc finger peptide changed conformation, disrupting the polyacrylamide
gel surface and allowing the detection of the Raman signal from the embedded tag in a
concentration-dependent way. The proposed sensor could detect PSA in the range from
1 pg/mL to 10 ng/mL with a LOD of 0.65 pg/mL [67].

Microparticles with a core of Fe3O4 coated with a layer of TiO2 and then with Au
nanoparticles (Fe3O4@TiO2@Ag microparticles) were investigated as a recyclable substrate
for a SERS-based PSA immunoassay [68,69]. It was found that the photocatalytic degra-
dation of the microparticles could be adjusted by tuning the thickness of the middle TiO2
shell and the density of the Ag nanoparticles at the outer surface, while the magnetic
properties of the Fe3O4 core enhanced the photocatalytic activity of the microspheres [68].
PSA was covalently coupled onto these microspheres and was detected after binding to
an anti-PSA antibody immobilized onto a slide. A LOD of 16.25 pg/mL was claimed,
and a linear dynamic range from 0.1 ng/mL to 100 µg/mL [68]. Microspheres with the
same structure have also been employed as labels in a non-competitive PSA immunoassay
after their modification with the Raman tag 4-MBA and an anti-PSA antibody [69]. SiC
sandpapers with sputtered Ag films were used as substrates after modification with an
anti-PSA antibody. Through optimization of both the substrate and the labels, a LOD of
1.871 pg/mL was achieved [69].

In another report, electrospun polycaprolactone fibers (PCL) decorated with Ag
nanoparticles were implemented as substrates for a SERS-based immunoassay for the
determination of PSA in combination with Au nanoparticles modified with 4-MBA
(Figure 7) [70]. The large surface area of these substrates allowed the immobilization of
larger numbers of antibody molecules compared to flat substrates, while their porous
nature facilitated the reaction of immobilized antibodies with the antigen. Thus, a LOD
of 1 pg/mL was achieved for a reaction time of 1 h [70].
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Figure 7. (a) Schematic configuration of Ag-PCL surfaces fabrication. (b) Illustration of an immunoas-
say for the detection of PSA with Ab-AuNPs@4-MBA SERS tag on the Ag-PCL surfaces prepared as
shown in (a) [70]. Copyright 2019. Reproduced with permission from Elsevier B.V.

In addition to immunoassays for SERS-based PSA determination, an aptasensor was
proposed [71], which combined magnetic nanoparticles modified with an aptamer specific
for PSA and Au nanoparticles modified with a complementary sequence and the Raman
tag 4,4′-dipyridyl. After the reaction, the magnetic aptamer-mediated assemblies of Au
nanoparticles were removed from the solution employing a magnet, and the Raman sig-
nal from the Au nanoparticles in the solution was detected. Thus, upon increasing the
concentration of PSA in the sample, the SERS signal obtained from the supernatant was
proportionally increased since, in the presence of PSA, the assembly of aptamer-modified
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magnetic nanoparticles with the Au nanoparticles was disrupted. The LOD achieved with
this aptasensor was 5.0 pg/mL, with a linear range of up to 500 pg/mL. Furthermore, the
sensor was applied for PSA determination in human serum samples demonstrating good
specificity and satisfactory accuracy [71].

Another alternative binding moiety employed for PSA determination by SERS was
based on molecularly-imprinted polymers (prepared using tannic acid as the functional
monomer and diethylenetriamine as the cross-linker) deposited onto magnetic nanopar-
ticles along with Au nanoparticles modified with an anti-PSA antibody and the Raman
reporter 5,5′-dithiobis-(2-nitrobenzoic acid) [72]. The sensor LOD was 0.9 pg/mL, with a
dynamic range from 3.2 pg/mL to 1 µg/mL.

PSA is encountered in human serum in two forms, the protein-bound, and the free
form. Usually, the immunoassays developed for PSA determination target both the
bound and free forms or the total PSA as it is termed since most clinical studies correlate
the total PSA value with the diagnosis/monitoring of prostate cancer. Nonetheless, free
PSA has also been used as a prostate cancer biomarker, and, in this frame, a SERS-based
immunosensor for free PSA has been reported [73]. The immunosensor employed Au
nanoparticles with an Au core modified with 1,4-benzenedithiol and covered with an
Au layer. Embedding of the Raman tag 1,4-benzenedithiol prevented its interaction
with other proteins in the sample, thus improving the stability and sensitivity of the
probe. A LOD of 2.0 pg/mL was obtained, and the linear dynamic range was from
10 pg/mL to 10 ng/mL.

In Table S1, the analytical characteristics of all detection approaches for PSA
determination by SERS-based sensors are summarized. Most of the reported SERS-
based immunosensor for the detection of PSA have LODs of a few pg/mL that are
well below the upper limit of the PSA normal range of 4 ng/mL. Nonetheless, this
high detection sensitivity is very important since in prostectomized men, the values of
PSA are close to zero, and any significant increase in its serum concentration might
signify prostate cancer recurrence. It should also be noted that amongst the reports
for SERS-based PSA detection, there is one with an outstanding LOD of 10−9 ng/mL
or 1 ag/mL [61]. This is achieved by using as a label an enzyme that causes the in
situ aggregation of Au nanoparticles modified with the Raman tag 4-MBA. Thus, a
considerable signal enhancement is achieved compared with the rest of the reports,
where the labels are not enzymatic.

4.2. Alpha-Fetoprotein (AFP)

Alpha-Fetoprotein (AFP) is a plasma protein mainly found in human fetuses.
Therefore, AFP levels in maternal serum during pregnancy have been correlated with
severe complications in the growth of the fetus. In addition, AFP is produced at very
low levels in healthy individuals, mainly from the liver (<10 ng/mL), and thus, the
elevation of its concentration is indicative of malignant diseases and especially of
primary hepatocellular carcinoma [74]. Thus, AFP is widely used for the diagnosis and
monitoring of liver cancers.

The first report regarding the implementation of SERS-based immunochemical de-
termination of AFP used hollow Au nanospheres modified with an anti-AFP antibody as
labels and an Au array incorporated into a microfluidic device as substrate (Figure 8a) [75].
The microfluidic design enabled the automatic dilution of calibrators or samples through
microfluidic gradient generators and N cascade-mixing stages (Figure 8b,c). Thus, the total
analysis time, from sample introduction to SERS detection, took about 60 min with a LOD
of 1 ng/mL.
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Figure 8. (a) Schematic of the microfluidic platform with embedded Au arrays for the SERS detection
of AFP. (b) Fluorescence image indicating the automatic serial dilution of a dye solution in the six
outlet channels of the microfluidic device shown in (a). (c) SERS spectra of a serially diluted AFP
calibrator (with concentration decreasing from 6 to 1) obtained from the Au arrays at the six outlet
channels of the microfluidic device shown in (a) [75]. Copyright 2012. Reproduced with permission
from The Royal Society of Chemistry.

In another report, Au nanoparticles modified with 4-MBA were used as labels in a non-
competitive immunoassay for AFP performed on top of a glass slide modified with Au nanopar-
ticles [76]. The LOD was 100 pg/mL, and the linear dynamic range was 1 to 100 ng/mL.
Nanorods made of NiCo2O4 and decorated with Ag nanoparticles were used as substrates for
the immunochemical determination of AFP using as labels SiO2 microspheres coated with Ag
nanoparticles and 4-MBA [77]. The particular substrate offered a strong SERS signal due to
the immobilization of a large amount of homogeneous Ag aggregates on the one-dimensional
nanorods. Thus, a LOD of 2.1 fg/mL was obtained.

Enhancement of the Raman signal was also attempted through careful design of the
Raman tags. Thus, Au nanospheres were coated with an Ag layer, an ultrathin silica
shell, and finally with Au nanosphere satellites and modified with an antibody against
AFP to be used as labels in a non-competitive assay in which the capture antibody was
immobilized onto a nitrocellulose membrane [78]. Using the optimum nanospheres, a LOD
of 0.3 fg/mL was achieved, and the method linear dynamic range was 1 fg/mL to 1 ng/mL.
Similarly, a nitrocellulose membrane modified with an anti-AFP antibody was used as
substrate in combination with another antibody immobilized onto Au/Ag nanostars [79].
The Ag deposition onto Au nanostars took place from the center outward, resulting in
particles with a polyhedral shape. The Au/Ag nanostars were then modified with 4-MBA
and covered with a SiO2 layer prior to antibody immobilization. It was shown that the
Au/Ag nanostars provided a much higher SERS signal than the respective Au nanostars,
and their resonance wavelengths could be tuned across a wide spectrum (from visible to
near-infrared) by adjusting the Ag shell thickness. The implementation of these particles as
labels led to a LOD of 0.72 pg/mL and a wide linear dynamic range (3 pg/mL–3 µg/mL).
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In another report, a molybdenum disulfide (MoS2) sheet was modified with the anti-
AFP antibody, while the detection antibody was labeled with rhodamine 6G [80]. After
the completion of the immunoreaction, Au nanospheres or Ag-coated Au nanocubes were
drop-cast onto the surface to enhance the Raman signal. It was found that the Ag/Au
nanocubes provided higher signal enhancement compared to Au nanospheres. Thus, a
LOD of 0.03 pg/mL was achieved with a linear dynamic range from 1 pg/mL to 10 ng/mL.

Apart from antibodies, molecularly imprinted polymers have been employed as
binding moieties for the detection of AFP in biological fluids by SERS. In particular, a
boronate-affinity molecularly imprinted polymer that binds glycoproteins has been used to
develop a non-competitive assay for AFP [81]. Arrays of the molecular imprinting polymer
were created on a glass slide to bind the AFP, while Ag nanoparticles modified with boronic
acid were used as labels. In this way, AFP at concentrations ranging from 1 ng/mL to
10 µg/mL could be detected. The application of the sensor to determine AFP in human
serum samples was demonstrated, while the use of a portable Raman spectrograph made
the method suitable for on-site applications. The same approach was implemented to
detect, in addition to AFP, the Lens culinaris agglutinin (LCA)-reactive fraction of AFP
(AFP-L3), another marker of hepatocellular carcinoma, in a single run [82]. For this purpose,
two molecular imprinted polymers were prepared, one recognizing the peptide sequence
of AFP and a fucose-imprinted polymer that specifically recognized the AFP-L3 fraction.
The two polymers were spotted onto a glass slide coated with Au nanoparticles as well
as onto Ag nanoparticles that were also labeled with two different Raman tags to serve as
labels. Following this approach, detection of AFP from 0.1 ng/mL to 10 µg/mL, and of
AFP-L3 from 0.1 to 8 ng/mL was reported.

AFP-L3 was the targeted molecule in a report where a multi-layer comprised of
Ag/Fe/Ag films was created on top of a monolayer of polystyrene colloidal particles and
used as a SERS substrate after modification with an anti-AFP-L3 antibody and the Raman
reporter 5,5′-dithiobis(succinimidyl-2-nitrobenzoic acid) to detect AFP-L3 at concentrations
from 0.5 to 8 ng/mL [83].

Finally, in another approach for the simultaneous determination of AFP and AFP-L3
via SERS, Au nanoparticles modified with 5,5-dithiobis(succinimidyl-2-nitrobenzoate) and
an antibody against AFP-L3 in combination with a silicon substate modified with Ag
nanoparticles, 4-MBA and an antibody against AFP were used [84]. Thus, it was possible
to discriminate the signal arising from the binding of total AFP to immobilized antibody
but also detect the AFP-L3 fraction. Table S2 summarizes data on available SERS-based
sensors for AFP detection. From these data, one can conclude that the SERS-based sensors
developed for the detection of AFP have LODs and dynamic ranges that extend from sub
fg/mL to ng/mL and are, therefore, suitable for the detection of AFP in human serum
samples. The most sensitive detection is achieved using as labels Au nanoparticles that
have been coated by an Ag layer on which the Raman tag 4-MBA was attached, and
after covering the modified nanoparticles with a silicon dioxide layer, Au nanoparticles of
smaller dimension than the initial ones were attached [78]. These multilayer nanoparticles
that combine two noble metals considerably enhance the SERS signals compared to single
metal layer nanoparticles. In addition, a nitrocellulose membrane was used as a substrate
for capture antibody immobilization that also favors the attachment of higher amounts of
antibodies with respect to planar non-porous substrates, e.g., glass slides [75,76].

4.3. Carcinoembryonic Antigen (CEA)

Carcinoembryonic antigen (CEA) refers to a family of glycoproteins that are expressed
in various tissues and are implicated in a wide range of pathophysiological functions,
including cell–cell adhesion, pregnancy, immunity, neovascularization, regulation of insulin
homeostasis, and carcinogenesis [85]. Thus, it has been extensively used as a cancer marker
primarily for colorectal cancer but also for other types of cancer, such as lung cancer [84].

Regarding CEA determination by SERS, the first report employed hollow Au nanospheres
conjugated with the detection antibody and modified with a Raman tag (4-MBA) and silica-
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coated magnetic microspheres modified with capture antibody for the development of a
two-step non-competitive immunoassay for CEA determination [86]. Magnetic microspheres
of a diameter around 1 µm were synthesized, coated with silica, and modified with an amino-
silane to allow covalent bonding of the capture antibody, whereas the hollow Au nanospheres
were first modified with 4-MBA and mercapto-ethanol as blocking agent and then conjugated
with the detection antibody. The sample was first mixed with the antibody-decorated magnetic
microspheres, and after magnetic concentration and washing, a reaction with the immobilized
onto hollow Au nanoparticles detection antibody was performed. In the presence of CEA, the
Raman signal from the separated magnetic beads was increased in a concentration-dependent
way as the Raman tagged-hollow gold nanoparticles were immunochemically attached to
the magnetic microspheres. A LOD of 10 pg/mL was determined with the working range
to extent up to 100 ng/mL. In addition, it was shown that by implementing hollow Au
nanoparticles, the LOD was decreased by two orders of magnitude compared to that achieved
with solid Au nanoparticles.

A non-competitive immunoassay for CEA was also developed using antibody-coated
nanoprobes consisting of a magnetic nickel−iron core and an Au shell in combination with
Au nanoparticles modified with 4-MBA and a second antibody [87]. The immunoreaction
and detection were performed in a microfluidic channel, and the LOD was determined to
be about 0.1 ng/mL. In another report, Au nanoparticles were modified with 4-MBA and an
antibody against CEA and were used in combination with Fe2O3@Au, also modified with
an antibody against CEA, to develop a non-competitive SERS-based immunosensor [88].
The method was successfully applied to the determination of CEA in human serum, and the
results showed good selectivity and sensitivity with a LOD of 0.1 ng/mL. In addition, the
values determined in human serum samples were in good agreement with those obtained
for the same samples with conventional CEA determination methods [88]. Another non-
competitive immunoassay for CEA based on SERS detection was also realized into a
microfluidic chip that comprised four inlets, two chaotic mixers, a detection chamber, and
an outlet [89]. The assay was performed in two steps; first, the raw blood sample was
introduced into the chip via Inlet 1, and the antibody-coated magnetic nanoparticles were
introduced via Inlet 2. After mixing and reaction, the immunocomplexes were mixed
with the antibody-coated Au nanoparticles labeled with 4,4′-bipyridine introduced via
Inlet 3 and then flowed to the detection chamber, where they were washed to remove
the blood cells prior to the measurement. The sensor could detect CEA in whole blood
at concentrations ranging from 1 pg/mL to 1 µg/mL. Au nanoparticles modified with
polydopamine and decorated with the Raman tag Nile blue were used after the attachment
of an anti-CEA antibody as labels in a non-competitive assay for CEA for both SERS and
electrochemical detection [90]. It was shown that the performance of the electrochemical
immunoassay was better than that of the SERS immunoassay. For the SERS assay, the
LOD was 1.38 ng/mL, and the linear dynamic range was 2 to 100 ng/mL. A SERS-based
immunosensor that included as labels MoS2 nanoflowers decorated with Au nanoparticles
modified with 4-MBA and Fe3O4/Au nanoparticles incorporated onto delaminated Ti3C2Tx
MXene sheets, i.e., two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, as
SERS substrate has also been reported. A LOD of 0.033 pg/mL was determined with a
liner working range from 0.0001 to 100.0 ng/mL [91]. The sensor was also evaluated by
analyzing blood plasma samples and performing recovery experiments in those samples.

As in the case of other cancer markers, molecularly imprinted polymers have also been
employed as binders for the determination of CEA by SERS [92–95]. Thus, Au nanoparticles
were modified with 4-mercaptobenzonitrile prior to the development of Ag aggregates and
reaction with a mixture of 4-aminothiophenol and 4-mercaptophenylboronic acid to allow
covalent coupling of anti-CEA antibodies [92]. The resulting nanoparticles were spread
on a surface, reacted with CEA, and embedded onto the polymer, made by reaction of
dopamine with m-aminophenylboronic acid monohydrate and ammonium persulfate, to
create the solid-phase binder after removal of bound CEA, while Au nanoparticles modified
with ethynylbenzene, covered with a poly-dopamine layer and conjugated to an anti-CEA
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antibody were implemented as labels. The signal from the embedded nanoparticles was
used as an “internal standard” to normalize the Raman signal fluctuations. Thus, a LOD
of 0.064 pg/mL with a linear detection range of 0.1 pg/mL–10 µg/mL was reported. In
another report, a molecularly imprinted polymer, synthesized using a mixture of 15%
aminopropyltriethoxysilane (APTES), 15% 3-ureidopropyl-triethoxysilane (UPTES), 30%
isobutyltriethoxysilane (IBTES) and 40% tetraethyl orthosilicate (TEOS), was applied over
a layer of self-assembled Au nanoparticles as well as to Ag nanoparticles that served as
Raman tags [93]. A LOD of 100 pg/mL was reported, along with a linear dynamic range of
1 ng/mL–10 µg/mL.

Since CEA is a glycoprotein, the boronate-affinity molecularly imprinted polymer that
was used for the determination of AFP was also applied [94]. The polymer was synthesized
on a glass slide using 4-vinylbenzeneboronic acid as the functional monomer, ethylene
glycol dimethacrylate as the crosslinking agent, and ethylene glycol and cyclohexanol as
porogens, whereas Au nanoparticles labeled 4-mercaptophenylboronic acid were bound
to CEA after its capture by the polymer. Following this method, CEA could be quantified
in spiked serum with a LOD of 0.1 ng/mL and over a concentration of 1 mg/mL. Finally,
a molecularly-imprinted polymer was combined with an antibody for SERS detection of
CEA [95]. The polymer was synthesized by electropolymerization on top of Au-based
screen-printed electrodes using gallic acid as a monomer in the presence of CEA. For the
SERS detection, Au nanostars coupled to 4-aminothiophenol and an antibody against CEA
were implemented. The LOD was determined to be 1.0 ng/mL, and the linear range reached
up to 1000 ng/mL. Data presented in Table S3 regarding SERS-based sensors for CEA detec-
tion show that the most sensitive detection with a broad assay dynamic range is achieved
with a liquid phase non-competitive immunoassay where MoS2 nanoflowers decorated
with Au nanoparticles and modified with 4-MBA and an anti-CEA antibody were combined
with Fe3O4/Au nanoparticles incorporated onto delaminated Ti3CTx MXene sheets prior
to attachment of a second anti-CEA antibody [91]. Another approach that provided high
detection sensitivity used a molecularly imprinted polymer as a solid-phase binder in
combination with antibody-modified Au nanoparticles [92], demonstrating the ability of
binding moieties other than antibodies to be implemented in sensitive biomarker assays.

4.4. Carbohydrate Antigen 125 (CA125)

Carbohydrate or cancer antigen 125 (CA125) is one of the earliest identified biomarkers
for ovarian cancer and remains the gold standard for both the diagnosis and monitoring
of patient response to therapy as well as for the detection of relapse of ovarian cancer in
hysterectomized patients [96,97], despite the fact that elevated CA125 blood serum levels
can be found in a great variety of benign and pathological conditions [68]. CA125 is a very
large (>1 MDa) mucin-like molecule with an N-terminal domain and up to 60 repeating
subunits, each containing an identical sequence of 156 amino acids [96,97]. Due to its wide
application as a biomarker for ovarian cancer diagnosis, CA125 detection based on SERS
has also been explored.

Thus, there is a report for direct SERS detection of CA125 in human plasma samples by
mixing Ag nanoparticles with the sample and depositing them on aluminum foil slides [98].
The results obtained by the SERS method were compared to those obtained for the same
samples by Raman spectroscopy. The clinical sensitivity and specificity were substantially
high in both SERS (87% and 89%, respectively) and Raman measurements (94% and 96%,
respectively). Despite the excellent performance of the method regarding the discrimination
of patients from non-patients, data about the analytical sensitivity and working range are
not provided.

In another report, an antibody against CA125 was immobilized onto Au nanoparticles
covalently coupled to a glass substrate modified with an amino-silane [99]. Upon binding
of CA125 onto immobilized antibody, alterations in the Raman spectrum were observed,
allowing its label-free determination at nM concentration levels, without, however, a
complete analytical evaluation of the method.
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In conclusion, the two reports for SERS-based CA125 immunosensors do not pro-
vide enough analytical data for a full evaluation and comparison despite the widespread
application of this molecule as a cancer biomarker.

4.5. MUC4

MUC4 is a protein of the mucin family that is overexpressed in several pancreatic
cancers, and patients with high levels of MUC4 are considered to have poor prognoses [100].
MUC4 is not detected in normal pancreas and chronic pancreatitis. Due to that, there are
some reports regarding MUC4 determination with SERS-based methods.

In the first report, silicon wafers covered with an Au layer and modified with an antibody
against MUC4 were combined with Au nanoparticles modified with 4-nitrobenzenethiol and
a second anti-MUC4 antibody to develop a non-competitive immunoassay for MUC4 [101].
The LOD achieved was 33 ng/mL, and the dynamic range was up to 10 µg/mL. The assay
was used to determine MUC4 in cell lysates and human serum samples. The same approach
was applied to another cancer marker of the mucin family, Ca19-9, with a LOD of 0.8 U/mL
and a dynamic range of up to 10 U/mL.

Atomically smooth mica was used as substrate after Au deposition to immobilize
an anti-MUC4 antibody, while Au nanoparticles decorated with 4-nitrobenzenethiol and
another anti-MUC4 antibody were used as labels [102]. It was shown that the assay repeata-
bility and sensitivity could be improved if, after the immunoassay, the immunocomplexes
were covered by a thin film of polydimethylsiloxane as a protective layer against photo-
irradiation. Although the assay was applied to detect MUC4 in human serum samples,
analytical evaluation in terms of LOD and dynamic range was not performed.

To improve the spot-to-spot variation in the SERS signal, Raman mapping was applied
onto a silicon substrate where Au nanoflowers were deposited and modified with an anti-
MUC4 antibody [103]. The same Au nanoflowers were modified with 4-MBA and another
antibody and used as labels in a two-step, non-competitive assay. The method provided
a LOD of 0.1 ng/mL and a liner range of up to 10 µg/mL. Table S4 summarizes these
data regarding MUC4 detection with SERS-based immunosensors; as shown, there is only
one report referring to MUC4 detection in human serum, which, however, provides only
preliminary results [102]. From the other two reports, a much lower LOD (330 times) is
achieved when Au nanoflowers were used both for the preparation of the substrate and the
label [103] compared to a flat gold substrate combined with gold nanoparticles [101]. This
result verifies the general observation that SERS labels with some nanostructure enhance
the Raman signal more efficiently than the respective smooth nanoparticles.

4.6. Human Epididymis Protein 4 (HE4)

Human epididymis protein 4 (HE4) is a relatively new marker that is used for the
diagnosis of ovarian cancer but also to forecast the optimal cytoreduction after surgical
treatment as well as to predict response to chemotherapy [104–106]. HE4 is a low molecular
weight (approx. 31 KDa) glycoprotein originally found in the epithelial cells of the human
epididymis. It is considered a more specific clinical marker, compared to CA125, for the
diagnosis of ovarian cancer at an early stage with a serum cut-off level of 70 pmol/mL,
above which there is a high suspicion of ovarian cancer [105].

There are only two reports regarding the determination of HE4 with SERS [107,108].
The first method employed Au nanoparticles modified with 4-MBA and an anti-HE4
antibody and magnetic core (Fe3O4) Au nanoparticles also modified with an anti-HE4
antibody [107]. The immunocomplexes were concentrated after the assay using a magnet to
facilitate the SERS measurements. Following this method, a LOD of 100 fg/mL was demon-
strated, along with a dynamic range from 1 pg/mL to 10 ng/mL. In addition, the Fe3O4/Au
nanoparticles could be regenerated by treatment of the immunocomplexes with an acidified
methanol solution and reused. In the second report, a single-crystalline Au nanoplate was
used as a substrate for an anti-HE4 antibody attachment through thiol-modified protein
G in combination with Au nanoparticles modified with the Raman reporter malachite
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green isothiocyanate and an anti-HE4 antibody [108]. A LOD of 0.31 fg/mL (10−17 M) was
reported with a dynamic range up to 31 ng/mL (10−9 M). These data regarding SERS-based
immunosensors for the detection of HE4 are also summarized in Table S4. The second
report [108] provided a more than 300 times enhancement of LOD with respect to the first
one [107], despite the fact that in the second approach, the immunoreaction was performed
in the solid phase, whereas in the first, it was in the liquid phase. Thus, this difference
in analytical performance could be ascribed either to the higher binding affinity of the
antibodies used in the second report or to the more efficient attachment of these antibodies
to substrate and label, respectively.

4.7. Other Cancer Biomarkers

Since cancer is a poly-parametric disease with many different types, etiologies, and
pathologies, several molecules have been investigated as possible markers aiming for early
specific diagnosis. To this end, SERS-based methods of detection have been employed for
the determination of other protein-based cancer markers onto biological fluids.

Growth factors, such as vascular endothelial growth factor (VEGF), are such markers.
VEGF has been related to tumor-associated angiogenesis [109]. The SERS-based detection
of this marker was accomplished by immobilizing a VEGF-specific antibody onto an Au
triangle nanoarray to detect the analyte in a non-competitive immunoassay using Au
nanostars modified with malachite green isothiocyanate and an antibody against VEGF. A
LOD of 7 fg/mL was obtained with a dynamic range of 0.1 pg/mL–10 ng/mL. In addition to
growth factors, the detection of their cell receptor in the blood is an indication of malignancy.
Thus, human epidermal growth factor receptor 2 (HER2) is an important biomarker for
breast cancer diagnosis and therapy since it is overexpressed in 20–30% of breast cancer
patients [110]. The determination of HER2 in human blood serum was performed using
Au/Ag nanoshells modified with malachite green isothiocyanate or fluorescent tags and
coated with silica to protect the attached tags. These labels were modified with an antibody
and used in a non-competitive assay with the capture antibody attached to Au electrodes
incorporated into a microfluidic device. It was shown that by utilizing an alternative
current electrohydrodynamic device, the capture kinetics were considerably improved,
resulting in a 40 min assay with a LOD of 10 fg/mL [110].

As mentioned in the previous section, CA19-9 is another cancer marker belonging
to the mucin family, and its levels in serum have been correlated with the diagnosis
and/or prognosis of colorectal and pancreatic cancer. In addition to Ref. [101] discussed
above, CA19-9 was immunochemically determined on F3O4 particles coated with a layer of
TiO2, onto which Au seeds were adsorbed to give rise to Au nanoparticles [111]. The Au
nanoparticles were then modified with an antibody against CA19-9 and used to couple the
CA19-9 from the sample, followed by a reaction with an anti-CA19-9 antibody modified
with 4-MBA. The LOD was 5.65 × 10−4 IU/mL, and the linear dynamic range was 0.001 to
1000 IU/mL. However, the great advantage of the method was that by exposure to visible
light, the F3O4/TiO2/Au could be regenerated and reused.

The transcription factor p53 has a central role in maintaining genome integrity, thus,
preventing cancer development from random mutations. This onco-suppressing activity is
lost when mutations on the gene encoding p53 take place, and thus, both the wild-type
and mutant forms of p53 are useful cancer biomarkers [112]. To this end, SERS-based
immunoassays for both the wild-type p53 and p53R175H, which is one of the most frequent
tumor-associated mutants of p53, have been reported [112]. The method employed Au
nanoparticles decorated with the specific antibodies through a diazonium compound linker
as labels for detection of both p53 and p53R175H mutant through a direct binding assay
realized onto silicon wafers modified with amine-silane and glutaraldehyde to covalently
couple the analyte at concentrations as low as 10−17 M, and with a dynamic range from
10−17 to 10−10 M, both in buffer and serum.

Squamous cell carcinoma antigen (SCCA), a marker for diagnosis of cervical cancer, has
also been detected with a SERS-based immunoassay [113]. For this purpose, polydopamine
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resin microspheres were coated with Au nanoparticles and then coupled with a monoclonal
antibody against the antigen. These nanoparticles were used in combination with hollow
Au nanocages modified with 4-MBA and a polyclonal antibody against the squamous cell
carcinoma antigen to develop a non-competitive immunoassay. A LOD of 8.03 pg/mL
in peripheral blood was reported with a dynamic range from 10−5 to 10−10 M. Another
potential biomarker for cervical cancer detection is B7 homolog 6 (B7-H6) protein [114].
The SERS assay for the detection of B7-H6 explored an approach to suppress serum fouling
through modification of Au-coated silicon substrates with a self-assembled monolayer of
zwitterionic L-cysteine prior to their modification with the NKp30 receptor protein that
captured the B7-H6 from blood serum. Then, Au nanoparticles functionalized with ATP as
a Raman tag, and an antibody against B7-H6 were implemented to detect the surface-bound
analyte. The LOD was determined to be 10−4 M or 10.8 fg/mL, which is at least 100 times
lower than the concentration encountered in cancer patients.

Human carboxylesterase 1 is a member of the serine hydrolase superfamily, and it
has been correlated with the occurrence of hepatocellular carcinoma [114]. The SERS
immunosensor developed for the determination of human carboxylesterase 1 is based on
raspberry-like magnetic nanocomposites consisting of Fe3O4/SiO2/Ag and functionalized
with an antibody against the analyte as a substrate and Ag nanoparticles modified with
4-MBA and an analyte-specific antibody as label [115]. The assay dynamic range was from
0.1 ng/mL to 1.0 mg/mL, and the LOD was 0.1 ng/mL. The sensor was applied for the
detection of the analyte in human serum without complicated sample pre-treatment.

Another potent cancer biomarker for which a SERS-based immunoassay has been
developed is galectin-3-binding protein (LGALS3BP), also known as 90K, a protein involved
in tumor growth and progression [116]. Silicate glass slides coated with a thin Au layer,
composed of stochastic nanostructure feature fragments from tens of nm to a few mm, were
functionalized with an analyte-specific antibody and used to detect the analyte upon its
binding with a LOD of 15 ng/mL. The assay was employed to detect the analyte in human
serum samples after appropriate dilution [116].

Ferritin has also been used as a marker for the early diagnosis, therapy, and tracing of
liver cancer. For its detection through SERS, mesoporous hybrid SiO2 particles were coated
with Au nanoparticles and then modified with 4-MBA and a ferritin-specific antibody to
be used as labels in a non-competitive assay performed on sandpaper modified with Ag
nanoparticles and functionalized with an anti-ferritin antibody [117]. It was shown that the
implementation of the hybrid particles offered higher enhancement of the Raman signal
compared to solid SiO2 particles. Thus, following this approach, a LOD of 31.6 fg/mL with
a dynamic range from 1 pg/mL to 10 µg/mL was achieved.

In addition to molecular biomarkers, extracellular vesicles or exosomes that partici-
pate in the communication between cancerous cells have been proposed as biomarkers
for cancer diagnosis and prognosis [118,119]. Thus, nanorods with an Au core and an
Ag shell were modified with the Raman tag 5,5′-dithiobis(2-nitrobenzoic acid) and an
antibody against exosomes and used as labels for the determination of serum exosomes
in combination with magnetic Fe3O4 nanoparticles covered with a silica shell and func-
tionalized with an antibody against the targeted exosomes [118]. The immunocomplexes
were separated from the reaction mixture using a magnet, and the Raman signal was
determined, providing a LOD of 1200 exosomes (268 aM). In another report, an approach
to simultaneously detect multiple protein biomarkers expressed on cancer-derived small
extracellular vesicles was developed [119]. In particular, antibodies against three surface
receptors, glypican-1, epithelial cell adhesion molecules (EpCAMs), and CD44 variant
isoform 6 (CD44V6), were coupled to Au nanoparticles modified with different Raman
tags and then with specific antibodies against the three molecules and used to detect
extracellular vesicles from different cancer cells through a non-competitive immunoassay
in combination with magnetic beads functionalized with an antibody against another
receptor, CD63 [119]. The method LOD was 2.3 × 106 particles/mL, and its dynamic



Materials 2023, 16, 3733 20 of 32

range was up to 2.3 × 108 particles/mL. Extracellular particles from different cancer
cells have been detected following this approach.

Aptamers have also been employed for the non-competitive determination of cancer
markers using a combination of two Raman tags. Thus, α-thrombin was determined using
Au nanoparticles labeled with the 4-nitrobenzenethiol and modified with an aptamer in
combination with Au film functionalized with another aptamer and labeled with methylene
blue as a substrate [120]. Following this approach, it was possible to discriminate signals
due to specific binding from the signals due to the non-specific binding of labels. A LOD
of 86 pM for thrombin was determined, and a dynamic range of up to 1 nM. The same
principle was used to detect tumor necrosis factor-α (TNF-α) with the difference that instead
of using two aptamers, an antibody was attached to the Au surface and an aptamer was
used for detection. The LOD, in this case, was 0.07 nM, and the dynamic range extended to
1.2 nM.

BRCA1 protein (encoded by Breast Cancer Associated gene 1) is a tumor-suppressor
molecule that plays a critical role in the development of hereditary breast cancer, and
therefore it is considered a very specific marker for this disease. The assays developed
based on SERS substrates for BRCA1 detection aimed at specific peptides and were realized
by employing a modular microfluidic chip that enabled filtering of the targeted peptides
from human serum, concentration, and detection [121,122]. Serum filtering was achieved
by passing the mixture through a membrane with a cut-off of 12–14 kD, and then the
filtered samples were driven to the SERS surface consisting of Ag grains, where they were
adsorbed, enabling their direct detection by Raman spectroscopy. A LOD of 0.1 ng/mL was
determined, which is considered satisfactory for BRCA1 protein detection in early breast
cancer diagnosis. Table S5 summarizes these data about the detection of different cancer
markers by SERS biosensors.

4.8. Interleukins

The cancer markers discussed in the previous section were high molecular weight
compounds that are, in most cases, secreted almost exclusively from the cancerous cells.
Nonetheless, other compounds, such as cytokines, have been used as biomarkers for cancer
diagnosis. Cytokines are non-specific markers for the diagnosis of malignancies since an
increase in their serum levels takes place in several inflammatory diseases and pathological
situations, including cancer.

Thus, a SERS-based immunoassay for interleukin-6 (IL-6) was developed employing
Au/Ag nanoshells that were hydrophilically stabilized by coating their surface with a self-
assembled monolayer of 5,5′-dithiobis(2-nitrobenzoic acid) molecules comprising terminal
mono- and tri-ethylene glycol [123]. These stabilized particles were used as labels in a
non-competitive immunoassay for IL-6, with the second antibody immobilized onto a glass
slide. A LOD of 1 pg/mL was obtained with a dynamic range of up to 1 µg/mL.

Interleukin 8 (IL-8) is another cytokine that plays an important role in tumor growth
and angiogenesis, and it is overexpressed in several human tumors, including gastric
cancer and breast cancer [124]. The SERS-based immunoassay developed for IL-8 detection
implemented highly-branched Au nanoparticles functionalized with an anti-IL-8 antibody
as substrate and Au nanocages modified with 4-MBA and anti-IL-8 antibody as a label. The
linear dynamic range was from 10 pg/mL to 1 µg/mL, and the LOD was 6.04 pg/mL.

The simultaneous detection of three interleukins, IL-6, IL-8, and IL-18, by SERS
has been achieved using an Ag-Au substate incorporated into a microfluidic device
and functionalized with specific antibodies for the three molecules in combination with
detection antibodies coupled to Au nanoparticles labeled with three different Raman tags,
i.e., 5,5′-dithio-bis(2-nitro-benzoic acid), fuchsin, and 4-MBA [125]. The three analytes
were detected either in parallel or simultaneously. Principal component analysis was
applied for discrimination of the signal corresponding to each one of the three Raman
tags and, consequently, of the three analytes during their simultaneous detection. The
LODs achieved were 2.3 pg/mL, 6.5 pg/mL, and 4.2 pg/mL in the parallel detection
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approach, and 3.8 pg/mL, 7.5 pg/mL, and 5.2 pg/mL in the multiplexed detection
method for IL-6, IL-8, and IL-18, respectively. From the data regarding the analytical
performance of SERS-based immunosensors for interleukins detection (summarized in
Table S6), it is apparent that the three reports achieved LODs in the concentration range
of a few pg/mL. In particular, the two reports regarding the single-analyte detection of
IL-6 [123] and IL-8 [124] also demonstrated a wide dynamic range of up to 1 µg/mL. On
the other hand, the report about the simultaneous determination of three interleukins (IL-
6, IL-8, and IL-18) [125] demonstrated compatible detection sensitivity for a somewhat
less wide dynamic range, which is, however, appropriate for the detection of these
markers in human serum.

4.9. Multiplexed Cancer Markers Detection by SERS

Cancer diagnosis based on the determination of markers in biological fluids, mainly
blood, has the limitation that most of the molecules used as markers are not specific for
cancer, since their levels in the blood could also change due to a variety of pathological
conditions. The determination of more than one marker, preferably in a single run, could
increase the diagnosis validity and even provide for differential diagnosis between cancer
and other pathological conditions as well as between the different cancer types. Thus,
analytical techniques that provide for multiplexed markers determination in a single run
are in demand. SERS-based detection could be easily adopted for multiplexed biomarkers
determination either by scanning a surface where different binding molecules have been
immobilized onto spatially discrete locations of the substrate or by using labels with discrete
Raman spectra.

One of the first reports for simultaneous determination of cancer markers by SERS
focused on the immunochemical determination of AFP and angiotensin by immobilizing
the capture antibodies onto a micropatterned Au film and using hollow Au nanospheres
modified with the respective detection antibodies and the Raman tag malachite green
isothiocyanate [126]. The LODs achieved were 0.1 pg/mL and 1.0 pg/mL for angiogenin
and AFP, respectively, and the assays dynamic range was up to 0.1 µg/mL for both analytes.

CEA and AFP were the targeted lung cancer biomarkers in another report in which
their simultaneous determination was accomplished by modifying hollow Au nanospheres
with antibodies against CEA or AFP and malachite green isothiocyanate and X-rhodamine-
5-(and-6)-isothiocyanate, respectively [127]. Magnetic beads also modified with antibodies
against CEA or AFP were implemented as supports for the detection of both markers in
blood serum using a single laser at concentrations up to 100 ng/mL.

A parafilm mask was applied onto an Au-coated slide to define spots for the immobiliza-
tion of antibodies against carbohydrate antigen 19-9 (CA 19-9) and matrix metalloproteinase-7
(MMP-7), two pancreatic cancer markers [128]. Au nanoparticles modified with antibodies
against the two markers and 5,5′-dithiobis(succinimidyl-2-nitrobenzoate) were employed as
labels in non-competitive immunoassays of the two markers with LODs of 2.28 pg/mL for
MMP-7 and 34.5 pg/mL for CA19-9 and dynamic ranges up to 6 ng/mL for MMP-7 and
18 ng/mL for CA19-9, respectively.

A SERS-based microfluidic biosensor was applied for the simultaneous detection of
breast cancer biomarkers, CA125, HER2, HE4, and eotaxin-1, in human serum samples [128].
The microfluidic reaction chamber surface was modified with Au nanostars on which the
specific antibodies were attached, while Au nanostars modified with the Fab fragments
of specific antibodies and Rhodamine 6G were used as labels (Figure 9). The LODs were
15 fM for CA125, 17 fM for HER2, 21 fM for HE4, and 6.5 fM for eotaxin-1, and the dynamic
range for all markers was up to 10 pM [129].
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eotaxin 1, employing (a) whole IgG molecules or (b) Fab fragments both for capture and detection of
the targeted analytes [128]. Copyright 2015. Reproduced with permission from Elsevier B.V.

Three breast cancer biomarkers, CA15-3, CA27-29, and CEA, have also been simul-
taneously detected in an antibody array on a quartz slide using as labels Au nanostars
modified with 4-nitrothiophenol and embedded in SiO2 prior to the attachment of detection
antibodies [130]. The LODs determined were 0.99 U/mL, 0.13 U/mL, and 0.05 ng/mL for
CA15-3, CA27-29, and CEA, respectively, and linear dynamic ranges from 0.1 U/mL to
500 U/mL for CA15-3 and CA27-29, and 0.1 ng/mL to 500 ng/mL for CEA.

Photonic crystal beads of different sizes composed of periodically arranged monodis-
perse nanoparticles of SiO2 have been decorated with Ag particles and then modified with
antibodies specific for CEA and AFP and used as labels in non-competitive assays for the
two markers in combination with Ag nanoparticles also modified with antibodies against the
two markers [131]. The simultaneous detection was based on the fact that the reflection peak
positions differ for silica nanoparticles of different diameters. Thus, it was possible to detect
in a single run CEA and AFP with LODs of 6.6 × 10−6 and 7.2 × 10−5 ng/mL, respectively.

A multiplexed electrochemical and SERS-based immunoassay for CEA and cytokeratin-
19 was realized using aminosalicylic acid-based resin microspheres modified with thionine
and Nile blue A, that provided both strong SERS and electrochemical redox signals [132].
The microspheres were coated with Au nanoparticles, and the detection antibodies were
attached. The capture antibodies were immobilized on electrodes modified with chitosan-
stabilized Au nanoparticles. This approach led to LODs of 0.01 ng/mL and 0.04 ng/mL for
CEA and CK-19, respectively, and a dynamic range for both analytes from 0.05 to 80 ng/mL.

For the simultaneous detection of CEA, AFP, and CA 125, three thiol compounds,
3-methoxybenzenethiol, 2-methoxybenzenethiol, and 2-naphthalenethiol were selected
as Raman tag molecules to be incorporated in hybrid multilayered nanoshells pre-
pared by the assembly of small Ag nanoparticles at the surface of silica particles using
poly(ethyleneimine) [133]. After the attachment of respective antibodies, these particles
were combined with superparamagnetic Fe3O4/SiO2 particles, also modified with anti-
bodies specific against the three cancer markers. The LOD and dynamic range for CEA
were mentioned and were 0.1 pg/mL, and 0.1 pg/mL to 1 ng/mL, respectively.

CEA and neuron-specific enolase (NSE), two lung cancer markers, have been simulta-
neously determined using SERS tags prepared by surface modifications of flower-like gold
nanoparticles with Raman molecules and specific antibodies, while magnetic nanoparticles
modified with mixed antibodies are used as capturing substrates for separation of immuno-
complexes from the reaction mixture [134]. The LODs of CEA and NSE in human serum
were 1.48 pg/mL and 2.04 pg/mL, respectively, and the dynamic range was from 1 fg/mL
to 1 ng/mL for both markers.

A SERS substrate was prepared by sputtering an Ag film on SiC sandpaper which
was then modified with specific antibodies against PSA, AFP, and CA19-9 for their deter-
mination in human serum using as labels Si nanoparticles coated with SiO2 and coupled
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to antibodies after modification with 3-(aminopropyl)trimethoxysilane [135]. The LODs
achieved for PSA, AFP, and CA19-9 in human serum were 1.79 fg/mL, 0.46 fg/mL,
and 1.3 × 10−3 U/mL, respectively. SiC sandpaper with a sputtered Ag film was also
employed to simultaneously detect PSA, prostate-specific membrane antigen, and hu-
man kallikrein 2, aiming to discriminate between prostate cancer and benign prostate
hyperplasia [136]. This substrate was combined with Ag nanoparticles labeled with
4-MBA and specific antibodies as Raman labels in non-competitive assays that achieved
detection of PSA, prostate-specific membrane antigen, and human kallikrein 2 at con-
centrations as low as 0.46 fg/mL, 1.05 fg/mL and 0.67 fg/mL respectively, while the
dynamic range was up to 1 ng/mL for all markers. A similar approach involved ordered
Au nanohoneycomb arrays as substrate and Au nanostars modified with either 4-MBA
or DTNB and the respective specific antibodies for the multiplex detection of CEA and
AFP [137]. The LODs achieved were 0.44 and 0.40 ng/ml for CEA and AFP, respectively,
with a linear dynamic range from 0.5 to 100 ng/mL.

To define the reaction area for the simultaneous detection of CA153, CA125, and CEA,
microchannels were created on a chip made of polydimethylsiloxane (PDMS), through
which the Ag nanoparticles and the specific antibodies were applied onto a glass slide [138].
Ag aggregates labeled with three different Raman tags and specific antibodies for the three
analytes were then run using a three-channel microfluidic positioned at a right angle with
respect to the first one. Thus, it was possible to determine for each analyte the specific and
the non-specific signal. The LODs of CA153, CA125, and CEA in serum were 0.01 U/mL,
0.01 U/mL, and 1 pg/mL, respectively, and the dynamic ranges up to 1000 U/mL for
CA153 and CA125, and 100 ng/mL for CEA.

PSA and AFP were simultaneously detected on an Au-film hemisphere array created
by Au deposition on a layer of plasma-etched polystyrene nanospheres upon a silicon
substrate [139]. Silica beads coated with Ag nanoparticles were modified with 4-MBA or
4-nitrothiophenol prior to the coupling of PSA and AFP antibodies to be used as labels.
The assay developed had a linear dynamic range from 10 fg/mL to 400 ng/mL and LODs
of 3.38 and 4.87 fg/mL for PSA and AFP, respectively.

Three different Raman tags were attached to Au nanoparticles which were then appro-
priately modified for the coupling of antibodies against three liver cancer markers, namely,
AFP, CEA, and ferritin [140]. The respective capture antibodies were immobilized onto mag-
netic beads that facilitated the separation of immunocomplexes after the immunoreaction.
The LODs achieved for AFP, CEA, and ferritin were 0.15, 20, and 4 pg/mL, respectively.

Non-competitive immunoassays for the multiplexed detection of three cytokines, tu-
mor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and interleukin-10 (IL-10), which are
involved in cancer pathogenesis have also been developed using as labels Au nanoparticles
that were firstly modified with Raman tags, covered with an Ag layer, and then the specific
for each analyte antibodies were coupled [141]. These nanoparticles were combined with
magnetic particles also modified with analyte-specific antibodies to allow the detection
of TNF-α at concentrations as low as 4.5 pg/mL and up to 10 ng/mL. For the other two
cytokines, analytical data are not provided, although they have been detected in a cell
culture medium after providing appropriate stimuli. A SERS-microfluidic droplet platform
has been used for the simultaneous detection of two other cytokines, the vascular endothe-
lial growth factor (VEGF) and interleukin-8 (IL-8), secreted by a single cell [142]. For this
purpose, water-in-oil droplets containing individual cells were mixed with Ag nanoparti-
cles modified with antibodies against the two analytes and magnetic beads also modified
with antibodies and two different Raman tags. The formation of immunocomplexes “turn
on” the SERS signal of the Raman tags on the surface of magnetic nanoparticles due to
the vicinity of the Ag nanoparticles. Following this approach, a LOD of 1.0 fg/mL and a
dynamic range that extended up to 10 pg/mL were achieved for both cytokines.

Squamous cell carcinoma antigen (SCCA) and osteopontin, two markers of cervical
cancer, have been detected using Au-Ag nanoshuttles as SERS labels and hydrophobic filter
paper decorated with Au nanoflowers both modified with specific antibodies for the non-
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competitive immunodetection of these two markers [143]. The LODs obtained following
this method were 8.628 pg/mL and 4.388 pg/mL for SCCA and osteopontin, respectively.
The method was applied to detect the two markers in serum samples from healthy sub-
jects and patients with cervical intraepithelial neoplasia I, II, and III, demonstrating the
applicability of the method as a cervical cancer screening tool. Two markers of cervical
cancer, SCCA and CA125, were also the target molecules in another report regarding the
development of a SERS-based lateral flow immunoassay [144]. The labels used were poly-
dopamine nanospheres decorated with Ag nanoparticles, Raman tags, and analyte-specific
antibodies. The capture antibodies were spotted on a nitrocellulose membrane, and the
formation of immunocomplexes was verified both by visual inspection and with Raman
measurements. The LODs determined were 8.093 pg/mL for SCCA and 7.370 pg/mL for
CA125 in human serum, and the assay’s dynamic range was from 10 pg/mL to 10 µg/mL.
The simultaneous detection of SCCA and survivin, which are also markers of cervical
cancer, has been reported [145]. A substrate with arrays of Au–Ag nanoboxes was modified
with the respective capture antibodies, while Au–Ag nanoshells modified with Raman tags
and antibodies were used as labels. LODs of 6 pg/m for SCCA and 5 pg/mL for survivin
were achieved with a linear dynamic range for both analytes from 10 pg/mL to 10 µg/mL.
Finally, the simultaneous determination of SCCA and CEA, also targeting cervical cancer,
was performed in a microfluidic chip consisting of six functional units with a pump-free
design that enabled parallel detection of multiple samples on an array of SiO2 particles
decorated with Au nanoparticles and modified with the respective antibodies in combi-
nation with Ag nanocubes labeled with Raman tags and modified with analyte-specific
antibodies [146]. The LODs of SCCA and CEA achieved were 0.45 pg/mL and 0.36 pg/mL,
respectively, with a dynamic range from 1 pg/mL to 1 µg/mL.

After optimizing the distance between a substrate comprising 2D arrays of Au core-
Ag shell nanoparticles and MBA-labeled Au nanoparticles as SERS labels, the optimum
materials were employed to detect PSA, CEA, and CA19-9 at ranges from 1 pg/mL to
1 ng/nmL for PSA and CEA, and 10–40 U/mL for CA19-9 [147].

Four cancer biomarkers, namely PSA, AFP, CEA, and NSE, have been detected on
substrates where the different antibodies have been immobilized sequentially on areas
(1 mm× 1 mm squares) revealed by photolithography [148]. Au nanoparticles labeled with
4-MBA and antibodies against the four markers were used as labels in non-competitive
assays that could detect all analytes at concentrations as low as 1 ng/mL.

A gold microelectrode array fabricated by electrodeposition of Au to the bottom of
numerous individual silica cavities was used as a substrate for the detection of AFP and
CEA both by electrochemical and SERS measurements [149]. The detection antibodies were
immobilized onto Au nanoparticles modified with oligonucleotide sequences to achieve
signal enhancement by hybridization chain reaction. The sensor was able to detect 0.6 and
0.3 pg/mL of CEA and AFP, respectively, when SERS detection was employed.

A SERS immunochemical method for the diagnosis and prognosis of B cell hemato-
logical malignancies was developed based on the simultaneous detection of two surface
markers (i.e., CD19 and CD20) in Raji cell lines as well as in clinical blood samples [150].
The assay implemented magnetic beads modified with an antibody against CD45 as the
capture substrate for the leukocytes, while Ag nanoparticles modified with antibodies
against CD19 or CD20 and labeled with Raman tags (4-MBA or DNTB) were used for
the detection. The LOD of Raji cells achieved was five cells in five million K562 cells.
The performance of the method was compared to that of flow cytometry by analyzing
peripheral blood samples of both B cell hematological malignancy patients and samples
from healthy individuals. It was shown that the SERS-based method provided a lower
detection limit and reduced false negatives compared to flow cytometry.

In Table S7, data concerning the multiplexed detection of different cancer markers by
SERS biosensors are summarized. A comparison of multi-analyte SERS-based immunoas-
says with single-analyte ones in terms of detection sensitivity demonstrates the great
potential of the SERS technique for the simultaneous determination of multiple biomarkers
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in human biological samples. This feature is particularly important for the diagnosis and
follow-up of cancer since rarely the monitoring of a single biomarker levels in serum
provides sufficient evidence.

5. Conclusions and Outlook

Surface-enhanced Raman spectroscopy has emerged as a powerful analytical strategy
for immunochemical biomarker detection. This is evident from the many reports regarding
the immunochemical detection of biomarkers related to cancer diagnosis and prognosis
that have been presented in detail in this review article.

A quick glance at all these reports shows that all the assays developed are characterized
by high detection sensitivity that, in some cases, surpasses that of standard microtiter well
enzyme immunoassays. The high detection sensitivity allows for the targeted analyte
detection at very low concentrations, usually several orders of magnitude lower than those
encountered in biological fluids. This means that in practice, the biological samples can be
diluted several times prior to their analysis, thus minimizing effects from the matrix and
facilitating the method’s clinical application. In addition, although not all these reports
evaluate the developed SERS sensors with respect to their selectivity, wherever these data
are available, they show very high selectivity towards the targeted analyte with respect to
interfering substances (e.g., other cancer markers or serum proteins). This high selectivity
does not characterize only the immunosensors discussed in this review for which the
selectivity arises from the selective binding properties of the antibodies used, but also
sensors employing other binding moieties, e.g., molecularly imprinted polymers.

Another feature that promotes SERS application in the field of cancer biomarker
detection is the potential application at the point of need through the development of
microfluidic devices or lateral flow devices. These devices incorporate sample processing,
require much fewer reagents than the standard immunoassays, and in most cases, increase
the reaction speed allowing for fast but equally accurate results.

Another very interesting feature of SERS-based immunosensors is their multiplexing
capability. To this end, two approaches have been exploited, the spatial separation of the
solid-phase reagents (i.e., antigens or antibodies) by spotting them onto discrete positions of
the same substrate in a similar way to that microarrays are realized, or the implementation
of different labels, one for each analyte, the signals of which could be distinguished when
all of them are present in a mixture. The first approach is easier to realize since the
different reaction sites are well separated, and theoretically, a very high number of different
molecules can be detected in a single run. The practical difficulty lies, as in the case of
antigen or antibody microarrays that implement other types of detection (e.g., fluorescent
labels), in the harmonization of assays that should be run simultaneously, i.e., the definition
of assay conditions that achieve the required for the application detection sensitivity and
dynamic range for all assays. The second approach for multiplexed determination requires
the existence of labels whose Raman signals are easily distinguished from each other.
Thus, the number of biomarkers that can be detected simultaneously is usually limited
to two or three analytes. In this case, false-positive results might arise from cross-talk
between the different labels. A way to avoid these effects is the dual labeling of both the
detection molecules and the substrate; however, that adds to the complexity of the assay
and signal interpretation.

Nonetheless, as more new materials are exploited both as substrates and tags for
SERS-based biosensing, the above-mentioned limitations might be surpassed in the near
future. For example, most of the reports regarding cancer biomarkers detection by SERS
reviewed here employ substrates or tags made of Au or Ag. There is, however, ongoing
research on nanostructures made of other metals such as Zn or Cu, and of course, there
is the possibility of using metal alloys. In addition to different materials, new shapes and
configurations of nanoparticulate materials used as substrates or labels might improve
the analytical performance of multiplexed SERS-based immunoassays. Thus, the future
research focus with respect to labels will be to find materials and shapes that could provide
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not only signal amplification but also signal stability. Regarding labels, the combination of
an inorganic core with a metal cell is the approach more widely used already and possibly
the one more popular in the future.

Another aspect that cannot be overlooked is the development of portable Raman
spectroscopes that would be combined with automated microfluidic or lateral flow devices
to provide fast determinations at the point of need, preferably at a cost competitive to that
of already existing methods. A small compromise regarding the detection sensitivity might
be acceptable with respect to that achieved using laboratory-based instruments.

Although the subject of this review is to present the advancements in the field of
immunosensors for cancer biomarkers detection, the implementation of other binding
moieties, such as aptamers and molecularly imprinted polymers, should not be excluded
since they have some advantages in terms of chemical and storage stability but their
application for detection of targeted molecules to complex matrices such are the biological
samples are still not fully evaluated.

Thus, despite the impressive advancements described in this article and the excellent
analytical characteristics of the so-far developed SERS-based immunosensors, there is a lot
of room for improvement and future innovation regarding the development of SERS-based
methods for cancer biomarkers detection so as these methods to compete and/or replace at
some point the ones currently used in everyday clinical practice.
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SERS-based detection of interleukins as cancer markers; Table S7: Multiplexed SERS-based detection of
cancer markers.
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