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Abstract: The mesomorphic stability and optical activity of new group-based benzotrifluoride liquid
crystals, (E)-4-(((4-(trifluoromethyl) phenyl) imino) methyl) phenyl 4-(alkyloxy)benzoate, or In,
were investigated. The end of the molecules connected to the benzotrifluoride moiety and the
end of the phenylazo benzoate moiety have terminal alkoxy groups which can range in chain
length from 6 to 12 carbons. The synthesized compounds’ molecular structures were verified using
FT-IR, 1H NMR, mass spectroscopy, and elemental analysis. Mesomorphic characteristics were
verified using differential scanning calorimetry (DSC) and a polarized optical microscope (POM).
All of the homologous series that have been developed display great thermal stability across a
broad temperature range. Density functional theory (DFT) determined the examined compounds’
geometrical and thermal properties. The findings showed that every compound is entirely planar.
Additionally, by using the DFT approach, it was possible to link the experimentally found values
of the investigated compounds’ investigated compounds’ mesophase thermal stability, mesophase
temperature ranges, and mesophase type to the predicted quantum chemical parameters.

Keywords: liquid crystals; benzotrifluoride; physical characterizations; DFT; dimorphic

1. Introduction

Between the solid and liquid phases of soft matter, liquid crystals (LCs) represent
a unique subclass [1–3]. Liquid crystal is commonly called a mesomorphic state; it has
properties that combine those of crystals and liquids, and exhibits distinct electro-optic
phenomena not found in either [1]. Recently, mesomorphic materials have garnered a lot of
attention due to their very beneficial and fascinating applications in a variety of scientific
fields, including Pancharatnam–Berry (PB) microlenses [4], reality (AR) and virtual reality
(VR) devices [5], biosensors [6], liquid crystal elastomers [7], organic field-effect transistors
(OFETs), and photovoltaics [8]. When an electric field is applied to a material that contains
chiral difluorinated side chains, it causes the disruption of nanofilament crystals and the
production of a tilted smectogenic phase [9].

Designing and producing novel, low-cost mesomorphic compounds with high thermal
stability and a broad mesomorphic range will always present with issues [3]. However, one
of the most effective ways to produce novel, inexpensive liquid crystal materials with good
characteristics is through chemically altering the structure [3]. A new low-cost LC material
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with devolved properties that is suitable for display technology can be created by making
even relatively small changes to the molecule’s molecular architecture, such as adding
heteroatoms or different lateral moieties [10]. These changes can have a significant impact
on the molecule’s mesomorphic interactions, structural geometry, transition temperature,
preferred conformations, and other fundamental physical characteristics [10].

A typical liquid crystal molecule consists of two major components: a mesogen, the
center rigid part, and a spacer representing the flexible terminal alkyl chains. Additionally,
the calamitic liquid crystal molecule includes a central linkage part that connects the two
(or more) ring systems [1,11]. For systems with a Schiff’s base/ester group, Schiff base
(–C=N–) is a connecting group connecting the hardcore LCs, and, as recently discovered,
the twist-bend smectic mesophases [12,13]. The rigid linear Schiff base bridges maintains
the linearity of the structure’s core, thereby allowing for the formation of LC phases with
extreme stability [14,15].

For the terminal part, it has been demonstrated that the terminal substituents can be
alkoxy chains or small polar compact substituents [16,17]. The terminal alkoxy chain of
a liquid crystalline compound, in general, has a significant impacts in the development,
thermal stability, type, and stability range of the mesophases of liquid crystal [13,18–24].
According to the investigation findings [17], an increment in the terminal substituent length
results in the molecules being oriented in a parallel arrangement, thereby promoting the
formation of the smectic A phase. However, polar substituents such as the trifluoromethyl
group increase molecules’ polarity, leading to higher dielectric anisotropy, which is impor-
tant for electro-optical applications. [17,25]. The increased dipole moment enhances both
the melting point and the lattice stability of the material [17,26]. Moreover, the introduction
of the trifluoromethyl group, which is highly stable and inert, is useful in the design of
liquid crystalline materials with improved thermal stability and resistance to degradation.
In addition, their incorporation into a liquid crystalline molecule can result in changes in
the mesogenic properties, such as the type and strength of the intermolecular interactions
and mesophase stability. The trifluoromethyl group can increase the solubility of a liquid
crystalline molecule in organic solvents, which is important for the synthesis and processing
of these materials.

In recent years, it has been observed that the mesomeric interactions of Schiff bases/ester
systems are significantly influenced by the terminal polar substituent, especially the F
atom [27]. The location and spatial orientation of the F atom significantly impact this result.
The melting and mesomorphic transition temperatures, the dipole moment, the morphology
of the mesophase, and the dielectric anisotropy of the resulting mesomorphic compound
were all significantly affected by the minimal volume and high polarity of the lateral F
atom. [28–32]. Thus, suitable mesogenic moieties and terminal group selection are critical
factors in creating novel thermotropic LCs with new phase transitions [17].

Several researchers [12,14,17,33–39] have demonstrated that computational studies
are a great tool for designing novel materials. Molecular orbital energies, the frontier
molecular orbital energy difference, and the molecular geometries of the investigated LC
compounds must all be stimulated to produce novel compounds with appropriate optical
and thermal properties. Due to its high performance and accurate results, density functional
theory (DFT) is widely acknowledged as an appropriate instrument for making these
predictions [39]. In addition, one of our research areas focuses on theoretical calculations
of molecular geometry that impact thermal properties and links them to experimental
data [12,33,40,41].

Based on the above formation, the study aims to prepare a new Schiff base with ester-
derived liquid crystals and investigate the terminal benzotrifluoride moiety’s influence on
the resulting derivatives’ phase behaviors. Therefore, a series of LCs (In), namely, (E)-4-
(((4-(trifluoromethyl) phenyl) imino) methyl) phenyl 4-(alkyloxy)benzoate, (Figure 1), were
synthesized. The length of the terminal carbon chain attached to an end, where hexyloxy,
octyloxy, decyloxy, and dodecyloxy chains are utilized, distinguishes the compounds in
the series from one another. DSC and POM instruments were used in the LC study for the
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novel series to characterize the thermal and mesomorphic behavior. DFT will be used as
a theoretical structure to examine these findings. Additionally, these computations show
how the terminal moieties influence mesomorphic properties.
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Figure 1. The structure of the liquid crystals, (E)-4-(((4-(trifluoromethyl) phenyl) imino) methyl)
phenyl 4-(alkyloxy)benzoate, or In.

2. Results and Discussion
2.1. Liquid Crystal Study

The transition temperatures and corresponding enthalpies for each synthetic material
from the DSC experiments are shown in Table 1 and visually represented in Figure 2.
All derivatives were thermally stable, as demonstrated by the consistency of the heating
and cooling from DSC curves. Figure 3 shows the heating and cooling scans from the
DSC for substance I8. The second heating scan measures the transition temperatures and
enthalpy estimations.

Table 1. Mesomorphic transition results for In.

Comp. Mesophase Transition Temperature, ◦C and
Enthalpy of Transitions in kJ/mol ∆TSmA ∆TN

I6 Cr 140.1 (41.7) SmA 147.8 (2.6) N 234.0 (1.4) 7.7 86.2

I8 Cr 127.4 (46.6) SmA 149.4 (4.4) N 222.1 (2.0) 22.0 72.6

I10 Cr 96.1 (49.2) SmA 151.5 (2.2) N 195.4 (1.5) 55.4 43.9

I12 Cr 137.5 (51.9) SmA 181.2 (1.9) N 186.5 (1.2) 43.7 5.3
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Figure 2. The prepared materials’ phase behavior was observed after the second heating for the In series.
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Figure 3. DSC thermograms of I8 were recorded from the second heating scan (endothermic process)
and from the second cooling scan (exothermic process) with a rate of 10 ◦C/min (red line).

After heating, the DSC thermogram of the formed compound (I8, shown in Figure 2)
revealed three endotherms typical of the Cr-SmA, SmA-N, and N-I transitions during both
heating and cooling scans. While the compound displays the nematic and SmA phases
during the cooling cycle, their transitions are delayed to slightly lower temperatures than
during the heating cycle. SmA and N mesophases have been verified by textures seen
in the POM measurements (Figure 4). While N had a threads/Schlieren-type texture, the
SmA phase displayed a focal conic fan texture. This demonstrated that the substance had
enantiotropic dimorphic characteristics. Figure 2 depicts the graphic transition temperatures
of all the produced materials evaluated so one can assess how the length of the terminal
carbon chain impacts how they behave in the mesophase.
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at 180 ◦C.

All synthesized compounds contain mesomorphic phases, as indicated in Table 1.
Additionally, each one exhibits the same types of mesophases with LC phases across a
range of temperatures, with the thermal stability changing with the length of the terminal
alkoxy carbon chain (an example of I8 in Figure 3). Additionally, under crossed polarizers,
typical images for SmA and N phases (Figure 4) produced by conventional linear LCs could
be seen. Data from Table 1 and Figure 2 shows that the terminal chain length increased from
n = 6 to 12, and the examined derivatives’ melting temperatures (Cr-N/SmA) exhibited a
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different pattern. As the polarizability of the investigated derivatives in the same series
rises, the melting point rises. The observed present trend, however, did not follow this
general principle. All of the homologous series’ members are also enantiotropic, have a
broad temperature mesomorphic range as well as excellent mesophase thermal stability.
The compounds of the current group (In) have enantiotropic SmA and N phases and are
dimorphic. The SmA range (∆TSmA = TSmA − Tcr) is increased from 7.7 to 55.4 ◦C with an
increasing alkoxy chain length from n = 6 to 10, then decreases to 43.7 ◦C at n = 12, while
the N phase range (∆TN = Tiso − TSmA) decreased from 86.2 to 5.3 ◦C as the alkoxy chain
length n minimized from 6 to 12. As the terminal chain length increased, the development
of the SmA phase decreased the nematic phase range. This was most likely caused by
an increase in the van der Waals interactions between the lengthy alkoxy chains, which
caused them to intertwine and made it easier for the lamellar packing—which is essential
for the development of the smectic phase—to occur. However, the mesophase range is
significantly influenced by the molecule’s structural shape.

For all compounds with lengthening terminal alkoxy chains, the nematic phase’s sta-
bility falls while the SmA phase normally rises [42,43]. The mesogenic rigid core dilution is
responsible for the downward trend in the thermal transition of the N phase. Nevertheless,
as the alkoxy chain length increased, the SmA phase appeared and lowered the nematic
phase range. This is most likely caused by an increase in the van der Waals interactions
between long alkoxy side chains, which leads to their interweaving and makes lamellar
packing—essential for the emergence of the smectic phase—more convenient. The stability
of the generated mesophases and their images is generally attributed to the polarity of
the substituent groups, polarizability, aspect ratio, stiffness, and geometry of the molecule.
These elements influence the behavior of the mesophase to varying degrees. The stabil-
ity of a mesophase of a specific mesomorphic compound is known to increase with any
improvement in the polarity and/or polarizability of the mesogenic core of the molecule,
which is influenced by the polarity of the substituent and subsequently affects the polarity
of the entire molecular structure.

Additionally, by favoring lamellar packing, increment van der Waals interactions,
which grow with the increase in terminal alkoxy groups, improve the stability of the SmA
phase. The nematic phase range, however, was suppressed. The next section will discuss
these factors, their types, how they relate to the parameters of quantum chemistry and
molecular geometry explored by DFT calculations, and how they influence the stability
of mesophases.

For the examined compounds, the estimated entropy change of mesophase transitions
(∆S/R) is shown in Table 2. Small magnitudes of the ∆S/R associated with the SmA-N
and N-isotropic entropy are observed, along with an irregular trend independent of the
molecules’ (n) terminal alkoxy chain length. However, the tiny values in all derivatives
may be caused by the ester linkage group’s slight induction of molecular biaxiality and the
comparatively high clearing temperature values, limiting SmA-N and N-isotropic entropy
changes [44–46]. However, modifications to the interactions between molecules, which are
governed by their geometrical shape, aspect ratio (length/breadth ratio), polarizability,
stiffness, and dipole moment, may be used to explain the variance and complexity in the
entropy change. These elements may have varying degrees of impact on the translational,
orientational, and conformational entropies of the molecule, although an increase in alkoxy
chain length dilutes interactions between cores and improves the polarizability of the
overall molecule, which increases the strength of intermolecular adhesion interactions be-
tween nearby molecules and encourages a greater degree of molecular ordering. Removing
the long orientational order and the rise in conformational distributions at mesophase
interactions are likely responsible for increased ∆S/R values with increasing alkoxy chain
carbon number. This was further reinforced by the SmA-N transition’s higher measured
transition enthalpy value than that recorded for the N-Iso transition.
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Table 2. Normalized entropy changes * of transitions for formed materials In.

Comp. ∆S SmA-N/R ∆SN-I/R

16 0.74 0.33

18 1.25 0.49

110 0.62 0.39

112 0.50 0.31
* Normalized entropy change (∆S/R) = entropy change/gas constant (dimensionless).

The comparison of our current series to previously described similar two-ring ma-
terials, IIn (Figure 5) [47], is interesting. According to the most recent data for the IIn
series [47], all compounds are mesomorphic and have purely nematic phase types with
either enantiotropic or monotropic LC phases, mainly depending on the type of terminal
moiety. It can be concluded that the smectic A phases were reported to be generated
in the present series In by adding extra phenyl ester moiety to the molecular structure
of IIn, and the resulting phase displayed a wide mesomorphic range and stability. This
comparison shows that the current compounds produce more orderly mesophases because
their mesogenic parts are longer, typically stabilizing the observed phases.
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2.2. DFT Studies

The homologous series In’s optimized molecular structures are shown in Figure 6.
The energetics and thermodynamic characteristics are listed in Table 3.

Materials 2023, 16, x FOR PEER REVIEW 7 of 14 
 

 

2.2. DFT Studies 
The homologous series In’s optimized molecular structures are shown in Figure 6. 

The energetics and thermodynamic characteristics are listed in Table 3. 

 
I6 

 

I8 

 

I10 

 

I12 
Figure 6. Optimized geometries of the compounds I6, I8, I10 and I12 at the B3LYP/6-31+G(d,p) level 
of theory. 

Table 3. Parameters for the optimized structures’ energies and thermodynamics at the B3LYP/6-
31+G(d,p) level of theory, expressed in Hartree units. 

 E0 E298 H298 G298 S (cal/mol.kelvin) 
I6 −1624.007462 −1624.484423 −1623.974637 −1624.078648 218.909 
I8 −1702.574560 −1703.108607 −1702.539017 −1702.649890 233.351 
I10 −1781.141646 −1781.732782 −1781.103387 −1781.221127 247.804 
I12 −1859.708727 −1860.356955 −1859.667753 −1859.792357 262.249 

The co-planarity of the liquid crystals is a critical and vital factor in determining 
mesophase behavior. Furthermore, in the liquid crystalline condensed phase, the degree 
of packing of molecules is highly dependent on their ability to maintain their planar 
shape. Figure 6 shows that all structures are almost planar, but the orientation of the two 
terminal aryl rings with respect to the central benzene ring is out of the molecular plane 
by around 4.0° and 0.7°. Such small dihedral angle values suggest an insignificant devia-
tion from the planarity of the whole molecule. Moreover, the results show that the molec-
ular geometry, especially the planarity of molecules, does not change considerably upon 
extending the terminal alkyloxy chain length. As a result, the molecular planarity of ho-
mologous series In enhances and boosts the degree to which molecules are packed to-
gether in the condensed mesomorphic phase. 

Figure 6. Optimized geometries of the compounds I6, I8, I10 and I12 at the B3LYP/6-31+G(d,p) level
of theory.



Materials 2023, 16, 4304 7 of 13

Table 3. Parameters for the optimized structures’ energies and thermodynamics at the B3LYP/6-
31+G(d,p) level of theory, expressed in Hartree units.

E0 E298 H298 G298 S (cal/mol.kelvin)

I6 −1624.007462 −1624.484423 −1623.974637 −1624.078648 218.909
I8 −1702.574560 −1703.108607 −1702.539017 −1702.649890 233.351
I10 −1781.141646 −1781.732782 −1781.103387 −1781.221127 247.804
I12 −1859.708727 −1860.356955 −1859.667753 −1859.792357 262.249

The co-planarity of the liquid crystals is a critical and vital factor in determining
mesophase behavior. Furthermore, in the liquid crystalline condensed phase, the degree of
packing of molecules is highly dependent on their ability to maintain their planar shape.
Figure 6 shows that all structures are almost planar, but the orientation of the two terminal
aryl rings with respect to the central benzene ring is out of the molecular plane by around
4.0◦ and 0.7◦. Such small dihedral angle values suggest an insignificant deviation from the
planarity of the whole molecule. Moreover, the results show that the molecular geometry,
especially the planarity of molecules, does not change considerably upon extending the
terminal alkyloxy chain length. As a result, the molecular planarity of homologous series In
enhances and boosts the degree to which molecules are packed together in the condensed
mesomorphic phase.

It is worth noting that our outcomes afford a reasonable expectation of the gas phase’s
preferred molecular structure; nevertheless, there is a possibility that the presence of these
substances in liquid crystalline condensed phases will result in certain deviations.

The dipole moments and molecular polarizabilities are important in defining liquid
crystalline solids because they serve as the foundation for comprehending and predicting
intermolecular interactions. The dipole moments and molecular polarizability for the
homologue series In were calculated at the same theory level and displayed in Table 4.
The outcomes indicated that as the side alkoxy chain length enhanced, the polarizability
ranged from 370.39 to 442.14 Bohr3. Lengthened molecules have readily moved electrons,
strengthening the dispersion forces, enhancing their polarizability, and resulting in higher
boiling and melting temperatures. Small, compact, symmetrical molecules, on the other
hand, are less polarizable and have fewer dispersion forces.

Table 4. For the molecules’ optimal configurations for series In, various quantum chemical characteristics.

E (a.u) I6 I8 I10 I12

Dipole moment (D) 9.520 9.570 9.597 9.614

Polarizability (α) 370.39 394.52 418.40 442.14

EHOMO (eV) −6.528 −6.527 −6.527 −6.527

ELUMO (eV) −2.348 −2.348 −2.347 −2.347

∆E (eV) 4.180 4.180 4.180 4.180

χ (eV) 4.438 4.437 4.437 4.437

η (eV) 2.090 2.090 2.090 2.090

σ (eV−1) 0.478 0.478 0.478 0.479

µ (eV) −4.438 −4.437 −4.437 −4.437

S (eV−1) 0.239 0.239 0.239 0.239

ω (eV) 4.713 4.711 4.710 4.710

∆Nmax 2.124 2.123 2.123 2.123

To find out the relationship between the stability of the studied molecules and the
length of the terminal alkoxy chain, the calculated thermal energy of the homologue series
In was correlated to the terminal alkoxy chains length (Figure 7). As indicated in Figure 7, a
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molecule’s stability increases in proportion to the length of the alkoxy chain at its terminal
position. The aromatic rings’ high stacking and the aggregation of the alkoxy chains
might explain these observations. In terms of benzene ring stacking, the strength of the
aggregation rises as the length of the alkoxy chains grows.
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Figure 7. The relationship between the thermal energy of series In and the length of the terminal
alkoxy chain (•).

Frontier molecular orbitals (FMO) are essential for defining basic molecular features
such as stability and optical and electronic properties because they provide a good qual-
itative estimation of excitation characteristics and electron transport capabilities. The
energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccu-
pied molecular orbital are electron-donating and electron-accepting levels, respectively.
The HOMO-LUMO energy gap (∆E) is critical for molecular systems’ nonlinear optical
characteristic systems. A low energy gap value is typical of less stable but easily polariz-
able materials, suggesting an easier electronic transition and, therefore, the greater NLO
characteristics of a molecule. A large ∆E value is associated with insulation characteristics
and strong molecule stability.

In the case of the homologue series In, the calculations revealed that the length of the
terminal alkoxy chain does not affect the energy values of the FMO. As a result, the length
of the terminal alkoxy chain does not influence the energy gap (∆E), and it was found to
have the same value for all of the studied molecules. Furthermore, chemical potentials, µ,
absolute electronegativity, χ, absolute softness, σ, absolute hardness, η, global softness, S,
global electrophilicity,ω, and additional electronic charge, ∆Nmax, have been calculated
from the FMO energies (Table 4) to shed light on the examined compounds’ stability and
reactivity. Hardness is one of the most prevalent and important metrics for understanding
the behavior and reactivates of molecules and may be regarded a measure of molecular
stability. Softness (S) reveals the degree of the polarizability and photoelectric sensitivity
of materials. In addition, ∆Nmax estimaes the maximum number of electrons that may be
transferred from the molecule during a chemical reaction; soft molecules would have a
high ∆Nmax value.

The calculations revealed that the investigated compounds have a relatively small
energy gap ∆E (4.18 eV), indicating that the title molecules are soft and reactive. Moreover,
as shown in Figure 8, the electron densities of the FMOs are mostly localized on the aryl
rings. At the same time, there was no noticeable contribution of the terminal alkyloxy chain
to the FMOs. It can be noted that both frontier orbitals have a nearly identical shape in all
the investigated molecules.
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31+G(d,p) level of theory.

The electronic density distribution is shown by the molecular electrostatic potential
energy surface (MEP), is a helpful metric that gives some insight on a chemical compound’s
electrophilic and nucleophilic centers. Moreover, MEP describes hydrogen-bonding inter-
actions between the molecules. MEP of the In series has been calculated utilizing optimal
compound geometry at B3LYP/6-31+G(d,p). A greater electron density characterizes the
MEP’s negative sites (red) and is regarding with nucleophilic reactivity. Electrophilicity
refers to the positive sites, which are either green or blue and have a low electron density.
Our potential map’s energy range is −4.576 × 10−2 esu to + 4.576 × 10−2 esu. In series,
as shown in Figure 9, the O, N, and F centers have high electron density and represent
the nucleophilic part. In contrast, the low electron density is observed surrounding the
alkyl chain.
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3. Experimental
Synthesis

The following Scheme 1 describes the formation of the mesomorphic compounds In:
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(d, J = 7.7 Hz, 2H, Ar-H), 7.72–7.61 (m, 4H, Ar-H), 7.44 (d, J = 7.7 Hz, 2H, Ar-H), 7.26–7.14 
(m, 4H, Ar-H), 4.06 (t, 2H, OCH2), 1.78–1.76 (m, 2H, CH2), 1.43–1.31 (m, 18H, 9 CH2) and 
0.88 (t, 3H, CH3) ppm C33H38F3NO3 (Mwt = 553.65) requires C, 71.59; H, 6.92; N, 2.53 % 
found: C, 71.62; H, 6.76; N, 2.61%. 

4. Computational Methods 
See Supplementary Data.  
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new three-ring series with –COO and –CH=N connecting units, was synthesized, and the 
molecular structures were validated by FT-IR, proton and carbon13-NMR, mass spec-
trometry, and elemental analyses. Studying and correlating the thermotropic and optical 
behaviors with estimated parameters resulted from the DFT calculations. 

The study found that: 
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The study found that: 

3068 (sp2 =C–H), 2952 (sp3 –C–H),
1742 (C=O), and 1610 (C=N) cm−1. 1H NMR (CDCl3, 400 MHz): δ 8.66 (s, 1H, CH=N), 8.13
(d, J = 7.7 Hz, 2H, Ar-H), 7.72–7.61 (m, 4H, Ar-H), 7.44 (d, J = 7.7 Hz, 2H, Ar-H), 7.26–7.14
(m, 4H, Ar-H), 4.06 (t, 2H, OCH2), 1.78–1.76 (m, 2H, CH2), 1.43–1.31 (m, 18H, 9 CH2) and
0.88 (t, 3H, CH3) ppm C33H38F3NO3 (Mwt = 553.65) requires C, 71.59; H, 6.92; N, 2.53 %
found: C, 71.62; H, 6.76; N, 2.61%.

4. Computational Methods

See Supplementary Data.

5. Conclusions

(E)-4-(((4-(trifluoromethyl) phenyl) imino) methyl) phenyl 4-(alkyloxy)benzoate, a new
three-ring series with –COO and –CH=N connecting units, was synthesized, and the molec-
ular structures were validated by FT-IR, proton and carbon13-NMR, mass spectrometry,
and elemental analyses. Studying and correlating the thermotropic and optical behaviors
with estimated parameters resulted from the DFT calculations.

The study found that:
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1. All produced compounds observe thermal stability with elevated values and wide
enantiotropic temperature mesomorphic ranges.

2. The electronic state of the terminal trifluoromethyl moiety and the length of the alkoxy
chain cause significant modifications to the intended derivatives’ geometrical parameters.

3. Increasing the aspect ratio of the present series compared to the previously reported
two-ring series induces the smectic A phase with broad thermal stability.

4. The findings showed that the estimated polarizability of the present compounds had
a similar trend to the influence of aspect ratio on the phase stabilities and their ranges.

5. The electrical characteristics of the terminal groups influenced the global softness and
the energy gap of the FMO.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16124304/s1, Figures S1–S3: DCS thermograms of compounds
I6, I10 and I12; Figure S4: POM textures of compound I10; Tables S1–S2: Mesomorphic and thermal
parameters of compounds In and IIn.
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