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Abstract: The superior engineering properties and excellent biocompatibility of titanium alloy
(Ti6Al4V) stimulate applications in biomedical industries. Electric discharge machining, a widely
used process in advanced applications, is an attractive option that simultaneously offers machining
and surface modification. In this study, a comprehensive list of roughening levels of process variables
such as pulse current, pulse ON time, pulse OFF time, and polarity, along with four tool electrodes of
graphite, copper, brass, and aluminum are evaluated (against two experimentation phases) using a SiC
powder-mixed dielectric. The process is modeled using the adaptive neural fuzzy inference system
(ANFIS) to produce surfaces with relatively low roughness. A thorough parametric, microscopical,
and tribological analysis campaign is established to explore the physical science of the process. For
the case of the surface generated through aluminum, a minimum friction force of ~25 N is observed
compared with the other surfaces. The analysis of variance shows that the electrode material (32.65%)
is found to be significant for the material removal rate, and the pulse ON time (32.15%) is found to be
significant for arithmetic roughness. The increase in pulse current to 14 A shows that the roughness
increased to ~4.6 µm with a 33% rise using the aluminum electrode. The increase in pulse ON time
from 50 µs to 125 µs using the graphite tool resulted in a rise in roughness from ~4.5 µm to ~5.3 µm,
showing a 17% rise.

Keywords: titanium alloy; Ti6Al4V; electrical discharge machining; surface topography; parametric
analysis; tribology

1. Introduction

Titanium and its derivatives are multifaceted, encompassing the biomedical industries
(due to their uses in orthopedic and orthodontic implants) [1]. The most popular alloy,
Ti6Al4V, is frequently used because of its high strength-to-weight ratio, high fatigue and
loading strength, high corrosion resistance, biocompatibility, and retention of mechanical
properties in elevated temperatures. These properties of the alloy make it durable and
sustainable in various specialized applications [2]. Along with these desirable properties,
there are limitations such as lower thermal conductivity, a small modulus of elasticity,
less reactivity, and a large strength-to-weight ratio, which reduce its machineability and
result in different challenges for processing [3,4]. Among processing techniques, various
conventional machining methods have reduced its applications because of limitations such
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as the production of complex profiles, accurate and precise machining, improved surface
integrity, and low primary and secondary processing costs, which make it difficult to choose
hard-to-cut materials [5]. Considering the above limitations, nonconventional machining
processes are considered, which provide a solution to ease the boundaries of conventional
machining. Among these processes, electric discharge machining is the leading-edge
machining process used to machine hard-to-cut materials where there is a requirement to
machine an intricate geometrical shape with greater dimensional accuracy. This process
utilizes thermoelectric energy to erode conductive workpieces through rapidly recurring
electric sparks. During the process, no direct contact exists between the tool electrode and
the workpiece; therefore, no residual stresses are produced. The process requires the tool
and workpiece to be immersed in a dielectric liquid [6]. The machined surface contains
random features such as craters and porosity, and has improved mechanical properties
because of the surface treatment [7–10].

The electric discharge machining process is stochastic and complex, requiring signifi-
cant control over parameters to optimize performance. This complexity requires researchers
to investigate the effects of various input responses on machining materials with different
properties. The machining of Ti alloy in powder-mixed dielectric generates a surface that
carries a higher probability of attracting osteoblast cells because of its rougher features [11].
The surfaces with these features are surrounded by water molecules and absorbed ions in
the blood. In these cases, a layer of TiO2 generates a protective layer that creates a barrier
between the implant surface and the molecules, and corrosion is inhibited at this stage.
Considering the benefits on the application side, the limitation of the EDM process is its low
productivity, which is strongly linked to surface integrity (if one objective is approached,
the other deteriorates). A literature survey reveals various studies in which researchers
have tried to improve machining efficiency regarding the material removal rate (MRR)
while sustaining the surface attributes. Various parametric-analysis-based approaches
have been used to improve the process conditions. For instance, Ehsan et al. [12] used
grey relational analysis, Rafaqat et al. [13] used objective compromise, Sharma et al. [14]
used ANFIS, and Ishfaq et al. [15] used the desirability function. Recently, much focus
has been shifted towards black box models, which accurately model complex processes
with multiphysics problems. In this regard, the artificial neural network (ANN) is an
intelligent information-processing model that has been utilized to develop a predictive
model and analysis in manufacturing [14]. An adaptive neural fuzzy inference system
(ANFIS) is a hybrid intelligent system that obtains specific data and develops a predic-
tion model. Sharma et al. [14] used ANFIS for modeling the electric discharge machining
process during the machining of Inconel 625 and carried out optimization using response
surface methodology. Tang and Du [16] used tap water to carry out electric discharge ma-
chining of Ti6Al4V. The authors used duty factor, polarity, lift height, voltage, and current
to evaluate roughness using a Taguchi orthogonal array. Similarly, Hassanin et al. [17]
used selective laser-sintered Ti6Al4V as an implant material and two modes of electric
discharge machining, specifically roughening and finishing. The process was modeled
using central composite design regression. Tiwary et al. [18] evaluated Cu-mixed deionized
water during microimpression machining on Ti6Al4V using variable pulse currents. The
authors discussed the fact that control over energy transfer is very important in determining
the final quality of the surface. Sultan et al. [19] employed pulse OFF time as an input
electrical parameter to machine EN 353 steel. The authors reported that a balanced pulse
OFF time helps produce a better surface finish and a higher material removal rate. In
addition to electrical parameters, electrode materials were chosen to reduce the tool wear
with a higher material removal rate. However, for tribological applications in which parts
slide on each other, causing friction and wear, choosing a suitable tool material that gives
a better surface finish can help increase the lifespan of the machined parts. In addition,
the dielectric medium can also be altered to facilitate the process of achieving improved
surface properties. Dong et al. [20] utilized a graphite tool in a water/oil emulsion and
pure kerosene. The authors achieved minimum tool wear and a maximum MRR with fewer
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surface cracks on the machine surface with the modified dielectric. Payal et al. [21] have
investigated the machinability of ENI tool steel using copper, brass, and graphite electrodes.
The authors compared the machined surfaces and heat-affected zones based on thermal and
electrical conductivity, the melting point, and the density of the electrodes. Theo et al. [22]
discussed the spongy and spherical texture produced during electric discharge grinding
when a material is processed using aluminum electrodes. Compared with negative polarity,
positive polarity produced higher surface roughness and significantly determined material
removal and surface integrity. The redeposited layer comprised dielectric breakdown
products and pyrolysis-induced material migration from the tool and the workpiece [8].
Thermal loading, cyclic heating, and residual strains influence a material’s key charac-
teristics, and only post-finishing/processing procedures may alleviate these factors. The
process settings and operating conditions determine the thickness of the reformed layer.
For instance, the dielectric effect resulted in substantial carbon diffusion into the reformed
layer during its production and solidification in the case of hydrocarbon as compared with
deionized water [15]. Moreover, Ti6Al4V can generate thick oxide layers which merge with
the recast layer formed during machining, providing an extra benefit for developing new
surface layers. Carbon diffusion and electrode material migration result in a high level
of hardness, which improves the surface integrity of Ti6Al4V surfaces. Similarly, other
surface characteristics must be investigated to improve tribological applications, increase
wear and corrosion resistance, and reduce friction loss, energy loss, and cytotoxicity in
biological implants [22]. A machined surface with more cracks, pores, and voids tends to
increase friction due to shear forces, which originate wear and energy losses. Different
sintered tool materials and additives are used to uniformly distribute the carbon, which
influences the cracks and voids. The tool material significantly influences the surface prop-
erties by providing inherent lubrication. This type of surface helps reduce shear force and
energy losses by improving tribological properties [1]. Rajurkar et al. [23] evaluated surface
craters and cracks using electrophysical and chemical processes during nano machining
and reported the surface texture based on the arithmetic mean. Bui et al. [24] evaluated
the modified surfaces of titanium implants during powder-mixed discharge machining.
They highlighted the need to evaluate other surface characteristics, such as peak-to-valley
details, as implants have tribological applications.

On the other hand, the tribological properties of Ti6Al4V have been extensively demon-
strated to be limited in the domains of artificial hip and knee joint implantations, pumps,
valves, bearings, and other similar applications. The underlying reasons for this include
excessive friction and wear, corrosion (galvanic and crevice), and material embrittlement,
which results in material seizing and damage [1,7]. Plasma nitriding, plasma electrolytic
oxidation, physical vapor deposition (PVD), chemical vapor deposition (CVD), ion implan-
tation, and laser surface texturing have all been used to improve the tribological properties
of Ti alloys. The techniques indicated above were forced to be reserved for specialized
applications due to their uneconomic nature and inability to build massive protective
layers [8]. The surface interaction of Ti6Al4V with the counter body during tribological
applications can cause significant contact stresses, necessitating robust protection coat-
ings. According to the literature, the passivation effect of functional material surfaces
can be achieved with thermal oxidation (ThO). The adherent oxide layer development
and surface/diffusion hardening had the most consistent influence on the process at high
temperatures [7]. However, electric discharge machining can generate carbides and ox-
ides on the surface, which improves surface properties by several folds. Mughal et al. [9]
showed the enhanced surface hardness of Ti6Al4V ELI grade 23 because of the formation
of carbides and oxides. Similarly, Al-Amin et al. [10] found amorphous and crystalline
phases of carbides and oxides on the machined surface of 316L. The authors showed an
improved surface with reduced crack formation and enhanced morphological features,
such as nanopores and shallow craters. Thus, the process is capable of simultaneously
machining as well as modifying the surface.
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The published literature identifies that Ti6Al4V possesses excellent mechanical and
engineering attributes in various applications. However, being a hard-to-cut material, its
machining is challenging considering the industrial use cases. In this regard, the machining
challenges associated with the material are thoroughly explored in this research, which
considers a wide range of process parameters such as pulse current, pulse ON time, pulse
OFF time, and polarity. A SiC-mixed dielectric was used based on the recommendations of
Farooq et al. [6] for machining titanium alloy. Similarly, Mughal et al. [8] recommended us-
ing a SiC-mixed dielectric for improved surface integrity and related attributes. Li et al. [25]
showed the supremacy of the SiC-mixed EDM process in achieving enhanced surface char-
acteristics as compared with the normal dielectric. However, the efficiency of the process
concerning tribological applications has not been comprehensively explored because of the
higher numbers of surface defects. Therefore, a thorough investigation is needed, and is
carried out herein, along with a consideration of several process variables. Considering
tribological applications, a range of electrode materials is also explored as a variable that
influences surface features. To summarize, the novelty of this work lies in its evaluation of
surface modification and functionalization assessment.

There are substantial points that were identified to be addressed in the current study.

• There is no evidence of the adaptive neural fuzzy inference system approach being
applied to SiC-mixed electric discharge machining processes while employing different
tool materials.

• No comprehensive studies are available on the tribological performance of surfaces
produced through SiC-mixed electric discharge machining while employing different
tool materials.

• The current study extends the work carried out by Farooq et al. [6], using a wider
range of electrodes, process modeling, and tribological characterization.

The machinability of titanium alloys is not as mature as that of steels, so it requires
comprehensive evaluation employing roughening parameters. It is pertinent to highlight
the need for a wide-ranging process analysis based on surface characteristics such as rough-
ness parameters, morphology, and layer properties. Moreover, the adaptive neural fuzzy
inference system approach is used to model the process response. The experimentation
results are thoroughly studied through parametric control, morphological, and tribological
analyses. A detailed explanation of the physical phenomena of the process is compiled in
line with the results from different dimensions.

2. Materials and Methods

The workpiece material Ti6Al4V (ELI) was employed for the experimentation. The
square plate of the workpiece, which had 100 × 100 × 4 mm3 dimensions, was used. The
material was chosen because of its wide applications in biomedical industries. In the
biomedical industry, several implants have the chosen material as a substrate because of
its toughness and other engineering attributes [2]. The physical attributes of Ti6Al4V that
potentially affect thermoelectrical erosion process are mentioned in Table 1 based on the
details provided by the manufacturer (BaoJi Titanium Industry Co., Ltd., BaoJi, China).

Table 1. Physical and mechanical properties of workpiece material (Open Access Webpage [26]).

Properties Value

Hardness (Vicker D) 320
Density (g/cm3) 4.43

Yield strength (MPa) 955
Ultimate tensile strength (MPa) 990

Modulus of elasticity (GPa) 114
Thermal conductivity (W-m−1K−1) 6.7

Electrical resistivity (µΩ-cm) 178
Melting point (◦C) 1660
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The selection of the process conditions which result in higher efficiency is the objective
of this study. The process is highly dependent on the thermal and electrical properties
of materials (tool materials and workpieces) involved in machining. Ahmed et al. [27]
evaluated the potentiality of microimpressions on Ti6Al4V using Al, Cu, Br, and Gr as tool
electrodes. The authors discussed the effect of material properties on the process dynamics.
The authors commented that the properties of Ti6Al4V are not straightforwardly predictable
compared with those of steels, and this necessitates evaluating a range of materials as tool
electrodes. Therefore, a range of material combinations needs to be tested. Tool electrode
selection is not as simple for Ti6Al4V as it is for other materials, such as steel, which is
reasonably matured. The possible reasons behind this uncertainty are the mechanisms
involved at the tool–workpiece interface during machining (vaporization, melt dynamics,
and evacuation of debris). For this reason, four electrodes, including copper (Cu), brass
(Br), graphite (Gr), and aluminum (Al) electrodes, were used to machine the workpiece,
each having a 15 mm diameter. Similarly, Raza et al. [28] discussed the influence of material
properties on processing conditions, motivating the choice of four electrode materials. The
physical properties of tool electrodes which influence the process are mentioned in Table 2.

Table 2. Physical and mechanical properties of workpiece material (Open Access [27]).

Tool Material

Thermophysical Properties

Density
(g-cm−3)

Melting
Point
(◦C)

Thermal
Conductivity
(W-m−1K−1)

Electrical
Conductivity

(S-m−1)

Graphite 320 3300 400 0.3 × 106

Copper 4.43 1083 385 59.6 × 106

Brass 955 940 109 16 × 106

Aluminum 1660 660 205 35 × 106

A dedicated machine tool for the whole experimentation process, CNC EDM die-
sinker machine (RJ—230 Creator: Taiwan), was used. An overall graphical representation
of the methodology is shown in Figure 1, where four tool electrodes are indicated with
the machine tool. A circular cavity of 300 µm in depth was machined in each experiment.
The dielectric medium, commercially available kerosene oil with 5 g/L SiC concentration,
was used during machining. The diameter (70–80 µm), density (3.1 g/cm3), and thermal
conductivity (120 W/m-K) are considered necessary to know during the machining action
at the interface of the tool and workpiece. As reported in the literature by Li et al. [25],
the use of abrasive SiC powder in dielectric results in superior surface attributes such as a
controlled white layer, low roughness, and improved hardness. Similarly, Mughal et al. [8]
evaluated different SiC powder concentrations in kerosene and their performance on
surface quality. Farooq et al. [6] recommended the use of particular levels of powder
concentrations for improved machinability. The physical properties of the SiC powder
affect the process of decreasing the number of surface defects. As per Li et al. [25], the
powders’ thermal conductivity and electrical resistivity change the dielectric properties,
which facilitates balanced plasma channel generation. The experimentation was carried out
in two phases; the first included preliminary experiments without a design of experiments,
and the second involved mature experiments under the design of experiments.
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Figure 1. Experimental setup illustration: an overview of tool electrodes used for experimentation,
workpiece, and key measures.

In the first phase, the selection of significant parameters based on the literature and
the suitability of those variable values were searched out. The selection was made based on
criteria including excessive sparking, interruption, incomplete machining, and improper
mixing of the added powder. Therefore, a range was selected to ensure adequate quality of
the machined part, balanced distribution of the sparks, and no or minimal traces of burning.

The process variables which were selected for the mature experimentation phase were
electrode material (El), pulse current (PC), pulse ON time (ON), pulse OFF time (OFF),
and polarity (PO), and their levels are mentioned in Table 3. The pulse current is directly
related to the energy transfer to the workpiece. After extensive trial experiments, the
roughening levels were considered to carry out predictive analysis in extreme processing
conditions. The specific levels were chosen on the guidelines of Ahmed et al. [27] and
Ishfaq et al. [15]. Sultan et al. [19] commented on the mechanistic influence of pulse
ON time. The particular range of the pulse OFF time was based on guidelines from
Mughal et al. [8] and trial experimentation. Ehsan et al. [12] evaluated and supported the
need for a sufficient window of pulse OFF time. Therefore, the levels were taken as per
guidelines from Farooq et al. [9] and trial experiments. Similarly, Ahmed et al. [27] used
polarity as variable during machining in kerosene dielectric to control material removal
mechanism. A thorough analysis of the literature [2,15], early experiments, cost, and
time were the foundation for choosing the number of experiments for the second phase.
Taguchi’s L16 orthogonal array was used to conduct experiments at the levels mentioned in
Table 3.

The workpiece was placed on a flat surface during the experimentation to avoid any
dimensional error due to an unbalanced position. The tool was grasped firmly in the tool
holder. A separate electrode was used for each experiment so that the surface morphology
could be monitored easily. Taylor Hobson surface texture meter (UK) was used to measure
the surface roughness in terms of arithmetic mean Ra, the highest peak-to-valley distance
Rt, and average peak-to-valley distance Rz, retaining the evaluation length at 4 mm and
the cut-off length at 0.8 mm. The roughness was measured at five distinct locations in the
machined cavity, and the resulting mean values were presented. The machining limitations,
such as craters, microcracks, redeposited debris, and surface roughness, were explored
using Quanta 450 field emission gun (FEG) scanning electron microscopy. In addition,
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a pin-on-disc wear tribometer (CSEM Instruments) was used for tribological analysis.
The pin-on-disc was used to investigate the friction and wear properties of the machined
samples in dry sliding conditions. A milled base plate (EN31 steel disk (60 HRC)) with
dimensions of 165 mm diameter and 8 mm thickness with a relatively smooth surface Ra of
0.5 µm (ground after each experiment) was employed as a counter body for tribological
assessment. The counter-body surface was ground using SiC-based emery paper of P800
to P1500 grit sizes. After that, a METCO, BAINPOLVTD, Model No. PMV 023 polishing
machine was used to achieve Ra 0.5 µm. The cylindrical pin of Ti6Al4V, having 10 mm
diameter, was machined at 8 A pulse current to generate the texture for friction testing. The
pulse OFF time and ON time were both kept at 75 µs. The pin and disc were cleaned in
an acetone bath to eliminate the effect of contaminants. Tests of 1500 s were carried out at
room temperature, having 100 N load and 6.28 m/s speed. The surfaces of the discs were
prepared at constant machining parameters to ensure the durability of experiments. Tests
for machined surfaces of Ti6Al4V with aluminum, brass, copper, and graphite electrodes
were considered, and the friction force was plotted against time.

Table 3. Parametric conditions with levels for experimentation.

Sr. No Parameter Units
Levels

1 2 3 4

1 Tool electrode type - Aluminum (Al) Copper (Cu) Brass (Br) Graphite (Gr)
2 Pulse current A 8 10 12 14
3 Pulse ON time µs 50 75 100 125
4 Pulse OFF time µs 25 50 75 100
5 Polarity - Reverse Positive
6 Dielectric - Kerosene oil + 5 g/L SiC

3. Process Modeling

Electric discharge machining is a stochastic thermoelectrical material removal process
that depends upon different properties of the tool electrodes, workpiece materials, and
dielectric system. The current study used a SiC-mixed dielectric to facilitate the erosion
process. The modeling and analysis of the system were carried out using the neuro-fuzzy
method. This method integrates the inferential abilities of the fuzzy system (FIS) and the
data learning capabilities of the artificial neural network (ANN). The adaptive neural fuzzy
inference system (ANFIS) uses a sample-based learning approach on the experimental data
generated from the parametric settings and develops a structure for efficient prediction [14].
The model based on the ANFIS structure is validated based on test data. In the current
study, the L16 design of experiments was repeated four times and divided into 75/25
rules for train/test data. The architecture of ANFIS is shown in Figure 2, with two inputs
and three membership functions. The critical response as output is one. The machine
parameters are key variables that significantly control the particular response. For instance,
in the current study, five different variables were chosen.

Layer 1 comprises input membership functions for fuzzification. Each input is pro-
cessed with membership functions such as triangular, Gaussian, and trapezoidal functions,
resulting in the fuzzy membership values µAi(P1) and µBi(P2). Layer 2 defines the fuzzy
rules and calculates the strength (wi). The rule’s output is processed, and the result is
its particular weight. The output is computed based on the input signals, as shown in
Equation (1).

wi = µAi(P1)× µBi(P2), i = 1, 2, 3 (1)

Layer 3 normalized the strengths (wi) as represented in Equation (2).

−
wi =

wi

∑i wi
, i = 1, 2, 3 (2)



Materials 2023, 16, 4458 8 of 20

Similar to layer 2, in which fuzzification is carried out, layer 3 carries out defuzzifica-
tion. Equation (3) is used to calculate the output of each node.

−
wi. f1 =

−
wi(aiP1 + biP2 + ci), i = 1, 2, 3 (3)

The ai, bi, and ci values are the consequent parameter sets. Layer 5 calculates the
output with one node only, as shown in Equation (4).

Output = ∑i
−
wi. f1 (4)

The ANFIS parametric settings are shown in Table 4. The Gaussian membership
function has better performance with the linear output function than with the constant
function. The no. of membership functions was kept to 2 for each parametric input to
minimize the computational time by keeping the epoch maximum limit at 30. The testing
phase resulted in a maximum error of 0.107 µm.
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Table 4. Parametric conditions for ANFIS.

Training Method MF Type Output Function No. MFs Epoch Avg. Test Error MAPE

Hybrid Gaussian Linear 2 2 2 2 2 30 0.107 µm 1.78%

The complete ANFIS architecture of the electric discharge machining process is shown
in Figure 3.

The ANFIS approach uses process input data and develops a prediction model based
on training and testing. In the input layer, a comprehensive list of parametric conditions
such as tool electrode type, pulse current, pulse ON time, pulse OFF time, and polarity
is used with wide ranges of roughening levels. The output layer shows the resulting
roughness. The data are not necessarily recommended to comply with any specific design
of experiments. Therefore, precise and realistic prediction results are achieved without
compromising on any objective. Predictive values are validated using the mean absolute
percentage error (MAPE), as is evident in Equation (5).

MAPE =
1
n

n

∑
i=1

∣∣∣∣Expi − Predi

Expi

∣∣∣∣, n = number o f experiments (5)
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The hyperparameter tuning of the inference system during training was carried out
based on the MAPE, and the lowest error-producing architecture was chosen. The results
show a 1.78% MAPE, which is significantly lower than 5%. The normalized roughness Ra
results are compared in Figure 4. The predicted results are in close agreement with the
experimental results.
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4. Results and Discussion
4.1. Parametric Control Analysis

The parametric effects on the roughness are characterized with two-way interaction
plots, as shown in Figures 5 and 6. It is evident in Figure 5a that the graphite resulted in a
rougher surface (5.5 µm) compared with the other electrode materials. Graphite has a high
melting point (3300 ◦C), which is the fundamental rationale for high roughness considering
the thermoelectric physics of the electric discharge machining process. Ahmed et al. [27]
supported similar process science during the machining of Ti6Al4V using conventional
dielectric kerosene and found graphite to be the highest roughness-producing electrode
material. The material erosion mechanism involves thermal energy production through
an electric sparking process when the tool electrode is brought to a significantly small
distance from the workpiece surface. The high thermal energy penetrates deep into the
workpiece surface, leaving rough craters [29]. Besides tool materials, the pulse current is
acknowledged as a significant contributing factor towards the amount of thermal energy
on a surface. At low pulse current values (8 A), a low amount of thermal energy is available
because of the less intense spark conditions at the interface of the workpiece and tool.
Therefore, the low current conditions observed with the aluminum electrodes produced
less roughness, with a value of 3.4 µm. With the increase in pulse current to 14 A, the
roughness increased to ~4.6 µm, showing a 33% increase using the aluminum electrode.
Intense sparking produces high thermal energy, melting and vaporizing the workpiece
material [30]. In addition, the tool’s polarity plays a significant role in determining the
prime material for erosion. If the tool material’s melting temperature is significantly
lower compared with that of the workpiece, then the tool will erode intensely instead
of the targeted surface. In this process, shallow craters are formed, reducing the surface
roughness [15]. The tool having a higher temperature than the workpiece results in severe
surface defects because of the intense energy transfer. Graphite has a 3300 ◦C melting
temperature, whereas the Ti6Al4V workpiece had a melting temperature of 1604–1660 ◦C,
which resulted in the workpiece surface being eroded more and developing deep craters.
In the surface plot (see Figure 5a), the copper and brass were placed in the center, resulting
in mild roughness at all pulse current levels. Conclusively, the aluminum electrode at a low
pulse current (8 A) obtained a lower roughness compared with the graphite electrode.
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In both interactive plots in Figure 6, the tool materials show similar trends along
with pulse ON and OFF time. The increase in pulse ON time from 50 µs to 125 µs for
the graphite tool increased the roughness from ~4.5 µm to ~5.3 µm, showing a 17% rise.
The increase in ON time enhanced the energy transfer because of increased sparking time
and resulted in the melting of more material on the surface. The thermal conductivity of
Ti6Al4V (6.7 W-m−1K−1) did not sufficiently help with the dissipation of heat, resulting
in the deep penetration of sparks and the formation of a rough surface. The increase
in pulse ON time from 50 µs to 75 µs resulted in a rougher surface with the highest Ra,
5.5 µm, as shown in Figure 6b, because of the discharge energy transfer and accumulation
of heat energy for a longer time period. However, a further increase in pulse ON time
resulted in a slight decrease in roughness to ~5.3 µm because of the promotion of an arcing
phenomenon during the spark generation against the long pulse duration [28]. During
arcing, the discharge column significantly expands because of a longer pulse duration. In
this regard, the discharge energy intensity and its amount in the interaction zone decrease
on the discharge spot [31]. This phenomenon promotes the formation of shallow craters,
resulting in low roughness values. However, in the cases of aluminum, brass, and copper,
the effect of arcing is not significant because of their thermal and electrical properties. On
the other hand, the rise in pulse OFF time from 25 µs to 100 µs resulted in a decrease in
roughness from ~7.1 µm to ~3.3 µm, showing a 53% reduction.

The interactive effect of the pulse current on the other variables is shown in Figure 7.
The effect of arcing is visible in Figure 7a, in which roughness decreased because of a further
increase in pulse ON time from 75 µs at an 8 A pulse current. With the increase in pulse
current from 8 A to 14 A, the spark intensity increased, and removed the arcing produced
because of the pulse duration. The highest roughness value, ~6.5 µm, was observed at both
extremes of the 14 A pulse current and 125 µs pulse ON time. The trend in pulse OFF time
in Figure 7b shows the effectiveness of the flushing attributes. A high pulse current resulted
in a poor surface finish at a low pulse OFF time. The higher current introduced increased
surface discharge energy, making deep craters and more melt volume. The flushing time
to remove the melt was not sufficiently synchronized, resulting in the melt’s redeposition
on the surface with altered properties. This recast layer had poor electrical and thermal
properties because of carbides generated from the decomposition of the dielectric [32].
Therefore, a balanced flushing duration with high sparking intensity is required to remove
material efficiently without creating surface defects. The above discussion concludes that



Materials 2023, 16, 4458 12 of 20

a low pulse ON time with a balanced OFF time is important in order to achieve a high
surface finish.
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The joint effect of polarity and pulse current on roughness is shown in Figure 7c. The
increase in pulse current from 8 A to 14 A with reverse polarity resulted in a significant
increase in roughness from ~3.5 µm to ~4.5 µm, showing a 28.5% increase. However, the
trend is revised in the case of positive polarity. At all pulse current levels, positive polarity
resulted in a rougher surface compared with reverse polarity. At an 8 A pulse current and
positive polarity, a roughness of ~5.6 µm was achieved, compared with reverse polarity,
which resulted in a roughness of ~3.5 µm.

The parametric trends of polarity with other variables are shown in Figure 8. For
all pulse ON time values, the reverse polarity has a reduced roughness range compared
with positive polarity, as shown in Figure 8a. With the increase in pulse ON time, the
roughness is increased because of high-energy transfer to the surface and insufficient
thermal conduction in the tool materials as a heat sink. Therefore, the plasma channel
expands longer, producing material erosion. Sharma et al. [14] machined Inconel 625 using
kerosene as a dielectric and copper as a tool material. The authors found pulse ON and
OFF time to be the most influential variables controlling surface roughness. The authors
showed correlations of high discharge energy associated with pulse current and ON time
with the formation of larger-dimensioned craters. Similar results are shown in Figure 8a,
which displays that high thermal energy transfer was primarily responsible for rougher
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surfaces and intense energy input. With the increase in pulse OFF time, the influence of
heat energy was reduced with effective flushing. Low pulse OFF time and positive polarity
produced the roughest surface, with Ra = ~7 µm.
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The magnitude of influence of pulse ON time is shown in comparison with pulse OFF
time (see Figure 8c). As is evident from the above discussion, the amount of discharge
energy is closely linked with the workpiece’s surface quality. The graphite produced high
roughness values in all conditions because of its melting point at 3300 ◦C. The copper and
brass produced comparable surfaces owing to their thermal conductivities and melting
points (copper, 940 ◦C; brass, 1083 ◦C). In the case of pulse ON time, the arcing effect
was dominant beyond a threshold with restricted enhanced energy transfer, as shown in
Figure 8a. The roughness was reduced with a decrease in pulse current associated with
the discharge energy and melt pool. Therefore, a synergistic approach is important in
establishing surface quality. Low roughness was obtained using positive polarity, 120 µs
pulse ON time, 100 µs pulse OFF time, an aluminum electrode, and an 8 A pulse current,
based on graphical compromise details.

4.2. Surface Evolution with Aluminum

A comprehensive analysis of the surface morphology of the machined surface was
carried out using a scanning electron microscope (SEM). The surface machined with the
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aluminum electrode (Figure 9) possessed small, shallow, and interconnected craters due
to the difference in thermal conductivity between the electrode (205 W-m−1K−1) and
the workpiece (6.7 W-m−1K−1). The shallowness of the craters was associated with the
low energy transfer to the workpiece compared with the electrode. Furthermore, voids
and redeposited debris were more prominent on the machined workpiece, owing to its
comparable properties (poor heat dissipation) (see Figure 9).
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The aluminum electrode has better thermal expansion compared with the workpiece.
The factor causing it to erode faster is the debris deposited on the surface at cooling. The
poor thermal conductivity of titanium alloy results in it resisting material erosion from
a workpiece that causes a greater density of small cracks [33]. Due to the higher surface
tension of the melted pool, a spherical module is also observed in microscopic images
(Figure 9). Small discrete craters are observed on the electrode tool due to the lower packing
density of the atoms on the surface and the lower melting temperature. Discharge energy
impacted the tool surface more due to the melting temperature and thermal conductivity
difference that modified the morphology of the workpiece surface in terms of cracks,
spherical modules, and redeposited debris [2]. Similarly, Hascalik et al. [34] reported that
fewer cracks, pores, and craters were developed during the machining of titanium alloy
compared with copper and graphite electrodes in a comparative study.

4.3. Surface Evolution with Brass

Figure 10 shows that the brass tool resulted in a different surface morphology com-
pared with all the other selected electrodes and machined surfaces of titanium alloy with
variable characteristics. The machined surface with the brass electrode possessed a higher
number of craters and cracks than that with the copper electrode. Higher surface roughness
was observed on the surface machined with Br than that machined with copper in terms
of Ra and Rt, which were 5.45% and 36.36%, respectively. Bhaumik et al. [5] determined
that Br has a lower thermal conductivity that causes it to develop a spark for a long time
and erode more material compared with copper electrodes, with a higher heat dissipation
rate during the machining of titanium alloy. The workpiece electrode showed greater and
deeper craters at specific positions. This is because of the poor thermal conductivity of the
brass electrode (Figure 10).

The impulsive and concentrated discharge at a specific position eroded the workpiece
surface and increased the MRR; however, this led to deeper craters on the workpiece surface,
and the same erosion was prominent on the tool interface. Micropores were observed on
the surface due to discharge concentration, flushing, and the removal of sucked air bubbles
which cause microporosity on the workpiece as well as on the tool interface, so the surface
finishing was compromised in the case of machining with a brass electrode due to the
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irregular machining pattern [35]. Senthilkumar et al. [36] evaluated that more residual
stresses are developed on the machined surface during the pulse ON and OFF time for
the extended machining time of brass electrodes compared with copper electrodes for the
machining of metal matrix composites.
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4.4. Surface Evolution with Copper

Small, interconnected craters, microcracks, spherical modules, melted drops, and
globules of debris are examined in the SEM micrographs of the titanium surface machined
with the copper electrode tool in Figure 11. Copper is known for its high thermal and
electrical conductivity, volumetric expansion, and structural integrity. The copper tool
was used because discharge is concentrated and distributed over the tool interface. This
phenomenon causes a large number of craters to appear on the machined surface. Melted
drops and globules of debris formed due to the copper tool’s high volumetric expansion,
inhibiting proper flushing and debris accumulation on the surface (Figure 11). Due to the
melting pool’s high tension, spherical modules were formed on the machined titanium
alloy [37]. The copper electrodes generated more air bubbles and a thick recast layer
with many cracks, voids, and redeposited pieces of debris compared with the graphite
electrodes due to the copper electrodes’ high thermal conductivity and less sintered nature.
Chen et al. [38] investigated a similar process, in which a copper electrode was used to
machine titanium alloy (Ti–6A1–4V) in relatively less intense conditions.
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4.5. Surface Evolution with Graphite

The SEM micrograph in Figure 12 shows the surface morphology of the titanium alloy
machined with the graphite electrode. The machined surface contains large, deeper craters
and globules of debris. A proposed reason for this is the higher melting temperature, at
3300 ◦C, of the graphite electrode than that of the titanium alloy at 1660 ◦C, owing to
higher melting temperature discharge energy putting more impact on the electrode with
the lowest melting point. Due to this, a thick recast layer was generated on the workpiece
surface, but with fewer microvoids. Over the cooling and flushing periods, debris globules
were attached to the workpiece surface. Micropores and voids are observed less on the
workpiece surface because graphite is a sintered compact material. Carbon black was
embedded in the workpiece surface during machining, reducing its porosity (Figure 12).
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Figure 12. Microscopical analysis of machined surface with graphite electrode at 8 A pulse current,
125 µs pulse ON time, 50 µs pulse OFF time, and − polarity; (a) tool electrode, (b,c) workpiece surface.

From the interface of the graphite electrode, it can also be inferred that much less tool
wear was observed due to the small and compact particles of the graphite electrode and
the high melting point, and the overlapping of carbon content that ultimately reduced the
tool wear. The surface machined with the graphite electrode showed the highest surface
roughness of all those machined with the selected electrodes, with an appropriate material
removal rate. In contrast, aluminum showed the lowest surface roughness and material
removal rate [39]. This process science is in line with Lee and Li [40], who evaluated the
impact of three electrodes: copper–tungsten, graphite, and copper. The graphite electrode
machining showed higher MRR, higher surface roughness, and fewer cracks on the tool
electrode surface than the copper and copper–tungsten electrodes due to its high thermal
conductivity and melting point.

4.6. Tribological Analysis of Machined Surfaces

The tribological tests characterized the friction force between the Ti6Al4V machined
surface and the reference material. At the start of the test, the peaks and valleys were
smoothened, which resulted in a higher friction force. However, the force decreased with
time and stabilized at a certain level. The particular behavior and stabilized values are
used for comparison, and the color-contrasted surface micrographs at the end were used
for wear mechanism analysis. In Figure 13, micrographs are presented with wear scars
marked with red lines. The light blue color shows the intensity of the wear mechanisms.
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Figure 13. Microscopical analysis of machined surface with graphite electrode at 8 A pulse current,
125 µs pulse ON time, 50 µs pulse OFF time, and − polarity.

The surface machined with graphite had deep craters where the friction force suddenly
decreased at the start (Figure 12) due to plastic deformation and smoothening of the surface.
The wear tracks are highlighted in the micrograph and the deep craters are enveloped in red.
The friction force at the end of the cycle was ~30 N. Deep sliding marks were found for the
surface generated with aluminum, and the surface was smoothened with time. At the end
of the cycle, it showed a minimum friction force of ~25.5 N compared with others. Moreover,
the brass (~28 N) and copper (~27.5 N) resulted in similar magnitudes at the end of the
test and comparable surface properties. A smoothening effect was experienced at a higher
roughness, which also affirmed the higher friction force (25 N to 30 N). The wear tracks
show scratches and shallow craters along with the plastic flow and severe deformation
in terms of abrasion. A similar wear mechanism is observed in the literature during
the tribological characterization of electric discharge machined surfaces. For instance,
Adnan et al. [35] compared friction forces under different roughness conditions on AISI
304L steel, with the result that friction forces (1.5 N to 6.5 N) were higher for surfaces having
high roughness, which are prone to being deformed because of smoothening against a
20 N load. The electric discharged machined surface has a (random-crater-patterned) recast
layer of significantly higher hardness than the base material. Mughal et al. [8] carried
out a detailed chemical-based surface characterization that showed the material transfer
from the tool electrode, workpiece, dielectric, and powder (SiC) during the machining of
Ti6Al4V. The authors discussed the improvement in surface hardness. Therefore, the current
study used SiC powder to improve the surface’s hardness and control the surface defects,
contributing to its tribological performance. The joint effect of roughness and hardness in
the case of EDMed surfaces influences the wear performance. A similar understanding is
discussed by Usman et al. [41] with the support of Archard’s law of abrasive wear. This law
explains the mechanistic degradation of surfaces as follows: W = kps/H, where W = total
volume of produced wear, s = sliding distance, p = normal pressure, k = dimensionless
wear coefficient, and H = surface hardness. On the other hand, Philip et al. [42] evaluated
different heat treatments on Ti6Al4V and carried out tribological testing. The friction force
was observed to vary from 30 to 50 N against a 0 to 200 N load. As per these conclusions,
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the authors recommended better alloy performance against a 100 N load and commented
on the improvement in wear performance because of heat treatment and surface chemistry.
The electric discharge machining process significantly improved the surface properties,
resulting in superior tribological performance. The wear mechanisms were found to be in
line with the literature.

5. Conclusions

This study was carried out to investigate the potentiality of electric discharge machin-
ing of Ti6Al4V for tribological applications in the biomedical industry. A wide range of
process parameters, including four types of electrodes, were evaluated to quantify their
influence over different surface parameters. Based on the thorough experimental results,
the following conclusions are drawn:

1. With the increase in pulse current to 14 A, the roughness increased to ~4.6 µm,
showing a 33% increase using the aluminum electrode.

2. The increase in pulse ON time from 50 µs to 125 µs for the graphite tool resulted in a
roughness increase from ~4.5 µm to ~5.3 µm, showing a 17% rise. The increase in ON
time enhances the energy transfer because of increased sparking time and melts more
material on the surface.

3. The surface machined through the aluminum electrode possessed small, shallow, and
interconnected craters.

4. Copper electrodes generated more air bubbles and a recast layer with many cracks,
voids, and redeposited pieces of debris compared with graphite electrodes due to the
copper electrodes’ high thermal conductivity and density.

5. The machined surface contains large, deeper craters and globules of debris. The
origin of these features is the higher melting temperature, at 3300 ◦C, of the graphite
electrode than that of the titanium alloy at 1660 ◦C.

6. The hyperparameter tuning of the inference system during training was carried out
based on the MAPE. The lowest error-producing architecture was chosen, resulting in
a 1.78% MAPE, significantly less than 5%.

7. A smoothening effect was experienced at higher roughness values (such as was the
case with the graphite electrode), which also affirmed higher friction forces (generally
ranging from 5.8 N to 8 N).

8. The wear tracks showed scratches and shallow craters along with the plastic flow and
severe deformation in terms of abrasion.
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