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Abstract: Ceramic materials are used in various industrial applications, as they possess exceptional
physical, chemical, thermal, mechanical, electrical, magnetic, and optical properties. Ceramic struc-
tural components, especially those with highly complex structures and shapes, are difficult to fabricate
with conventional methods, such as sintering and hot isostatic pressing (HIP). The use of preceramic
polymers has many advantages, such as excellent processibility, easy shape change, and tailorable
composition for fabricating high-performance ceramic components. Additive manufacturing (AM) is
an evolving manufacturing technique that can be used to construct complex and intricate structural
components. Integrating polymer-derived ceramics and AM techniques has drawn significant at-
tention, as it overcomes the limitations and challenges of conventional fabrication approaches. This
review discusses the current research that used AM technologies to fabricate ceramic articles from
preceramic feedstock materials, and it demonstrates that AM processes are effective and versatile
approaches for fabricating ceramic components. The future of producing ceramics using preceramic
feedstock materials for AM processes is also discussed at the end.

Keywords: ceramic material; preceramic polymer; feedstock material; additive manufacturing;
3D printing

1. Introduction

Ceramic materials are a diverse group of nonmetallic compounds with a long and fas-
cinating history dating back to 25,000 BCE [1]. Since then, they have played essential roles
in the evolution and development of human civilization [2]. Because of their strong atomic
bonding nature (ionic or covalent bonding), ceramic materials possess exceptional physical,
chemical, thermal, mechanical, electrical, magnetic, and optical properties and exhibit a
wide range of applications in various industries, including aerospace, automotive, defense,
infrastructure, energy, healthcare, consumer goods, and sensor [3]. Commonly, ceramic
materials can be divided into two main categories: traditional and advanced (or technical).
Traditional ceramics are those made from naturally occurring materials, such as clay and
sand [1,4]. In contrast, advanced ceramics are typically synthesized using advanced man-
ufacturing techniques, and examples include silicon carbide (SiC), silicon nitride (Si3N4),
boron nitride (BN), aluminum oxide (Al2O3), zirconium oxide (ZrO2), composites, and
many others [4]. With a precisely controllable production process for manipulating the com-
position and, thus, the microstructure, advanced ceramic materials can have exceptional
properties highly desirable for widespread applications far beyond those of traditional
ceramic materials [5]. Therefore, advanced ceramic materials are among the most important
materials demanded in modern industries. For example, the core components of insulators
for hypersonic aircraft, tissue engineering, and micro- and nanoelectromechanical systems
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heavily rely on advanced ceramics [6–10]. Recently, some reports indicated that the global
advanced ceramic market is expected to grow at a compound annual growth rate (CAGR)
of 5.4% from 2022 to 2032 [11].

The increased need for advanced ceramic materials and their functional products
requires advanced manufacturing technologies to meet specific applications. However,
high-quality ceramic materials are often challenging to fabricate because of their inherent
physical and chemical properties. Unlike metal or polymer, ceramic materials usually have
low toughness and ductility because of their atomic bonding nature, making them more
prone to cracking and fracturing when subjected to mechanical or thermal stress or impact
during manufacturing [12]. In particular, small defects or cracks inside ceramics can propa-
gate and cause sudden failure of the product [13]. Many attempts have been conducted
to improve the quality and properties of ceramic products, especially the development of
ceramic matrix composites (CMCs) [14].

In addition to exploring and developing advanced ceramic materials, there is a grow-
ing need to fabricate these materials into intricate geometric structures that meet strict
performance criteria and functional requirements [15]. Ceramic materials usually have a
high hardness and high melting temperature, increasing the challenges to machine or shape
their final geometry and dimensions. Therefore, the successful fabrication of high-quality
advanced ceramic materials and their products necessitates the adoption of appropriate
advanced manufacturing technologies for various applications. Numerous advanced man-
ufacturing technologies for ceramics have been reported in the literature [16–18]. Evans
proposed a classification scheme that groups these technologies into five distinct categories:
(i) casting/solidification processing; (ii) deformation processing; (iii) machining/material
removal; (iv) joining; and (v) solid freeforming, as shown in Figure 1 [19,20]. Most con-
ventional fabrication methods for ceramic materials fall into the first four categories. Solid
freeforming encompasses a range of advanced fabrication processes in which the solid
structure and shape are created by depositing materials point by point, line by line, or layer
by layer [19].
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Figure 1. Illustration of the manufacturing technologies for ceramics.

Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is one
kind of solid freeforming process that involves adding material to create physical objects
layer by layer. AM is an innovative manufacturing technique and has become an integral
part of Industry 4.0, representing the Fourth Industrial Revolution characterized by the
integration of automation, analysis, data exchange, and process through innovative tech-
nologies in manufacturing processes [21]. AM was first developed in the 1980s [22]. Since
then, it has undergone fast growth, particularly over the last decade. This surge in growth
can be attributed to the rapid development of advanced technologies [23,24]. Figure 2a
presents the scientific publication record related to AM over the last three decades. The
data were accessed from Web of Science with the searched keywords “additive manufac-



Materials 2023, 16, 4636 3 of 27

turing” and “3D printing” in the selected “Topic” options. AM has numerous advantages
compared to other manufacturing technologies, such as the flexibility to modify designs,
accommodate complex geometries, save materials, shorten production time for prototypes,
and reduce costs [25–27]. As a result, AM has been adopted for product fabrication us-
ing different types of materials, including polymer, metals, ceramics, and composites for
applications in various industries, such as aerospace, automotive, defense, infrastructure,
healthcare, consumer goods, toys, art, and food [28,29]. It is reported that the global 3D
printing market size is projected to grow at a CAGR of over 20% for the next decade [30].
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Figure 2. Annual publication records identified in the Web of Science database: (a) search results
using the topics “additive manufacturing” or “3D printing” between 1987 (first record) and April
2023; (b) search results using the refined keyword “ceramic” in (a).

As mentioned previously, the fabrication of ceramic products can be challenging
because of their low toughness and ductility, high hardness, and susceptibility to defects
or cracks. AM has shown great potential in addressing these limitations and unlocking
new possibilities in the design and fabrication of ceramic components. Following the
development trend of AM-related research, AM for ceramic materials has also experienced
similar rapid development, as shown in Figure 2b [31–33]. Multiple AM methods can be
used to produce ceramic materials, which can be classified based on the type of feedstock
materials or the AM techniques adopted. The AM techniques for ceramic materials are
discussed in later sections. Based on the type of feedstock materials, ceramic powder
with polymer (i.e., binder) and preceramic polymers (with or without fillers) are the two
most popular materials for AM processes [34–40]. In detail, AM processes with ceramic
powder and polymer involve mixing ceramic powders with binder polymers for the 3D
fabrication of solid objects. Once printed, objects usually undergo a sintering process to
remove the polymer and fuse the ceramic powder and, finally, the solid ceramic objects are
produced [41]. The AM processes with preceramic polymers involve feedstock materials
that usually consist of organic compounds and possess excellent processability, which
allows them to be easily shaped and molded into desired geometric structures. After
pyrolysis, the AM-fabricated preceramic physical objects will be further converted into
functional ceramic components [42]. This kind of AM utilizing preceramic polymers for
fabricating ceramic materials can be grouped into one of the polymer-derived ceramics
(PDCs) processes.

AM processes have been adopted for fabricating advanced ceramic materials, such
as CMCs, particularly AM processes using preceramic polymers, because of their excel-
lent processibility for forming complex structures and shapes, as mentioned earlier [41]
The CMCs are composites with reinforcement material embedded in a ceramic matrix.
CMCs can overcome the previously discussed ceramic limitations and offer improved
properties because of the synergistic combination of properties from the reinforcement
and matrix materials [43,44]. Therefore, CMCs have many critical applications and are
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highly demanded in various fields, including aerospace, defense, energy and power, elec-
trical and electronics, and more [43]. A recent report indicated that the global ceramic
matrix composites market size was expected to grow at a CAGR of 12.8% from 2023 to
2030 [45]. Typically, reinforcement materials (also known as fillers) in CMCs have one or
more superior properties than the matrix. Combining a ceramic matrix with fillers achieves
enhanced properties that exceed those of the individual constituents alone [46]. CMCs
can be classified according to the reinforcement material’s type and dimension/shape.
Composites, including reinforcement materials at the micro size or larger, are usually
called CMCs. For example, carbon fibers, SiC fibers, or microscale particles have been
extensively used to fabricate CMCs for aerospace applications [39,40]. Composites using
zero-, one-, or two-dimensional nanomaterials as reinforcements are well known as ceramic
matrix nanocomposites (CMNCs) [47]. For example, nanoparticles (such as Y2O3, Al2O3,
SiC, Si3N4, and nanodiamonds); nanotubes and nanofibers (such as carbon nanotubes,
nanofibers, and SiC nanofibers); and nanosheets (such as graphene, boron nitride, and WS2)
have been used as reinforcement materials to fabricate CMNCs with improved mechanical,
thermal, or electrical properties [48–54].

AM processes using preceramic feedstock materials have been demonstrated to be
effective and versatile approaches for manufacturing functional advanced ceramic materials
with complex geometric structures. They have been investigated for various applications,
especially in the last decade [3,55]. However, the use of preceramic polymers as a start
for 3D printing is still developing. Therefore, it is necessary to review the current state of
various AM process technologies for fabricating ceramic components using preceramic
feedstock materials.

2. Preceramic Feedstock Materials for Additive Manufacturing

Preceramics are a type of material that serve as ceramic precursors and can be con-
verted to ceramics after pyrolysis in an inert or reactive atmosphere [56]. Ceramic materials
formed in this way are known as polymer-derived ceramics, or PDCs, first discovered in
the 1960s [57]. PDCs can exhibit a wide range of compositions depending on the makeup
of preceramic polymers, such as silicon-, aluminum-, and boron-containing polymers [58].
Well-known preceramic polymers contain a primary Si backbone and usually consist of C, O,
N, B, and H atoms, such as polysiloxanes, polysilazanes, and polycarbosilanes [59]. Figure 3
shows the common Si-based polymers. These kinds of silicon-based preceramic polymers
can be converted to various types of ceramics, such as silicon carbide (SiC), silicon oxide
(SiO2), silicon oxycarbide (SiOC), and silicon carbonitride (SiCN), after pyrolysis [60–63].
Compared to ceramic powders, preceramic polymers offer much more flexibility for ef-
fectively fabricating ceramic components with complex geometric structures and shapes
using a wide range of processes, such as casting, molding, and AM [3,64]. Preceramic
polymers can have different configurations/microstructures, which can affect the composi-
tion, microstructure, porosity, yield, and properties of fabricated ceramics [65]. Common
silicon-based preceramic polymers, such as polycarbosilanes, polysiloxanes, polysilazanes,
and polyborosilazanes, have already been adopted for AM processes to produce ceramic
components and will be discussed in the following sections.

3. Additive Manufacturing for Preceramic Polymers
3.1. Additive Manufacturing Processes

Currently, numerous kinds of 3D printing systems are available on the market. Ac-
cording to the American Society for Testing and Materials (ASTM), AM processes can be
classified into seven categories: vat photopolymerization (VP), material extrusion (ME),
powder bed fusion (PBF), material jetting (MJ), binder jetting (BJ), directed energy deposi-
tion (DED), and sheet lamination (SL), as shown in Figure 4 (upper) [66]. All seven AM
methods are layer-by-layer printing processes to fabricate solid structural components. The
main differences between these techniques are feedstock material form and how they are
used to form layers. Briefly, VP uses liquid photopolymers that are selectively cured by
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light. With ME, materials are extruded from a nozzle or orifice and form a solid structure,
and as the name implies, PBF uses a material powder bed where powder is selectively
fused together. In MJ, liquid material is selectively jetted from a print head to build parts.
Different from MJ, BJ utilizes a liquid bonding agent to selectively deposited to bind pow-
ders together. With DED, powder or filaments are thermally fused together when they are
being deposited. In SL, material sheets are bonded together to form layered structure [66].
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Even though there are seven AM process categories, their principles are similar. Typi-
cally, any AM process involves three primary steps (Figure 4 (lower)): (i) a digital model
design—a process in which computer-aided design (CAD) software is utilized to create a
3D digital model; (ii) 3D printing—a manufacturing process in which the digital model
is transferred to a 3D printer, and the physical object is printed using various parameters;
and (iii) post processing—a process that encompasses activities, such as support removal,
cleaning, surface finishing, heat treatment, or other necessary steps to ensure that the final
product meets the desired specifications.

3.2. Additive Manufacturing Processes for Preceramic Polymers

As discussed earlier, any AM process involves three primary steps (Figure 4). Differ-
ent AM processes may also require additional steps to complete the fabrication process.
For example, powder mixing before printing is involved in fabricating carbon nanotube-
reinforced metal matrix composites using a laser PBF process [67]. Similarly, the AM
process for preceramic polymers involves other steps before the final ceramic products are
printed. Since the use of preceramic materials as feedstocks for fabricating ceramic products
is still developing, commercially available preceramic polymers specifically designed for
AM are rarely available on the market. Therefore, other steps, including feedstock material
preparation, are needed. Preparing the material involves mixing the preceramic polymer
with additives, such as coupling agents like photo- or thermal initiators or reinforcement
materials, to create a printable mixture of starting material. Once prepared, the material is
loaded into a 3D printer to build solid parts that are called green parts. Here the “green”
means the solidified preceramic component after printing and before pyrolysis. After
printing, the green objects are post-cured to remove any remaining uncured resin and
ensure its structural stability and integrity. This is usually conducted by exposing the object
to light or heat, depending on the coupling agents used. The next step is pyrolysis, where
the green objects are heated to a specific temperature under an inert or reactive atmosphere
to convert them into ceramic objects. Finally, the pyrolyzed objects may be subjected to
post-processing (e.g., polishing and coating) or other treatments, such as chemical vapor
infiltration (CVI) and polymer infiltration and pyrolysis (PIP) to improve the appearance
and performance [68,69]. A typical AM process for manufacturing ceramic components
using preceramics is illustrated in Figure 5. Theoretically, all seven AM methods can be
used to produce ceramic components. However, only a few of them have been adopted for
use with preceramic polymers, and they are discussed in the following sections.
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3.2.1. Vat Photopolymerization

As mentioned earlier, VP is an AM process in which light-sensitive liquid photopoly-
mers in a vat are selectively cured with a light source layer by layer to create a desired solid
structure. VP can be a bottom-up or top-down 3D-printing approach depending on part
position on the build plate and the light source [70]. The most common VP are stereolithog-
raphy (SLA) and digital light processing (DLP). Their main difference is how the photo
resin is cured with a light beam. With SLA, a focused light beam (usually a UV laser) is
used. The laser is directed by a set of mirrors to be precisely focused on the resin, curing it
layer by layer to create the final solid object. SLA 3D printing is particularly beneficial for
creating high-precision parts with intricate details. Figure 6a shows a schematic diagram of
the SLA printing process. With DLP, the light beam is expanded like a projector to cure one
layer at a time, forming a layer much faster than SLA and decreasing the print time. In the
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current DLP systems, a liquid crystal display (LCD) projector is widely used as the light
source to achieve high-resolution illuminations on the photoresin [71]. Figure 6b shows an
example of a bottom-up DLP process using an LCD projector. DLP is a more economical
3D printing technique compared to SLA and, therefore, has been adopted for most VP
processes.
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Other advanced VP processes include continuous liquid interface production (CLIP)
and two-photon polymerization (2PP) [72–75]. CLIP is a proprietary process where a
light source selectively cures a photosensitive liquid resin that is continuously flowing
during printing. Unlike other VP processes, a UV transparent dead zone is created by an
oxygen-permeable window (oxygen-impaired photopolymerization region) between the
light projector and the resin layer that needs to be cured [74,76]. The continuous printing
nature of CLIP is key to printing layerless parts compared to other VP processes [77].
However, the lateral resolution of CLIP is usually constrained because of the limited pixel
size of the LCD light [76]. Recent research has shown improved lateral resolution through
a combination of the CLIP technology with a reduction lens optics system and an in-line
camera system [78]. Hsiao et al. reported printed components with single-digit micrometer
lateral resolution using this novel approach [78]. 2PP involves a two-photon absorption
(TPA) method to initiate photopolymerization. This nonlinear optical absorption process
can greatly improve lateral and vertical resolutions at the nanoscale (100 nm or less), as
photocuring mainly occurs at the laser focal spot, and any laser light out of the focal
point will not initiate photocuring [79]. 2PP has been used to fabricate microdevices and
sensors [80,81].

VP has been used to print ceramic components using preceramic polymers. Compared
to other AM techniques, VP has the advantage of manufacturing ceramic components
using preceramic material. As mentioned earlier, all AM methods follow three primary
steps: creation of a digital 3D model, 3D printing, and post-processing. Additional steps
may be involved depending on the type of AM process used. VP includes preparing
photosensitive preceramic polymers, fabricating a green component layer by layer using an
appropriate process (i.e., SLA, DLP, CLIP, or 2PP) and post-processing the green component
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with pyrolysis and other necessary treatments. Material preparation involves mixing the
preceramic polymer with specific photoinitiators (PIs) and crosslinkers. PIs are compounds
that can convert light energy into chemical energy by forming free radicals or cations
when exposed to light radiation. These free radicals and cations will enable the molecular
chains of preceramics to crosslink by activating vinyl groups and result in hardened and
solidified structures [82]. The addition of crosslinkers to preceramic polymers can react
with the molecular chains and promote the efficiency and degree of crosslinking during
photopolymerization [83].

The choice of photoinitiators plays an essential role in vat photopolymerization where
selection depends on the specific resin and printing conditions [84]. Literature search results
indicate that diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO), ethyl phenyl(2,4,6-
trimethylbenzoyl)phosphinate(TPO-L), and phenylbis(2,4,6-trimethylbenzoyl)phosphine
oxide (BAPO) are commonly used as photoinitiators for preceramic materials [85–95], and
Figure 7a illustrates their chemical structures. TPO, TPO-L, and BAPO belong to the Norrish
type I category, which can effectively generate free radicals through homolytic cleavage
of their C-O or C-N bonds upon exposure to light radiation [82]. They can efficiently
facilitate polymerization of different monomers and preceramic polymers to form a network
structure [96,97]. Figure 7b shows a typical photocuring process.
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In addition to the three main components (i.e., preceramic polymers, crosslinkers, and
photoinitiators), other chemical additives are often incorporated into the photocurable
resins to enhance print quality. To obtain precise geometrical structures with intricate
features, free radical inhibitors and UV absorbers are typically added to absorb excess
light and prevent unintended curing during vat photopolymerization [98,99]. For instance,
organic dyes, such as Sudan III or Sudan Orange G, which function as UV absorbers, were
used to create highly complex SiOC ceramic components [100,101].

To improve the properties of final ceramic components, reinforcements (also called
fillers) can be added to resin formulations to increase mechanical, thermal, electrical, optical,
or magnetic properties [102–104]. They can also significantly reduce shrinkage of printed
parts after pyrolysis if the appropriate amount of is used [105,106]. Fillers can be inert
or active depending on whether they are synthesized externally before being added to
the matrix or synthesized in the matrix during the composite fabrication process [107].
Examples include particles, tubes, fibers, rods, or sheets with various dimensions [108,109].
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A wide range of photocurable ceramic precursors have been explored for the formation
of crosslinks. However, only a few are commercially available for vat photopolymerization.
For example, Tethon 3D developed several photocurable ceramic resins for digital light
processing that include Porcelite®, Vitrolite®, and alumina [110]. To expand the options
available for versatile preceramics and enable practical fabrication of ceramics, extensive
research has been conducted to customize the chemical compositions of photocurable
formulations. Some representative preceramic materials using different vat photopoly-
merization processes are presented in Table 1. In the sections that follow, we discuss
manufacturing ceramic components using preceramic resins using stereolithography (SLA),
digital light processing (DLP), and two-photon polymerization (2PP).

Table 1. Representative preceramic materials using different VP processes to make ceramics.

VP Processes Preceramic Feedstock Material Composition Ceramic Ref.

SLA
Vinylmethoxysiloxane + PEGDA + SiC whisker SiCw/SiOC [99]

Multifunctional acrylic + Silicone acrylate + SiO2 powder SiO2 [106]

DLP

PSZ + VHPCS + PETA + HDDA + CNT CNT/SiCN [111]

PVSZ + 2-Isocyanatoethyl methacrylate + SiO2 NP SiO2/SiCN [112]

PSZ + TMPTA + Si3N4 powder + Si3N4 whisker Si3N4/SiCN [113]

Polysiloxane (RC 711) + Al2O3 powder Mullite [114]

Epoxy-acrylic siloxane (self-synthesized) + Hydroxyl silicone oil SiOC [115]

Hydroxysiloxane + Al2O3 nanopowder Mullite [88]

Epoxy-acrylic siloxane (self-synthesized) + ZrO2 micro powder + ZrO2 nano powder ZrSiO4 [89]

Polysiloxane + HDDA + TMPTA + Phenolic resin SiOC [97]

TEOS + APTMS SiO2 (transparent) [115]

PVSA + HDDA + TMPTA + 3-(Trimethoxysilyl) propyl methacrylate SiOC [86]

Zirconium n-propoxide + Methylacrylic acid +TMPTA ZrOC [116]

Polyborosilazane + Acrylate resin SiBCN [117]

2PP
Polysiloxane (RC 711) SiOC [118]

Allylhydridopolycarbosilane SiC [119]

(i) Stereolithography (SLA)

SLA is a vat photopolymerization process that uses a focused laser beam to selectively
cure the resin and form a solid structure layer by layer. Eckel et al. prepared a UV-curable
siloxane resin by mixing (mercaptopropyl)methylsiloxane, vinylmethoxysiloxane, a UV
photoinitiator, a free radical inhibitor, and a UV absorber. An SLA 3D printer was used
to build complex SiOC ceramic structures [98]. The results demonstrated that preceramic
polymers could be used as starting materials to produce ceramics that were difficult to
fabricate using conventional powder sintering techniques.

Brinckmann et al. prepared a preceramic resin by mixing vinylmethoxysiloxane
(VMS) preceramic polymer, co-monomer poly(ethylene glycol)-diacrylate (PEGDA), a
photoinitiator, and a free radical inhibitor together [99]. To improve the quality of the final
product, 0.7 wt.% of SiC whiskers (SiCw) was added as a filler. After printing with an SLA
3D printer, solid green components were pyrolyzed at 1000 ◦C into SiC whisker-reinforced
amorphous SiOC ceramic composites, as shown in Figure 8. The SiC whiskers not only
improved the quality of the printed part by effectively preventing over-polymerization
but also decreased volumetric shrinkage of the final product by 5% compared to samples
printed without SiC whiskers. Mechanical tests showed that hardness increased by 12%
compared to unreinforced SiOC composite [99]. Similarly, Corcione et al. prepared a UV-
curable preceramic containing multifunctional acrylic and silicone acrylate monomers [106].
Silica powder (~5 µm in diameter) was added to the resin mixture to form a UV-curable
preceramic suspension. The suspension was used to print high-strength silica molds for
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casting aluminum using an SLA process. This research indicated that SLA 3D printing is a
promising process for producing molds with complex geometries.
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Reference [99] with permission. Copyright 2018 John Wiley and Sons.

(ii) Digital Light Processing (DLP)

Stereolithography and digital light processing are suitable for printing ceramic compo-
nents using preceramic polymers. However, DLP has some advantages over SLA, including
a lower cost for 3D printers, faster printing time, and easy system maintenance. Hazan
et al. fabricated SiC-rich ceramic parts using a DLP process [83]. In this research, two
different commercially available polycarbosilane (PCS) preceramic liquid polymers, allylhy-
dridopolycarbosilane (AHPCS) and allylmethylhydri-dopolycarbosilane (AMHPCS), were
studied. In addition, two multifunctional (meth) acrylate monomers (1,4-butanediol diacry-
late (BDDA) and 1,6-hexanedioldiacrylate (HDDA)) were also investigated as crosslinkers
in the preparation of preceramic materials. Figure 10a shows the printed and sintered
ceramic examples. The results showed that the quality of the 3D printed SiC-rich com-
plex structures could be tailored by the types and ratios of crosslinkers and preceramic
polymers (Figure 10b) [83]. Zanchetta et al. fabricated dense and crack-free SiOC ceramic
microcomponents with cellular geometries from an engineered photosensitive polysiloxane
(SILRES® MK) precursor using a DLP process after pyrolysis [120].

Different reinforcements were also investigated to develop preceramics to produce
high-performance ceramic components using DLP. Huang et al. formulated a preceramic
mixture comprising polysilazane, trimethylolpropane triacrylate (TMPTA, a photosensitive
resin monomer) and TPO (a photoinitiator) [113]. Two forms of inert Si3N4 fillers (particles
and whiskers) were introduced to the resin mixtures. The resulting formulation was then
loaded into a DLP printer to produce solid green components, which were subsequently
converted to SiCN ceramic matrix composite after pyrolysis. A comparative study revealed
that the DLP-printed ceramic matrix composite components exhibited reduced shrinkage,
weight loss, and improved mechanical properties compared to their counterparts without
Si3N4 fillers [113]. Precisely tailoring the percentage of reinforcement in the preceramic is
critical to achieve successful prints. Excessive fillers may lead to decreased quality of the
final product with increased porosity and reduced mechanical properties, primarily due to
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decreased continuity of the matrix phase [113]. Recently, scientists from the same research
group introduced another photosensitive preceramic formulation by mixing polysilazane,
vinyltrimethoxysilane, aliphatic urethane acrylate, TPO, Sudan III, and a certain amount of
α-Si3N4 nanopowder (0–40 wt.%) as an inert filler to make solid structures using DLP [85].
The flexible 3D printed green structures could be transformed into various shapes, and
after pyrolysis, they yielded ceramic nanocomposites while retaining the initial shapes and
structures, as presented in Figure 10. These results showed that the Si3N4 filler not only
decreased linear shrinkage and increased ceramic yield but also enhanced the mechanical
properties of the final product.
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Introducing active fillers is another strategy to reinforce ceramic composites. With this
approach, known as in-situ CMC, a chemical reaction occurs between the active filler and
the matrix during pyrolysis and forms robust inert reinforcements with strong interfacial
bonding with the matrix [107]. Cheng et al. discussed 3D printing of ceramics using a
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vinyl polysilazane-based photocurable resin mixed with varying amounts of aluminum
flake (0.2–0.6 wt.%) as the active filler. After pyrolysis at 1300 ◦C, printed solid green
parts were converted to Al2O3-reinforced CMCs. Mechanical property tests showed that
printed Al2O3-reinforced CMCs (0.6 wt.% of Al flake in the preceramic precursor) had
an approximate increase of 15% for elastic modulus and a ~75% increase for indentation
hardness compared to the ceramics produced from Al-free precursors, as illustrated in
Figure 11 (upper). This research indicated that adding a small amount of Al flake slowed
crack generation. Mechanistically, Al flake gradually reacted with the oxygen contained
in the TMPTA reaction monomer during pyrolysis and was later converted to hollow
lamellar Al2O3 (Figure 11 (lower)). The authors believe that Al2O3 acted in two roles
in the production process for high-quality ceramic components: (1) providing a channel
for releasing gaseous products and (2) mechanically strengthening final products [121].
Recently, Al-Ajrash et al. developed a photocurable resin to make carbon fiber-reinforced
silicon carbide composites [122]. The resin included AHPCS polymer and reactive monomer
HDDA. The resin was mixed with electrospun polyacrylonitrile (PAN) nanofibers (2 or
5 wt.%) that served as carbon fiber reinforcement in the composite after pyrolysis. With
the addition of active PAN fiber fillers, carbon fiber-reinforced CMCs were obtained with
improved mechanical properties compared to counterparts without carbon fibers. Figure 12
illustrates the distribution of carbon fibers in the SiC composites and the mechanical test
results for DLP-printed carbon fiber-reinforced CMCs [122].
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(iii) Two-Photon Polymerization (2PP)

2PP is an advanced vat photopolymerization process used to produce high-resolution
and precision 3D structural components for applications such as micro-electro-mechanical-
system (MEMS) devices [119,123,124]. Compared to polymers commonly used for microde-
vices, ceramics exhibit superior mechanical properties, chemical stability, and thermal resis-
tance [125,126]. Harnessing the distinct capabilities of 2PP printing, ceramic 3D microstructural
components have been produced with preceramic materials [127]. Park et al. developed
a photocurable resin, including AHPCS and organometallic (η5-cyclopentadienylmethyl)-
trimethylplatinum (CpPtMe3), which is a multifunctional catalyst for fabricating 3D ceramic
structures with near-zero shrinkage using 2PP [119]. Researchers found that adding CpPtMe3
could initiate dual crosslinking (photocuring and thermal curing), resulting in dense SiC
ceramic microstructures with near-zero shrinkage after pyrolysis [119].

Although 2PP enables high-resolution and accurate 3D printing capabilities, the process
can be time consuming, especially for large-scale components [123]. To address this challenge,
Schmidt et al. proposed a hybridization approach combining DLP and 2PP to facilitate
rapid fabrication of multiscale dense and crack-free SiOC ceramic hybrid components using
resins containing acrylate polysiloxanes [123]. With this approach, DLP was used to print 3D
structures with millimeter size, and 2PP was utilized to create microstructures at a submicron
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size scale. Figure 13 shows as-printed and pyrolyzed solid structures containing microscopic
woodpiles printed with 2PP on macroscopic rods prefabricated with DLP.
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with permission. Copyright 2019 Elsevier.
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3.2.2. Material Extrusion (ME)

Starting materials for ME can vary in form (e.g., filaments, granules/pellets, and
pastes). Two common ME techniques include fused deposition modeling (FDM) and direct
ink writing (DIW). FDM, also called fused filament fabrication (FFF), is the most widely
adopted 3D printing method among all the available AM techniques worldwide. In this
process, a flexible filament-based thermoplastic material passes through a hot nozzle and
is converted to a molten state. It is then selectively deposited onto a build plate to create
a solid 3D structure layer by layer. Figure 14a shows a schematic of the FDM process. In
contrast, direct ink writing uses viscous pastes or granules/pellets that pass through a
nozzle or orifice and are deposited on a build platform to form a 3D solid object. Depending
on how feedstock material is extruded, DIW can be divided into three categories: screw
extrusion-based, piston extrusion-based, and gas-assisted extrusion-based DIW systems, as
shown in Figure 14b.
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Material extrusion is an important 3D printing process for fabricating ceramic compo-
nents using various feedstocks [128]. Using preceramic resins has particularly drawn atten-
tion because of the versatile forms of precursors, including solid filaments or pastes [129–131].
Solid filament containing preceramics can soften when heated and harden upon cooling,
allowing for subsequent layer-by-layer deposition and solidification. Typically paste-form
materials are used with DIW, where their rheological properties play a crucial role in
printing high-quality components and ensure that prints maintain their solid structure and
integrity during and after the fabrication process [132]. Solid-phase preceramic polymers,
such as powders or those with high viscosity, may require solvents or other lower-viscosity
materials to improve flow properties [102,133,134]. On the other hand, if the viscosity of the
preceramic polymer is too low, particles, fibers, or other high viscous resins can be added
to adjust their flow behaviors [109]. Once printed, solid green structures are converted to
ceramics after pyrolysis, such as the VP process. Different feedstocks containing preceramic
precursors for FDM and DIW are summarized in Table 2.
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Table 2. Summary of the ceramics prepared based on material extrusion.

ME Processes Preceramic Feedstock Material Composition Ceramic Ref.

FDM

Al2O3 powder + SILRES® MK + EVA + PVA + MgO Mullite [135]

Al2O3 powder + SILRES® MK + MgO Mullite [136]

SILRES® MK + Polycaprolactone + PLA + Carbon fiber CF/SiC + SiOC [137]

SILRES® MK + Carbon fiber CF/SiOC [138]

DIW

PCS SiC [139]

Calcium carbonate + Polysiloxane β-Ca2SiO4 [9]

Polycarbosilane + SiC whisker SiCw/SiC [133]

PCS + SiC whisker + SiC powder SiCw + SiCp/SiC [60]

PCS + Chopped carbon fiber CF/SiC [69]

PCS + ZrB2 + SiC fiber ZrB2 + SiCf/SiC [109]

PCS + PMMA + Poly(n-butyl acrylate) + Pentaerythritol
tetrakis(3-mercaptopropionate) SiC/SiOC [140]

(i) Fused Deposition Modeling (FDM)

In any FDM process, the flexibility of the thermoplastic filament is essential, as it
will be wound onto a spool and then fed into the extrusion nozzle. However, some
preceramic polymers, especially those with high ceramic yield, tend to be brittle and are
unsuitable for FDM printing. This can be possibly attributed to their high glass transition
temperatures, chemical position, and molecular structures [141]. To overcome brittleness
and achieve printed solid parts with structural integrity, thermoplastic preceramic polymers
or mixtures containing thermoplastic polymer are used in the filaments [137]. Mei et al.
developed a filament using SILRES® MK to fabricate lightweight ceramic components with
complex shapes [137]. Since SILRES® MK resin is inherently brittle at room temperature,
commercially available thermoplastic polycaprolactone (PCL) or polylactic acid (PLA) was
added to the mixture to improve the filament flexibility [137]. Another study by Gojan
et al. used the same ceramic precursor and formulated a thermoplastic material that can be
extruded into flexible filaments for FDM [129]. Ethylene vinyl acetate (EVA) was used as an
elastomeric binder to enhance filament flexibility. The authors also incorporated γ-Al2O3
particles (40 vol.%) with two different diameters (14.8 µm for 26 N and 5.3 µm for UF5)
as fillers to improve the printed parts’ quality and reduce the volumetric shrinkage of the
converted mullite parts after pyrolysis (Figure 15) [129].

(ii) Direct Ink Writing (DIW)

As previously discussed, the rheological properties of preceramic polymers play a
critical role in the success of a DIW process [132]. Therefore, the rheological properties of the
preceramic ink need to be carefully adjusted to achieve high-quality printed solid structures.
Different feedstock designs have been employed for the DIW process [132]. Among them,
a typical approach is to incorporate fillers to the materials to improve flowability, reduce
volumetric shrinkage, and eventually enhance the properties of the pyrolyzed ceramic
components [102]. For example, adding fillers to a preceramic paste usually results in a
significant increase in the viscosity of the paste. However, the viscosity decreased rapidly
upon the application of the shear stress, indicating a shear thinning behavior [142]. This
behavior can be explained by the Herschel–Builkley model [134,143]. Non-Newtonian
colloidal gels exhibit shear thinning flow behavior due to the attrition among filler particles,
which can be described by the Herschel–Builkley equation: τ = τy + K

.
γ

n, where τ is the
shear stress, τy is the yield shear stress, K is the visocity parameter,

.
γ is the shear rate, and n

is the shear thinning exponents [143–145]. The shear thinning effect of feedstock containing
solid fillers can significantly benefit the DIW process because it allows the materials to flow
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smoothly through the nozzle or orifice and maintain solid structures and shapes during
deposition [102,134].
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Figure 15. (a) A spool of filament made from 40 vol% UFS + SILRES® MK feedstock after extrusion.
The flexibility of the filament is demonstrated by twisting it in a knot without a fracture (inset);
(b–d) images of porous cylinder scaffolds (before sintering) produced using filaments containing
40 vol% 26 N + SILRES® MK; (e–g) 40 vol% UFS + SILRES® MK. (c,f) Magnified images of the top
surface of the scaffolds; (d,g) cross-sections of the structures. Adapted from Reference [129] with
permission. Copyright 2019 Elsevier.

Many studies have demonstrated that ceramic fillers, such as whiskers, fibers, and
particles, have been mixed with preceramic material to achieve improved flowability
and enhanced properties of printed ceramic products [60,68]. For instance, PCS-based
suspensions containing SiC whiskers were prepared for fabricating SiC ceramic components
using a DIW process [133]. The results showed that the addition of SiC whiskers not only
improved the flowability of the feedstock suspension when the shear rate increased but
also reduced the volumetric shrinkage of the pyrolyzed ceramic solid structures. Liu
et al. prepared a mixture using PCS and chopped carbon fiber and manufactured carbon
fiber-reinforced SiC composites using a DIW process [69]. The results showed that adding
carbon fiber (~7 µm in diameter) helped decrease the viscosity of the materials and improve
their flowability for fabricating complex solid green structures. In this study, a certain
amount of n-hexane and toluene were also added as the primary and auxiliary solvents
to adjust the volatility of the preceramic mixtures. After being pyrolyzed, the printed
solid green structure parts were converted to carbon fiber-reinforced ceramic composites.
Remarkably, the ceramic composite containing 30 wt.% of carbon fibers exhibited negligible
liner shrinkage (~0.48%) and the highest bending strength (~7.09 MPa) compared to the
other ceramic composites. Figure 16 shows the linear shrinkage and bending strength of
the DIW-printed ceramic composites with different carbon fiber contents [69].

The use of micropowder or nanoparticles as fillers in the preceramic feedstock materi-
als for DIW processes has also been studied. Chen et al. recently investigated the addition
of ZrB2 nanoparticles (~200 nm in diameter) as an inert filler in polydimethylsiloxane for 3D
printing [146]. In this study, a shape memory epoxy (SMEP) was synthesized and added to
the feedstock materials to achieve reconfigurability and shape memory in the final products.
The as-printed solid flat green bodies underwent a two-step curing process to make them
flexible and reconfigurable. The solid structure could successively experience controllable
shape transformation and then transformed to ceramic structures after pyrolysis, as shown
in Figure 17 [146]. In another study, Kemp et al. developed a PCS-based mixture for the
fabrication of near-net complex-shaped ultra-high temperature ceramics (UHTCs) [109].
ZrB2 micropowder (~1.3 µm in diameter) and SiC fiber (~10 µm in diameter and ~1 cm
in length) were incorporated into the PCS polymer and resulted in the shear thinning
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behavior of the mixture. After pyrolysis, the as-printed solid parts were then converted to
SiC composites with low linear shrinkage (<5%) [109].
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Figure 17. Schematic diagram of fabricating complex PDCs from reconfigurable and programmable
ceramic precursors: (a) reconfiguration principle through two-step curing of ceramic precursors;
(b) schematic illustration of precursor networks during the two-step curing process; (c) route 1
of the precursor—directly undergoing the sintering process to become ceramic; (d) route 2 of the
precursor—folding the shape memory precursors into various temporary shapes; (e) the precursor
within temporary shapes undergoes the recovery process as programmed and reaches the ceramic
state through the sintering process. Adapted from Reference [146] with permission. Copyright 2023
Elsevier [146].

Typically, DIW-printed solid green structures using preceramic feedstocks require
an additional thermal curing process to become completely solidified before they are
pyrolyzed into ceramic components. This thermal curing step is necessary to produce
a strong polymer green body that can withstand the stresses of subsequent processing
steps [133,139]. However, alternative curing processes can also be utilized to increase
crosslinking. For example, light can be used to improve solidification when appropriate
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PIs are applied [147]. Clarkson et al. developed a photosensitive PCS-based slurry for
a UV-assisted DIW process. This slurry included AMHPCS, HDDA, and TPO-L as the
preceramic polymer, crosslinker, and PI, respectively. In this research, a 50 wt.% of Si3N4
powder was selected as an inert filler, because it has good light transmission in the UV
region. Figure 18 shows the UV-assisted printing process, where a 400 nm light was used
for photocuring. This experiment indicated that this UV-assisted DIW process could also
manufacture complex ceramic structures with low shrinkage and high conversion yield.
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3.2.3. Powder Bed Fusion (PBF)

PBF is an AM process that selectively fuses regions of a powder bed using thermal
energy [66]. Based on how thermal energy is generated and interacts with the powder
bed, PBF technologies can be categorized as laser PBF, electron beam melting (EBM), and
selective heat sintering (SHS) [148]. Despite the different PBF technologies, they all operate
on the same principle, i.e., thermal energy is required to fuse powders selectively on
the powder bed. Laser PBF uses a laser to fuse the powder, EBM employs an electron
beam, and SHS involves direct thermal heating. A typical laser PBF process and its
components are shown in Figure 19. Several factors need to be considered when preceramic
polymers are used for PBF processes, such as the powder size, flowability, and optical
absorptivity. For instance, polymer powders usually have increased absorptivity with
longer optical wavelengths [149]. Therefore, longer laser wavelengths should be considered
when polymer powders are used. Friedel et al. prepared the preceramic feedstock materials
by mixing SILRES® MK powder (~8.5 µm in diameter) with SiC particles (~17 µm in
diameter) [150]. The powder mixture was selectively cured with a CO2 laser (10.6 µm in
wavelength), effectively forming green parts, which were subsequently converted into
ceramics after pyrolysis treatment. As reported in this study, adding SiC powder to SILRES®

MK powder could efficiently decrease the linear shrinkage of the resulting solid parts. This
research demonstrated the viability of using the laser PBF approach to print near-net-shape
3D ceramic structure [150].

3.2.4. Binder Jetting

BJ is an AM process that uses a liquid bonding agent that is selectively deposited
to bind powder material together and form a solid part layer by layer. This process
requires two materials: a powder-based material and a liquid binder material. A typical
BJ process begins with creating a powder bed using a recoater. The powder bed is then
selectively bonded with a binder adhesive deposited through an inkjet printhead, forming
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solid 3D components layer by layer, as shown in Figure 20. The BJ process can fabricate
ceramic components using ceramic or preceramic powders. In one study, Zocca et al.
prepared preceramic feedstocks using a commercially available PMS polymer powder
for manufacturing solid parts with the BJ process [105]. To cure the PMS powder, two
crosslinking catalysts (zirconium acetylacetonate (ZrAcAc) and tin-octoate (TinOc)) were
employed in separate experiments. In one approach, the feedstock powder (~45–90 µm in
diameter) was made from a mixed solution, including PMS polymer powder, isopropanol,
and ZrAcAc. The feedstock powder was then selectively bonded by depositing isopropanol
from the inkjet printhead and forming the solid green structures. In the other approach,
a binder solution was prepared with TinOc and a mixture of 1-hexanol and hexylacetate.
The prepared solution was then deposited on the PMS powder bed to form a 3D green
structure. The fabricated green structures were further crosslinked and then pyrolyzed to
obtain porous ceramic components.
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Industry 4.0. Since AM process was leveraged as a manufacturing tool to fabricate complex
structure prototypes, it has gradually infiltrated various industrial fields, such as aerospace,
automotive, healthcare, defense, infrastructure, consumer goods, art, toy, and food, over
the last decades. Many commercial market reports have shown the prevailing trends in the
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development of 3D printing technologies. With the development of innovative technologies
such as artificial intelligence (AI), AM technologies will be advanced to a new level, which
will be more intelligent, versatile, effective, functional, robust, accessible, and sustainable
for fabricating high-quality, high-performance components.

AM has successfully demonstrated a promising solution in addressing the limitations
of conventional manufacturing approaches and unlocking new possibilities in designing
and fabricating ceramic components with desired complex and intricate structures. The
unitization of preceramic polymers as feedstock materials for AM processes has shown
great potential for manufacturing high-performance components. There are a few hot
topics that researchers have been or will continue to work on:

(1) Advancing preceramic feedstocks for manufacturing functional components using
the AM processes. With the rapid development of AM technologies and the ur-
gent demands of advanced ceramic materials for various applications, such as high-
temperature structure ceramics for hypersonic flight, electronic devices, thermal pro-
tection components, and healthcare devices, the development of preceramic feedstock
materials for AM processes will continue to be one of the hot points for the fabrica-
tion of advanced ceramic components, especially the development of ceramic-based
nanocomposites.

(2) Enhancing versatile and multifunctional AM processes for manufacturing high-
performance functional solid components. Integrating additional features, such as
thermal energy, light, ultrasound waves, or other functions, during preceramic mate-
rial printing may enable high-quality products with superior performance.

(3) Developing highly dense near-net-shape advanced ceramic composites with low
volumetric shrinkage and high performance is another hot topic. Volumetric shrinkage
and porosity are still significant concerns for the pyrolyzed AM-fabricated ceramic
components after pyrolysis, especially when preceramic polymer resins are adopted
as feedstock materials. The addition of inert or active fillers or reinforcement materials
has been demonstrated to effectively decrease the volumetric shrinkage of the printed
ceramic components after pyrolysis and improve their properties. Exploring new
composite feedstock materials for manufacturing near-net-shape high-quality ceramic
components with superior performance properties using AM process is desired in the
future.

5. Summary

AM, so-called 3D printing, is an innovative manufacturing technique for rapidly create
complex structural components. It has gradually infiltrated all kinds of industrial fields over
the past decades. The integration of polymer-derived ceramics with AM techniques has
attracted significant attention. AM is a versatile manufacturing approach that can overcome
the limits and challenges of conventional fabrication approaches for ceramics, especially for
complex structures. Among all of the seven AM processes, VP and ME are the most widely
used for creating ceramic components, mainly because of the nature of their feedstock material
requirements. Some studies have also shown that PBF and BJ could be adopted for printing
3D solid components from preceramic resins. This article presents recent research for AM
fabricated ceramics using preceramic feedstock materials. The research results demonstrated
that AM processes are effective and versatile approaches for making complex structural
ceramic components with extraordinary properties. The future of fabricating ceramics using
preceramic feedstock materials is also discussed in this article.
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