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Abstract: Metallic alloys are, by essence, ductile and stiff and can support loads without sudden
rupture. This ductility becomes a disadvantage when applications require wear resistance. In this
case, the hardening of the surface is required while retaining a core performance. Here, nitriding
at low temperatures has proven to be beneficial and has potential. In fact, any phase transitions
or unwanted compound precipitations that occur at higher temperatures have to be avoided as
they would have a deleterious effect on the chemical homogeneity and mechanical properties. The
present contribution summarizes the achievements made with such treatments on metallic alloys. We
considered the most popular treatments, namely plasma, implantation, and gas nitridings.

Keywords: metal alloy; nitriding; plasma; implantation; gas; structure change; surface
mechanical performance

1. Introduction

Metals deform first elastically and then plastically over a threshold known as their
yield strength. Hence, a metal is resilient contrary to a ceramic, which is subject to sudden
brittle fracture [1]. This constitutes a structural advantage for metals compared to ceramics
like alumina and zirconia when used, for example, as prostheses. So far, metals are less
resistant to wear than ceramics, and the treatment of their surface is required for zones
submitted to friction. A broad range of treatments has been used to harden metal surfaces,
changing their structure and microstructure (steel quench) and introducing sub-surface
dislocations (work hardening), residual stresses, atomic solutes, and precipitates. Alter-
natively, hard coatings can also be deposited onto metal surfaces. Whatever the chosen
treatment, the main goal is to improve the surface wear resistance, usually by increas-
ing the hardness, without jeopardizing the core properties of the alloy or other surface
properties like corrosion resistance. Hence, low-temperature nitriding or carburizing is
of particular relevance. The term ‘low-temperature’, when used by the community, refers
to a temperature well below any phase transitions (β-transus temperature of the alpha
phase in TA6V, for instance) or unwanted compound precipitations (nitrides in stainless
steel, for instance) [2]. In fact, these structural changes could have a deleterious effect on
the chemical homogeneity (chromium precipitation induces loss of corrosion resistance in
stainless steels, for instance) and mechanical properties (stress concentration at precipitates).
A full book would not suffice to cover all these treatments [2,3], and here, we focus on
nitriding treatments that have been used successfully to modify metal alloys’ subsurfaces
with spectacular hardness enhancement.

Nitriding can be achieved with a variety of techniques [3], the most popular ones
being namely plasma, implantation, and gas or a combination of them (PBII) [4]. Nitriding
methods have been applied to a number of different metals and alloys [5–10]. Below, we
illustrate the mechanical strengthening achieved with steel and titanium alloys that have
been the most successful. The hardening profile and depth can be substantially tailored
and are, in fact, dependent on the processing conditions. Nitriding is a thermochemical
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treatment involving surface enrichment in nitrogen and its diffusion to the inside of the bulk.
Therefore, structural changes are vast, with a number of different interaction possibilities
between the nitrogen-rich atmosphere and the metal surface, namely adsorption, sputtering,
and implantation [4]. The induced phenomena reported comprise the nitrogen expansion
of the unit cell, a new phase creation, like nitrides or alphagen phase transformation in
titanium, for example, precipitation, grain rotations, and swelling. The benefits in terms
of mechanical performance are discussed, as there is a close link between structural and
surface mechanical modifications.

So far, such studies have been difficult since the generated subsurface was highly
heterogeneous. Considering diffusion only, nitrogen atom mobility was thermally activated
and, hence, limited as the used temperatures were to be chosen so that the initial core
performance of the metal alloys could be retained. As a consequence, the structure and
mechanical response changed very rapidly at the subsurface to reach the core ones. Hence,
dedicated tools had to be considered to detect and measure the rapidly changing structure
and properties.

The present article will start with an overview of the techniques employed for ni-
triding of metal alloys (Section 2), then discuss the subsurface structure and mechanical
performance obtained (Section 3) before envisioning prospects in the field (Section 4).

2. Nitriding with Plasma, Implantation and Gas
2.1. Plasma Nitriding

Plasma nitriding is the most used technique compared to implantation and gas. It
is carried out at a reduced pressure with plasma maintained using a voltage or an elec-
tromagnetic wave. Plasma nitriding is widely used for metal surface treatments on an
industrial scale. It allows for the treatment of pieces that have a rather complex shape with
a few limitations in shape ratio (high l/d ratio holes) or edge sharpness (Table 1). Although
atmospheric pressure plasma techniques have been developed during the last decade [11],
most of them use low-pressure plasmas [12]. The main technologies are the pulsed DC
plasma [13], Radio Frequency driven plasmas (Inductively Coupled Plasma: ICP, Antenna
generated or less common Capacitive or Surface Wave Coupling), usually working in a
post-discharge mode, and microwave-based ECR (Electron Cyclotron Resonance) plasmas.
Whatever the technology, the main advantage of the plasma atmosphere for surface treat-
ments is the presence of highly reactive species: ions and radicals [14]. These species play a
central role in the incorporation process of nitrogen into the material [15]. Very often (if
not in most cases), a certain amount of hydrogen is also introduced into the plasma gas
mixture. The hydrogen (H+ and H2

+) and NxHy
+ species contained in the plasma are very

efficient for reducing oxide layers that are present on the surface of metallic pieces. In these
processes, the plasma mainly acts as a surface concentration booster; the scale thickness
and the diffusion length are still governed by the thermodynamic parameters, which is the
treatment temperature in the first place.

Table 1. Overview of nitriding treatments.

Technique Advantage Drawback Notes

Plasma

Moderate temperature, some
complexity of the shape

acceptable: lower gas
consumption and less waste

High l/d ratio holes not
well treated, sputtering, possible

edge effects

Implantation
Low temperature, overcomes

surface barriers: extremely low
gas consumption and waste

Mainly Planar treatment Convex shapes possible but
with complex experimental sets

Gas Easy complex shape treatments High temperature High l/d ratio holes easy
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2.2. Implantation Nitriding

The implantation process starts with the generation of ions in a chamber where the
gas is excited by electrons emitted from a cathode. The generated ions are extracted by an
electric field (voltage) and are selected with a magnetic field (magnetic filter) in terms of
their nature and energy. The ion beam is later accelerated in the range of 10–500 keV to
the metallic piece to be treated. As the ions penetrate the subsurface, they progressively
lose their energy and generate an implanted sublayer. The N concentration distribution is
Gaussian-like with a maximum located between a few tens of nanometers to a micrometer
beneath the surface (at the so-called “stopping range”); depending on the ion’s energy,
a great amount of implantation defects can also be created between the surface and the
N distribution. Therefore, when the implantation is operated at an elevated temperature
(500 ◦C and above for a titanium alloy, for instance), N diffusion can be considered both
due to the surface and the inside of the material; these two directions may have different
diffusion coefficients because of their implantation defects [9]. Of course, when diffusion
allows for a deeper region to be treated, this implantation is diluted. It is important to note
that high doses require long implantation times with the locally induced heating of the
specimen, which can be deleterious because of the relaxation of residual stresses and grain
growth. Surface sputtering also occurs at the material surface [16], lowering the nitrogen
retained dose.

2.3. Gas Nitriding

Gas nitriding [17–19] (also known as conventional nitriding) requires a furnace with
controlled pressure and an atmosphere containing N2 or NH3 molecules. The piece to be
treated is introduced into the furnace. As expected, temperature plays an important, not to
say a central, role in both surface reactions and diffusion. An activation surface treatment
may be needed at a low temperature to allow for an efficient enough reaction [18,20]. Con-
currently, activating diffusion may again affect the original core metal, and this has pushed
toward other techniques like plasma and implantation (above sections) or a combination of
both (next section). It is also important to note that the presence of hydrogen in the atmo-
sphere has been shown to be important for the performance of this process, and this has
become a common practice when using the different nitriding techniques described here.

2.4. Plasma Based Ion Implantation (PBII) Nitriding

Plasma-based ion implantation (PBII) combines the plasma (Section 2.1) and implanta-
tion (Section 2.2) and hence their respective advantages and drawbacks (Table 1). When it
was developed in the 1980th [21], the main goal of PBII (often referred to as PIII, Plasma
Immersion Ion Implantation) was to combine the benefits of both ion implantation (deep
insertion of species) and the versatility of plasma treatments, e.g., by overcoming the
line-of-sight restriction, for metallurgical applications [22–24]. Although interesting lab-
oratory results have been obtained in different domains [25–28], the technique remains
quite confidential as the inherent difficulties to upscale are not compensated by the benefits
obtained compared to standard plasma treatments.

3. Surface Mechanical Benefits
3.1. General Features and Scales

Although the exact nitrogen concentration, in this case, could, to some extent, depend
on the nitriding technique, the general profile characteristics are mainly determined by
the treated material type. For most low or medium-alloy steels, nitriding results in the
formation of an iron nitride layer compound followed by a nitrogen diffusion profile. Two
types of nitrides could be present: the γ′-Fe4N or/and the ε-Fe2-3N [7]. Marot et al. [29]
pointed out the parabolic diffusion behavior and the absence of a nitride surface layer
(white layer) in the case of low-temperature plasma nitriding at the floating potential.
The nitrogen in excess of the solubility limit forms “sub micron” nitride precipitates.
On the contrary, Zagonel et al. mentioned the existence of an ε-Fe2-3N layer, even at
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a low temperature, for pulsed plasma nitriding [30]. Nitride precipitates are, however,
present underneath this layer and can account for most of the hardness improvement. The
discrepancy between these two experiments could be explained by the influence of the
involved sputtering rate (energy of the ions) [31], as pointed out on an M2 tool steel by
Mohammadzadeh et al. [7]. Stainless steels, and more generally, austenitic alloys, present
a very specific and uncommon nitrogen profile (Figure 1) [32–36]. This characteristic profile
results from a non-conventional diffusion process that is governed by a strong affinity
between chromium and nitrogen. A model where part of the nitrogen atoms are “trapped”
in the vicinity of Cr atoms until the saturation of the traps was proposed by Möller [37].
The dependence of the flux upon the local concentration is responsible for the obtained
profile. This was formalized by Christiansen et al. [38] using a concentration (octahedral
sites occupancy yN) dependent diffusion coefficient (Figure 2) together with the solubility
product of Cr and N in the γ phase. In these alloys, the γ phase could accommodate up to
25 at% of nitrogen and form the so-called expanded austenite, usually referred to as γN or
the S phase.
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As regards titanium and titanium alloys, the nitriding process has been well modeled
by Zhecheva (Figure 3) [39]. According to this model, nitrogen was first incorporated into
the material until it reached a surface concentration of 22 at% (maximum solubility in αTi),
followed by a diffusion profile. An additional nitrogen incorporation induced a phase
transformation to ε-Ti2N followed by a second phase transformation, leading to δ-TiN.
The resulting structure is a dual, very hard compound layer supported by a diffusion
zone. It has to be noticed that, as nitrogen is an alphagen element, in the case of mixed
α-β or β-alloys, this process is accompanied by the drastic phase transformation of the
titanium itself.
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Aluminum and its alloys are very difficult to nitride. Only high-power plasma
combined with the polarization of the sample and conducted at a high temperature
(>500 ◦C) leads to the formation of a significant ratio of aluminum nitride AlN in the
mixed AlN/Al2O3 surface layer with very little diffusion [23,40].

As discussed above, the conditions used for nitriding rule the depth and the extent of
the modification of the sub-surface. Accordingly, different scales have been considered to
assess the gain in mechanical performance. Authors have been used extensively in both
conventional micro-indentation [41–43] as well as instrumented nanoindentation [44]. It is
important to take caution when comparing micro- and nano-indentation values as different
tested volumes are considered. So far, a key point to be kept in mind is that roughness
can be generated during the treatment of metallic polycrystals because of the orientation-
dependent diffusion rate and swelling, as well as grain rotation [45,46]. The advantage of
conventional micro indentation is that it is less affected by generated roughness and can be
used on the treated surface as well as on prepared cross-sections. Instead, nanoindentation
requires cross-sections to be prepared or the polishing of the treated surface with the
risk of losing the most superficial material [47]. So far, the strong mechanical gradient at
the subsurface makes such preparations difficult [25]. Nonetheless, both cross-sectional
and surface nanoindentation testing have been realized on nitrided specimens. In fact,
surface preparation could also be used to etch the treated material progressively and realize
nano-mechanical tomography, for example, on 316L stainless steel in [47].

3.2. Elastic-Plastic Response and Wear

Instrumented nanoindentation offers the possibility to assess both elastic and plastic
changes in the subsurface by analyzing loading–unloading curves. Instead, a conventional
micro indentation can be used only to assess the plastic response [42,43] unless the geo-
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metrical consideration of the Knoop mark can be considered. Most commonly, a sharp
diamond indenter is used with a Vickers or Berkovich geometry (four-sided pyramid and
three-sided, respectively). Importantly, it has been observed in several alloys that plastic
and elastic responses are not affected similarly by nitriding treatment, and this emphasizes
the importance of using instrumented nanoindentation to assess both responses. For in-
stance, a PBII nitrided 304 L stainless steel showed drastic changes in terms of Hardness
(with an almost three-fold increase at the surface, Figure 4), while the indentation modulus
was almost retained [48]. This phenomenon is fortunate as Archard’s law reveals that wear
decreases as hardness increases for a given family of materials. In fact, an increase in both
hardness and wear performance has been reported in nitrided titanium alloy [49]. More
recently, the elastic-plastic ratio was considered more appropriate as an indicator of wear
performance. It was also observed to increase accordingly. It can be noted that, depending
on the authors, the elastic-plastic ratio can take different forms such as H/E, H3/E2 [1];
in any case, wear performance can be improved with an increase in the hardness and a
moderate change in the elastic modulus.
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3.3. Surface Mechanical Performance

Surface mechanical performance can be closely related to the structural changes in-
duced by the nitriding process as well as to the parameters used. This offers a large range
of performance. For instance, for the gas nitriding of Ti in a relatively broad range of
temperatures and durations (700–950 ◦C and up to 16 h), surface hardness was reported
with a two-to-three-fold increase [50]. The 3D plots allowed us to observe the interplay
between temperature and time [50]. So far, many different phenomena comprising the
nitrogen expansion of the unit cell, precipitation, grain rotations, in-depth diffusion, and
alphagen element-induced phase transformation (in Titanium alloys) have to be considered.
Of course, the parameter of first importance was nitrogen concentration which can be
estimated from the glow discharge optical emission spectroscopy (GDOES) and Energy Dis-
persive Spectroscopy (EDS) analyses in the scanning electron microscope (SEM) (Figure 5).
Transmission electron microscopy (TEM) offers further insights into the structural changes
that happen during the treatment [27] and an outlook for the future (Section 4).
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PBII (25 kV, 200 Hz, 10 µs) for 240 min at 800 ◦C in a mixture of 90% N2—10% H2 at 1 Pa [26].

The research has been market-driven, with demands for nuclear plants, aeronautic
components as well as medical prostheses. Nitriding treatments have been applied mostly
to steels and titanium alloys (Table 2). It can be noticed that, although efficient, the nitriding
treatment becomes ineffective for superalloys since the pieces are set at a temperature
above their process temperature.

Table 2. Structural induced changes in surface mechanical performance.

Metallic System Nitriding Treatment Structural Change Surface Mechanical Performance

Ferritic steel Gas (550–650 ◦C)

Compound layer with cracks
γ′-Fe4N

ε-Fe3N/Fe2N nitrides and diffusion
layer

2–4 fold increase in surface
hardness [17]

Ferritic steel Plasma (450–560 ◦C)
γ′-Fe4N and ε-Fe3N/Fe2N
nitrides and diffusion layer
γ′-Fe4N micro precipitates

2–3 fold increase in surface hardness
[51] and refs therein [29]

Austenite stainless steel Gas (430–450 ◦C) Expanded austenite or γN phase 3 fold increase in surface hardness,
limited elastic change [18]

Austenite stainless steel Plasma (<430 ◦C) Expanded austenite or or γN phase 3 fold increase in surface hardness,
limited elastic change [48,52]

Austenite stainless steel PBII (430 ◦C) Expanded austenite or or γN
phase

3 fold increase in surface hardness,
limited elastic change [23]

Titanium alloys Gas (700–950 ◦C)

Formation of δ-TiN and ε-Ti2N

High temperature enhanced
in-depth diffusion

2–3 fold increase in surface hardness
up to 17 GPa [50]

In-depth hardness gradient [53]

Titanium alloys Plasma (650–850 ◦C) Formation of δ-TiN/ε-Ti2N, in the
depth α-Ti(N) solid solution

2 fold increase in surface hardness,
limited elastic change [39]

Titanium alloys PBII (500–800 ◦C)

Formation of δ-TiN/ε-Ti2N, in the
depth α-Ti(N) solid solution

nitrides formed at low temperature
(500 ◦C)

2 fold increase in surface hardness,
limited elastic change [9,26]
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The nitriding treatment of Ferritic steels yields surface nitrides, γ′-Fe4N, with a small vol-
ume fraction of ε-Fe3N/Fe2N, which is beneficial for hardening and wear performance [7,51].
On the other hand, stainless steel surfaces show expanded austenite after nitriding treatment [2],
with a strong enhancement of hardness, while the elastic response is almost retained [47].
Wear performance can also be improved as well as expected from Section 3.1 [2]. Nitrides
δ-TiN/ε-Ti2N are also formed in Titanium alloys and in the depth of an α-Ti(N) solid solution
(Figure 2) [26]. These latter structural changes are accompanied by a two-fold increase in the
hardness while, as for steel, the elastic response remains almost unaffected.

Nanoindentation offers the possibility to assess the direction-dependent mechanical
changes of polycrystalline materials once the testing conditions are adjusted to confine
the probed volume to a single grain. It has been reported that the nitriding treatment
affects this dependence in stainless steel (316L) dramatically, either in terms of the elastic
or plastic response [52,54]. Indeed, Figure 6 plots these dependencies as a function of the
anisotropy factor defined as Ahkl = (h2k2 + k2l2 + l2h2)2/(h2 + k2 + l2)2, h, k and l which are
the Miller indices of the orientation. It is important to note an inversion to both hardness
and modulus dependence after the nitriding treatment. Kücükyildiz and co-workers [54]
attributed this behavior to the presence of a certain amount of oversaturated γ’N (M4N1+x)
nitride in the uppermost nitrided layer. In the latter case, gas nitriding was used in single
crystals. It revealed that nanoindentation could be used at the scale of a grain in such
polycrystals. Moreover, mechanical tomography (see also Section 3.1) could be carried out
with a higher depth resolution [54]. Again, these induced changes were more important in
terms of hardness compared to the modulus.
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4. Conclusions and Prospects

The nitriding treatments reviewed here have proved very successful in hardening
metal surfaces while retaining their core structure. This strategy allows for improving
surface resistance and structural integrity as long as the pieces are not set at a temper-
ature above the treatment temperature [19,53,55–61]. Hence, while nitriding has been
extensively operated on steels and titanium alloys, as illustrated here, superalloy treat-
ments, although efficient, are less interesting as most aeronautic applications use high
temperatures [35,36,59]. Since the early work of Bell and co-workers, the low-temperature
nitriding of different metallic alloys has been continuously improved, both from an exper-
imental point of view and theoretical aspects. Among these, stainless steel nitriding has
been extensively studied during the last three or four decades and can be considered one
of the most successful applications of low-temperature conditions.

The nitriding approach has also proved a great advantage over ceramics when pros-
theses are considered since structural integrity is of the utmost importance. In fact, metal
pieces with complex shapes can be treated. Moreover, complex-shaped metal components
are much cheaper than their equivalent ceramic ones. In this applicative domain, titanium
alloys are by far the most interesting choice and can give rise to a tremendous amount of
research (see, for example, [3,8,25,26,39,42,43,50,62]).

Still, improvements and prospects are expected in the near future, with an observed
large activity in the field [63–70]. Overall, a more detailed picture of the complex nitriding
process could be obtained. It has been revealed that the low-temperature nitrided layer
characteristics of ferritic stainless steel are highly initial-microstructure dependent, and this
is to be considered carefully when targeting a particular performance [63]. Attention can
also be paid to the absorbed H2 in the nitrided specimen when treated under a different
H2 proportion because of the consequent deleterious influence [65], while depth and time-
resolved data using in situ XRD can allow the initial expanded austenite formation to
be captured. Different innovations can allow further incremental improvements. For
instance, previously to nitriding, some authors have deposited coatings that form harder
and corrosion-resistant phases upon the treatment [71]. Hard coatings can also be added to
the nitrided pieces [72,73], although care has to be taken with the roughness induced by
the nitriding process. Plasma nitriding with the titanium addition could allow a thinner
brittle compound layer and a thicker ductile effective hardening layer to be produced on
the surface of steel [74].

Moreover, it is of interest to deepen and smooth the mechanical gradient so as to
avoid the ‘egg effect’ or a too-large mechanical contrast between the surface and the core.
Combined treatments comprising plasma nitriding plus oxidation, for instance, are being
proposed and are effective in smoothing the mechanical gradient while also deepening the
influence of the treatment [42,43,75,76].

A further understanding of induced structural-mechanical changes at the scale of the
grains is also required, and in situ, local techniques could be of the utmost importance since
the mechanical response of individual grains can be assessed [77–80].
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