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Abstract: Magnesium alloys are still attractive materials for applications that necessitate light weight
due to their low density, moderate strength, and good corrosion resistance. AZ91 is one of the
widely applied magnesium alloys due to its very good castability and strength. However, one of
the drawbacks of magnesium alloys is the low elastic modulus. So, reinforcing AZ91 with carbon
short fibers with the aim of further increasing the strength and improving the elastic modulus
is investigated in this study. Squeeze cast AZ91-23 vol.% carbon short carbon (AZ91-C) and the
unreinforced AZ91 are deeply examined by tensile testing at different temperatures (20, 100, 150,
200, 250, and 300 ◦C). Tensile stress–strain curves are measured and the tensile parameters (yield
stress, ultimate tensile strength and strain) are defined and presented against the test temperature.
Yield stress of AZ91 at 20 ◦C (109 MPa) is doubled (226 MPa) in the reinforced AZ91-C. Yield stress is
found to slightly decrease with increasing the test temperature. Ultimate tensile strength of AZ91 at
20 ◦C (198 MPa) is increased (262 MPa) in the reinforced AZ91-C. The improvement of the ultimate
tensile strength due to reinforcing increases with increasing the test temperature. Flow curves are
determined and described by a modified Mecking–Kocks relationship and the flow parameters are
determined and described as a function of the test temperature. Microstructure investigation was
undertaken of the fractured tensile specimens at the grain boundaries rich in eutectic structure formed
at the grain boundaries. Mixed brittle/ductile fracture mode is detected on the fracture surface of
unreinforced AZ91, while the SEM investigations show matrix/carbon fiber detachment and fiber
fracture as main fracture modes.

Keywords: AZ91; composites; squeeze casting; carbon short fibers; tensile testing; flow curves; fracture

1. Introduction

Among many types of magnesium alloys that have been developed, the AZ91 magne-
sium alloy is widely applied with the following approximate composition (in wt%): 9%
aluminium (Al), 1% zinc (Zn), and 0.2% manganese (Mn) [1]. AZ91 has been widely used
in automotive parts such as engine cradle, pedal, and gearbox housing [2]. The addition of
Al and Zn to magnesium has been proven to improve its casting ability and strength, while
Mn is added with the aim of increasing its ductility. However, this AZ91 magnesium alloy
still exhibits relatively poor corrosion resistance, low stiffness, and strength at low and high
temperatures [3]. Instead, several methods have been used to improve the properties and
performance of AZ91 magnesium alloy for use in specific industrial fields. These include
engineering manufacturing processes such as extrusion [4], severe plastic deformation [5],
friction stirring [6], microstructure engineering using heat treatment techniques [7,8], and
so on. It is not rare to combine two or more methods to obtain the expected criteria and
strength that can be applied more widely. For example, Tan et al. [9] have examined the
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strength of AZ91 magnesium alloy processed by hot extrusion and followed by a series of
different heat treatments. The results showed that the as-extruded AZ91 alloy followed by
solution treatment experienced a significant increase in ductility, but at the same time, the
tensile strength was not much different from the previous one (i.e., without solution treat-
ment). On the other hand, the hardness of the as-extruded AZ91 alloy decreased drastically
after solution treatment and subsequent aging treatment. Turning to the as-extruded AZ91
alloy subjected to annealing treatment, its tensile strength decreased and, concurrently, its
ductility increased considerably.

Furthermore, diligent research has been carried out with an emphasis on enhancing
the performance of magnesium alloys at high temperatures, particularly on the issue of
their mechanical properties. Among the approaches that can be taken to achieve the above
intention are (i) the addition of appropriate alloying elements [10–12]; (ii) the reduction
of grains to ultrafine sizes [13], and (iii) the development of magnesium alloy-based
composites [14]. For example, Zhang et al. [15] investigated the effect of adding minor Sr
elements with Sr concentrations of 0, 0.2, 0.6, and 1.0 wt% on the mechanical properties
and creep behavior of a high-pressure die-casting AZ91-0.5RE-based alloy. The results
obtained show that the addition of 0.2% Sr succeeded in significantly improving the
mechanical properties of the AZ91-0.5RE-based alloy at ambient temperature. Meanwhile,
the fracture surfaces of samples with and without Sr addition exhibited ductile fracture
and quasi-cleavage fracture types, respectively. In fact, Chen et al. [15] studied the tailoring
microstructure evolution and fracture damage behavior of a Mg-Y-Zn alloy during hot
tensile deformation with a temperature range between 250 and 400 ◦C and a strain rate
of 0.005–0.1 s−1. The important result was that the hot tensile strength and flow stress
decreased with increasing tensile temperature or decreasing strain rate. Meanwhile, the
fracture strain demonstrated an abnormal trend under the influence of different hot tensile
temperatures and strain rates, which is due to the dynamic softening and damage in the
interior material caused by the work-hardening combination. Shastri et al. [16] investigated
the relationship between microstructure and tensile and creep properties of the AZ91 alloy
by three casting methods, that is, gravity casting (GC), squeeze casting (SC), and high-
pressure die-casting (HPDC). The previous results indicate that the yield stress and ultimate
tensile strength decreased, and as a consequence, ductility increased for all samples when
examined at temperatures of 150 and 200 ◦C. Whereas, the ductility of GC, SC, and HDPC
samples was increased by 21%, 14.7%, and 15.7% at 150 ◦C, and by 26.3%, 25%, and 20.6%
at 200 ◦C, respectively. Additionally, Xiao et al. [17] evaluated the effect of Ca content and
rheo-squeeze casting parameters on the microstructure and mechanical properties of the
AZ91-1Ce-xCa alloy. The experiments conducted show that an increase in the rotational
speed and applied pressure to 120 r/min and 130 MPa respectively resulted in an enhanced
microstructure; furthermore, the ultimate tensile strength, elongation, and yield strength
of the AZ91-1Ce-2Ca alloy reached optimum values of 189.1 MPa, 130.1 MPa, and 2.4%,
respectively. However, although many studies have been undertaken to improve the
strength and properties of the AZ91 alloy, the results so far are still unsatisfactory. Thus, it
is crucial to keep conducting research that can assist in improving the performance of the
AZ91 magnesium alloy, which has restricted its use in high-temperature components.

Minor additions of some elements to Mg and Mg-alloys enhances new properties
and applications of such alloys. For example, the addition of Gd to 0.5 Ca containing Mg
alloy [18] improved the cytocompatibility of these alloys due to increasing the stability of
these alloys which makes it competing for some biomaterials [19].

The approach taken in this study in order to improve mechanical properties is through
the material transformation from magnesium alloys to magnesium composites. Several
studies have noted that the addition of reinforcing materials has successfully improved
mechanical strength, wear resistance, elastic modulus, and so on [20,21]. Among the
materials that have been utilized as reinforcement for magnesium alloys are SiC [22],
alumina [23], carbon nanotubes [24], tungsten disulphides [25], titanium carbide [26], and
titanium diboride [27]. With regard to the fatigue behavior of magnesium composites, the
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addition of SiCp reinforcement by 20 or 25% by volume with a particle size of about 15 µm
successfully improved the fatigue performance with respect to monolithic AZ91D [28].
In the meantime, Llorca et al. [29] mentioned that the addition of 0.25% volume of short
alumina fibers to the AZ91 alloy was able to increase the fatigue strength by 85%. This was
attributed to the fatigue crack initiation resistance of AZ91 composites being higher than
that of AZ91 alloy alone.

To date, from the literature search, it is still very rare to find research on the behavior of
mechanical properties, especially tensile strength at high temperatures of AZ91 magnesium
composites reinforced with short carbon fibers. Obviously, this is an attraction to research
it further. In the present study, the AZ91 alloy was reinforced with short carbon as it is
established from previous results that the addition of short carbon fibers is very effective in
increasing the strength, wear resistance, and hardness of the AZ91 alloy [14,30]. Therefore,
the main objectives of this work are: (1) to present lightweight and high- reinforcement
volume fraction (23%) composite material with improved tensile properties, (2) to model
the tensile deformation and flow behavior of the cast Mg-alloy AZ91 and present the
description parameters for researchers for FE simulation tasks, and (3) to present the role of
carbon short fibers and their orientation on the fracture behavior of the AZ91-C composites.

2. Materials and Methods

The test materials used in this study were unreinforced AZ91 and reinforced AZ91
(AZ91-C). The reinforcing materials used were short carbon fibers (Lf = 100 µm and
df = 7 µm) with a high volume fraction of about Vf = 0.23 distributed quasi-isotropically in
the AZ91 alloy matrix. Subsequently, the general properties of the AZ91 alloy acting as the
matrix and the short carbon fiber acting as the reinforcing material are presented in Table 1
and the chemical composition of the AZ91 alloy is represented in Table 2.

Table 1. General properties of the matrix alloy and the reinforcing fibers.

Components Composition
(wt. %)

Density
(gm/cm3)

CTE
(10−6 K−1)

Strength
(MPa)

E-Modul
(GPa)

Strain at
Fracture ε (%)

Carbon Fibers
(PAN) [31]

>95 % C
L ≈ 92, d ≈ 7 µm 1.78 0.3

RT-100 ◦C
2000–
3500 225 1.2–1.5

AZ91 Mg—9 Al,
1 Zn 1.8 19–23

50–200 ◦C 240 45 9

Table 2. Composition of the matrix Mg-alloy AZ91.

Elements Al Zn Si Mn Fe Ni Mg

wt. % 9.05 0.88 0.05 0.28 0.004 0.001 Rest

The composite material based on the AZ91 alloy reinforced with short carbon fibers
was manufactured by squeeze casting, as shown in Figure 1. A preform was prepared
from carbon fibers and placed in the mold and preheated to 400 ◦C. The molten material
(AZ91) was poured at a superheating temperature of 730 ◦C to enhance the fluidity and
penetration through the fibers preform. Subsequently, the melt is compacted by a piston
using a squeezing pressure of 80 MPa. The squeeze cast composite was solidified at a rapid
cooling rate, reaching around 28.2 ◦C s−1. More detailed information about this squeeze
casting production technique can be found in the following descriptions [14,30,32].

For the tensile test, the specimens used in this study were prepared by machining from
the squeeze cast block. The detailed dimensions of the tensile test specimen refer to the ASTM
E8 standard [33], as can be seen in Figure 2. A universal servohydraulic tensile testing machine
of type MTS 810 (MTS Systems Corporation, Eden Prairie, MN, USA) with a maximum load
capacity of 100 kN and a maximum speed of 100 mm/s was used to conduct the tensile
tests. In addition, the machine is equipped with a furnace that can be heated to a maximum
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temperature of approximately 800 ◦C. The tensile test conditions applied in this experiment
were a strain rate of 0.001 s−1 and a crosshead speed of 0.03 mm/s. Furthermore, the tensile
tests were carried out at varying temperatures of 20, 150, 200, 250, and 300 ◦C. With regard to
the length increase in the sample, it was measured using an extensometer with an accuracy
of 0.5 µm with a maximum distance of 10 mm for testing at room temperature, while an
extensometer with an inductive rod and an accuracy of 1 µm and a maximum distance of
40 mm was used for testing at high temperatures.
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Figure 2. Tensile test specimen according to ASTM E8, adapted from ref. [33].

The microstructure of the as-cast materials and the longitudinal sections of the frac-
tured tensile specimens have been investigated. Selected samples for optical microscopy
were molded in epoxy forms for easy handling then subjected to grinding on SiC papers
from grit size of 400 to 2000, then polished on cloth with the help of 0.04 µm alumina parti-
cles. Polished samples were etched using 2% Nital (2 mL HNO3, 23 mL water, 75 alcohol)
for 15 s. Samples were good water washed followed by ethyl alcohol and dried after each
stage. The microstructure was investigated by the digital optical microscope Type Leica
DM4000M (Leica Microsystems GmbH, Wetzlar, Germany). Moreover, the fracture surfaces
of the tested tensile samples were analyzed using scanning electron microscopy (SEM)
with an LEO 1450 VP Type (Carl Zeiss, Jena, Germany) equipped with energy dispersive
spectroscopy (EDS), Oxford Type (Oxford Instruments, Oxford, U.K.) with a voltage of
30 kV. SEM images were recorded using a secondary electron beam which enables the
capturing of images of fracture surfaces at very good contrast, and fracture surfaces were
gold spattered for improved image quality.

3. Results and Discussion
3.1. Initial Microstructure

Figure 3a shows the casting structure of AZ91. A massive eutectic structure from
the β−phase Mg17(Al)12 and MgZn [16] is mainly found at grain boundary triple points.
The remainder of the Al additive forms an α–Mg mixed crystal with magnesium and
this is fit to [16]. The AZ91 alloy is a type of magnesium alloy having high strength,
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excellent castability, and is notably cheaper. On the other hand, this alloy has low creep
resistance, especially at temperatures above 140 ◦C. Despite the low creep resistance,
AZ91 [34] was chosen as one of the piston composite matrix alloys because it can be
assumed that the reinforcement compensates for the low creep resistance. In terms of
AZ91-C composites (Figure 3b), short carbon fiber-reinforcing materials are added quasi-
isotopically with a uniform distribution in the reinforced plane of the AZ91 alloy. The
distribution of short carbon fibers can be observed by cutting lengthwise or cross-sectioning
the fibers. It is clearly seen that the short carbon fibers show relatively even distribution,
good compatibility with the matrix, and good wettability with the melting process during
the squeeze casting, which leads to the production of appropriate AZ91-C composites, as
shown in Figure 3b. Low magnification was used in the image of the reinforced Mg alloy
(Figure 3b) to show the distribution of the fibers, while higher magnification was applied
for the image of the unreinforced AZ91 (Figure 3a) to show the cast microstructural details.
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Figure 3. Optical microstructure of AZ91 and distribution of the fibers in AZ91-C. (a) The unreinforced
alloy AZ91; (b) Distribution of fibers in AZ91-C.

3.2. Tensile Testing Results

Figure 4 shows the tensile stress curves of the unreinforced AZ91 at varying tem-
peratures. In general, the tensile test results of the AZ91 alloy show a periodic strength
decreasing trend with increasing tensile testing temperature. From the graph in Figure 4,
it can be seen that the maximum tensile strength of about 198 MPa was achieved by the
unreinforced AZ91 alloy at a tensile temperature of 20 ◦C, while the lowest tensile strength
of about 90 MPa was achieved at a tensile temperature of 300 ◦C. More interestingly, the
AZ91 alloy at temperatures of 20 and 100 ◦C shows a very rapid increase in flow stress
at the initial stage and, concurrently, also shows brittle characteristics due to its relatively
short elongation. In the case of an increase in the obtained tensile strength, it can be
attributed to the work-hardening mechanism, which is the accumulation of dislocations
and their degree of kinking [35] and it predominantly occurs at low temperatures [36]. As
the test temperature increases, the AZ91 alloy becomes more ductile, as evidenced by the
increasing elongation of the unreinforced AZ91 alloy, and conversely, its tensile strength
decreases. The phenomenon of decreasing tensile strength in the unreinforced AZ91 alloy
can be related to its softening behavior [37]. The softening phenomenon could be caused
by microstructural softening that is triggered by deformation heating and by dynamic
recrystallization [38].

Figure 5 shows the relationship curves between stress and strain in the reinforced AZ91
at temperatures 20 ◦C to 300 ◦C. Encouragingly, the tensile strength of AZ91 reinforced
with short carbon fibers showed a significant increase at all tensile testing temperatures,
where the tensile strength of AZ91 composites was 265 MPa at 20 ◦C and 142 MPa at
300 ◦C. In terms of tensile testing temperature, the tensile strength of the reinforced AZ91
decreased gradually with increasing tensile testing temperature and showed a similar trend
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with the unreinforced AZ91. However, the tensile strength of the reinforced AZ91 is still
superior to that of the unreinforced AZ91 at all testing temperatures. From these results, it
can be understood that the addition of short carbon fibers has an important contribution
to make in improving the mechanical properties of AZ91, where the short carbon fibers
are able to resist the load transfer applied during tensile testing through interfacial shear
stress and thus exert a strengthening effect on AZ91 composites [39]. Obviously, this
strengthening effect is greatly influenced by the distribution properties and the formation
of good bonding strength between short carbon fibers as reinforcing material and AZ91
as the matrix [40,41]. In previous work, it was reported that carbon fibers can help the
solidification of a magnesium alloy matrix by acting as heterogeneous nucleation sites.
The mechanical properties of the composite can also be improved by distributing carbon
fibers at the grain boundary of the AZ91 alloy, where it is very effective in inhibiting grain
growth [42,43].
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Figure 6 shows the relative tensile yield stress and relative ultimate tensile strength,
each obtained from the ratio between reinforced AZ91 and unreinforced AZ91 at varying
temperatures, respectively. The relative tensile yield stress at 20 ◦C is the highest because
the ratio between the yield stresses of the AZ91 composite and AZ91 alloy is more than
two times (as shown in Figures 4 and 5). Additionally, as the test temperature increases, the
tensile yield stress of both reinforced AZ91 and unreinforced AZ91 decreases, indicating
that the ratio also decreases simultaneously. On the other hand, the relative ultimate tensile
strength value at 20 ◦C is the lowest because the ratio is only about 1.25. However, the
ratio of ultimate tensile strength increases linearly with increasing the testing temperature
because the reinforced AZ91 has better resistance to high temperatures compared to the
unreinforced AZ91. This clearly indicates that short carbon fibers can improve the ultimate
tensile strength of the AZ91 alloy [44]. Another thing that can be realized is that the relative
tensile yield stress and the relative ultimate tensile strength have an inverse relationship.
The obvious decrease in yield stress with increasing the test temperature for both unre-
inforced AZ91 and reinforced AZ91-C can be related to the affected metallic component
(AZ91) by the increased test temperature. This effect represents a negative contribution of
the matrix alloy in the reinforced AZ91 at a low range of strain which is around the yield
stress range. At a higher degree of deformation beyond the yield stress, the fibers rotate
and align with the loading direction showing higher deformation resistance and increased



Materials 2023, 16, 4785 7 of 18

load-carrying capacity regardless of the test temperature. From a statistical perspective,
the relative tensile yield strength has a slightly higher R2 value than the relative ultimate
tensile strength, where the R2 value is a measure in statistics commonly used to describe
how close the data are to the appropriate regression line.
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Figure 6. Relative tensile yield stress (σ0.2(AZ91−C) /σ0.2(AZ91)) and relative ultimate tensile strength
(σUTS(AZ91−C)/σUTS(AZ91) ) of the unreinforced and reinforced AZ91 at temperatures up to 300 ◦C.

Short carbon fibers in the preform used in squeeze casting of the reinforced AZ91-C are
randomly oriented in a horizontal plane of the cylindrical cast part. The examined cylindri-
cal test specimens were machined so the specimen axis was mostly in a radial direction of
the cylindrical cast part. This arrangement makes the loading of the test specimens parallel
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to the reinforced plane to have a strengthening effect. Previous studies on AZ91-C [14,30]
indicated that the achieved compressive strength [30] and wear resistance [14] were lower
for samples loaded normal to the reinforced plane (parallel to the cylindrical cast part axis)
than that for specimens loaded parallel to the reinforced plane.

Figure 7 illustrates the tensile strain at fracture and strain at maximum stress of
unreinforced and reinforced AZ91 at temperatures up to 300 ◦C. In unreinforced AZ91, as
can be seen in Figure 7a, the tensile strain at fracture increased significantly, proving that
the increase in temperature greatly affects the increase in tensile strain at fracture, where at
a temperature of 300 ◦C, the fracture tensile stress reaches about 25%. Turning to the strain
at maximum stress, it only increased slightly from 20 ◦C to 200 ◦C, but after 200 ◦C, the
strain at maximum stress plateaued. If looked at more carefully, the strain at maximum
stress from temperatures of 150 ◦C to 300 ◦C is around 10% (Figure 7a). With regard to
the reinforced AZ91, both the tensile strain at fracture and the strain at maximum stress
show an increasing trend similar to the nonlinear function as a function of tensile testing
temperature. Additionally, the difference between the two curves in Figure 7b lies in the
strains achieved, where it appears that the tensile strain at fracture is larger than the strain
at maximum stress with an increasing tensile testing temperature. This again refers to
the important influence of the addition of short carbon fibers into the matrix, which has
successfully increased the tensile strength of the AZ91 alloy. Hence, if observed closely in
Figure 7, there is a sharp contrast in the difference in strain achieved by the two types of
materials. The increased strain of unreinforced AZ91 with increasing the test temperature
can be understood as most metallic alloys showing higher ductility and increased span
between the strain at maximum stress and strain at fracture at a higher temperature. At
this span, there is compensation between strengthening by deformation and softening by
recrystallization and nucleation of voids as an initiation of damage features. This usual
behavior of metallic materials has abridged in the reinforced AZ91 due to the reduced
ductility affected by the addition of brittle long bodies which showed a low response to
strain. Thus, it can be asserted here that composites have much better strength than their
alloys [44,45].
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Figure 7. Tensile strain at fracture and strain at maximum stress at temperatures up to 300 ◦C for
(a) unreinforced AZ91 and (b) reinforced AZ91-C.

Figure 8 shows the illustration of the tensile true stress–strain curves of an AZ91
matrix alloy at temperatures from 20 ◦C to 300 ◦C. When the AZ91 alloy was deformed
at temperatures above 150 ◦C, strain softening occurred after the initial strain-hardening
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stage. While strain hardening is somewhat noticeable at all temperatures, the AZ91 alloy is
deformed at a constant strain rate of 0.001 s−1 and is very obvious at a temperature of 20 ◦C.
It is understood that the lower the temperature and the greater the applied strain level, the
higher the flow stress level. The contention for this phenomenon is due to the formation of
tangled dislocation structures which might serve as a barrier to dislocation movement, as
higher strain levels are believed to be the main reason for the apparent results [46].
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Figure 8. Description of the tensile true stress–true strain curves of the matrix alloy AZ91 at tempera-
tures up to 300 ◦C.

Modeling tensile stress–strain flow curves are of great importance by means of finite
element simulation of components with the same material behavior, therefore, a description
of the flow curves using a suitable material law and the determination of the materials’
parameters are sought in order to successfully model the flow behavior. In one study [47],
there is a comparison of four empirical relationships for the description of flow curves of
austenitic stainless steel at different temperatures in a relatively small range of deformation
(up to 0.2). The Swift [48] and Voce [49] relationships were found to represent the low-
strain flow curves well. A good description is also possible with the Ludwik relation if the
parameter is chosen as any constant whose value is smaller than the yield point.

The flow curves from tensile tests on the magnesium alloys AE42 and AZ91 are
described very well with the modified Mecking–Kocks relationship [47], (Equation (1)):

σf = σo + C1ε + C2[1 − exp(−C3ε)] (1)

Other descriptions, for example, according to Swift, provide less accurate fitting
results. This formula has been successfully used by Ataya and El-Magd [50] to describe the
compressive stress-strain curves of the same material (AZ91) at temperatures up to 300 ◦C.

It was found that the value of parameter C3 can be set equal to C1. This helps in
lowering the number of fitting parameters. The material flow parameters (Table 3) σo,
C1 and C2 used in Equation (1) are plotted in Figure 9 as a function of the tensile test
temperature (in K) for AZ91. These parameters are linearized with Equation (2):

σo (T) = k f (To)

(
1 − c

(T − To)

Tm

)
(2)
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Table 3. Material law parameters as a function of the temperature depending on the values in Figure 9
and Equation (2).

Parameter kf (To )(MPa) c (K/MPa)

ko 151 2.45
C1 = C3 22.4 −0.85

C2 118 0.878

Figure 9. Description parameters of the tensile flow curves of the matrix alloy AZ91 at temperatures
up to 300 ◦C.

The constants of Equation (2) are listed in Table 2, where To = 273 K and Tm = 873 K.

3.3. Optical Microscopy of Fracture Surface

The images in Figure 10 demonstrate the optical microstructure of a polished longi-
tudinal section through an unreinforced AZ91 tensile specimen that fractured at 20 ◦C.
The existing fracture surface showed mild ductile to brittle behavior and was found to
have cracks initiated by void coalescence. It can be seen that the fracture is dominated
by the formation of voids that spread almost evenly throughout the deformed region
(Figure 10a). Furthermore, voids form along grain boundaries and then play an impor-
tant role in the fracture process. During the tensile test, the voids coalesced continuously,
leading to microcracks initially; with continuous tensile load, the microcracks gradually
transform into transverse cracks, which, at a later stage, reach the final fracture (Figure 10b).
These microcracks tend to initiate at the brittle eutectic interfaces present along the grain
boundaries, and it is these that cause the alloy to become brittle [51].
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Figure 11 illustrates the optical microstructure of a polished longitudinal section
through an unreinforced AZ91 tensile specimen that fractured at 150 ◦C. Due to the in-
creased softening than that experienced at 20 ◦C, the fracture at 150 ◦C was more obvious
than the fracture at 20 ◦C (Figure 10), where cracks and voids spread across the entire
polished surface near the fracture (Figure 11a). It is clear that voids are formed along the
grain boundaries, and when tensile testing is carried out, small voids condensate into
large ones, which are the potential for the initiation of microcracks, which experience
propagation, resulting in a river-like crack over time (Figure 11b). Briefly, relatively higher
diffused voids and microcracks were detected in the fracture of the unreinforced AZ91 at a
higher temperature.

Figure 12 shows the optical microstructure of a polished longitudinal section through
a reinforced AZ91 tensile specimen that fractured at 150 ◦C. By applying a tensile load, the
fibers have the ability to withstand, due to the increase in load-carrying capacity by the
reinforcement, which is then followed by accommodating themselves with some rotation
and, concurrently, the matrix material shows some strain. Moreover, increasing the applied
stress causes the short carbon fibers aligned parallel to the applied load to fracture. This is
due to the low strain reaction of the short carbon fibers. Other fibers located perpendicular
to the applied load suffer separation from the magnesium alloy matrix which eventually
ends in fracture.
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3.4. SEM Investigation Fracture Surface

Figure 13 shows the SEM of the fracture surface of a tensile specimen of unreinforced
AZ91 fractured at room temperature. The SEM image reveals different forms of observable
features and, for clarity, all of them are labeled in the micrograph. However, the fracture
surface is mostly dominated by cleavages present in almost all parts of the micrograph
surface. This is characteristic of a brittle intergranular cleavage fracture that occurred along
grain boundaries [52]. The presence of dimples found in lower quantities than cleavages
also further confirms that the fracture is mostly brittle.
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Figure 14 shows the fracture surface of a tensile specimen of unreinforced AZ91 at
room temperature with a higher magnification of a selected region, highlighted by a square
in Figure 13. It is clearly evident that the fracture surface is a combination of ductile and
brittle regions which are labeled (b) and (c), respectively. From the visual observation of
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Figure 14a, the number of cleavages detected is greater than the dimples that can also be
observed in some parts, meaning that the majority of the fault surface is still dominated by
cleavages which make it brittle, while the dimples contribute to the formation of ductile
regions. Further examination was conducted with EDS to determine the composition of
each region that can be observed on the fracture surface. The results show that the ductile
region consists of the Mg element, which has the maximum peak height, followed by the
Al element at a lower concentration (Figure 14b). While the brittle region consists of Mg,
which shows the strongest peak and is followed by Zn and Al at reasonable concentrations
(Figure 14c). The presence of Zn can replace magnesium in the precipitated phase because
both have the same valence electrons, leading to a relatively small electron concentration.
In addition, Zn is close to Al in terms of its metallic radius, thus Zn may substitute Al.
The presence of Zn can substitute the position of magnesium in the precipitate phase,
which is an intermetallic phase because both have the same valence electrons, which
causes a relatively small electron concentration. Additionally, Zn is close to Al in terms of
metal radius. Consequently, Zn can replace Al. Based on the EDS results obtained, and
results from previous studies [53], the possible intermetallic compounds formed refer to
a Mg17Al12 phase for the ductile region and τ-Mg32(Al,Zn)49, φ- Mg5Al2Zn2, and MgZn2
phases for the brittle regions [53,54]. These Zn-rich compounds are considered as brittleness
enhancing intermetallic compounds [54].

Figure 15 shows the fracture surface of the tensile specimen of reinforced AZ91 broken
at room temperature. From the fracture surface at room temperature, the homogeneous
distribution of fibers in the matrix are obvious. It is also obviously found that most of the
fiber fractures are parallel or oblique to the loading direction. In fact, fiber decohesion also
took place in fibers that were parallel to the loading direction. The damage mechanisms
detected started with several stages, namely, (i) fracture of the fibers, (ii) decohesion at
the interface of the matrix with the fibers, and (iii) formation of cracks in the matrix. This
condition continues until the crack reaches its critical point, which eventually leads to
failure [53].
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Figure 16 illustrates a higher magnification of the fracture surface region of the rein-
forced AZ91-C tensile specimen at room temperature. There are a few important points
to highlight, namely, the dimple region seen at the bottom, slightly to the left of the fiber
position, and also the brittle region, which is also seen directly adjacent to the dimple
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region as indicated by the arrows. Of particular interest is the appearance of the fibers
detaching from the matrix that binds them, resulting in the movement of the fibers out
of their original place. The detachment of the carbon fibers was due to the poor interface
between the carbon fibers and the matrix. A high-strength interface can be produced
by chemical bonds formed through chemical reactions during composite fabrication [55].
However, excessive chemical reactions have the undesirable negative effect of damaging
the integrity of the carbon fibers, which can reduce their ability to withstand the applied
load [53].
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4. Conclusions

Based on the results of the evaluation of tensile tests and description of the tensile
flow curves at the temperature range from room temperature to 300 ◦C, as well as the
microstructural and fracture investigation, the following conclusions can be drawn:

1. Magnesium alloy AZ91 is successfully reinforced by carbon short fiber with a volume
fraction of Vf = 0.23 by squeeze casting.

2. The yield stress of AZ91 at 20 ◦C (109 MPa) is doubled (226 MPa) in the reinforced
AZ91-C. The improvement of the yield stress due to reinforcing slightly decreases
with increasing the test temperature.

3. The ultimate tensile strength of AZ91 at 20 ◦C (198 MPa) is increased to 262 MPa in the
reinforced AZ91-C. The ultimate tensile strength of AZ91-C increases with increasing
the test temperature.

4. Quasi-static tensile flow curves up to 300 ◦C are well described by the modified
Mecking–Kocks method and the material parameters are determined as a function of
the test temperature.

5. The fracture mode of the unreinforced AZ91 at room temperature is mixed with brittle
cleavage fracture areas and a lower fraction of ductile deformation dimples.

6. The reinforced AZ91-C fracture is achieved by breaking the fibers parallel to the
loading direction and detachment of the carbon fibers perpendicular to the line of
loading from the matrix alloy (AZ91).
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5. Future Work

As this reinforced AZ91-C material is planned to be a candidate for selectively re-
inforced truck pistons, and based on the above promising strengthening results, fatigue
behavior of AZ91-C will be studied in future work.
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