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Abstract: There is a developing demand for natural resources because of the growing population.
Alternative materials have been developed to address these shortages, concentrating on characteristics
such as durability and lightness. By researching composite materials, natural materials can be
replaced. It is vital to consider the mechanical properties of composite materials when selecting them
for a specific application. This study aims to measure the flexural strength of carbon fiber/epoxy
composites. However, the cost of forming these composites is relatively high, given the expense of
composite materials. Consequently, this study seeks to reduce molding costs by predicting flexural
strength. Conducting many tests for each case is costly; therefore, it is necessary to discover an
economical method. To accomplish this, the flexural strength of carbon fiber/epoxy composites was
investigated using an artificial neural network (ANN) technique to reduce the expense of material
testing. The output parameter investigated was flexural strength, while input parameters included
ply orientation, manufacturing, width, thickness, and graphite filler percentage. The scope alternative
was determined by identifying the values of variables that substantially affect the flexural strength.
The prediction of flexural strength was deemed acceptable if the mean squared error (MSE) value
was less than 0.001, and the coefficient of determination (R2) was greater than or equal to 0.95. The
obtained results demonstrated an MSE of 0.003039 and an R2 value of 0.95274, indicating a low
prediction error and high prediction accuracy for all flexural strength data. Thus, the outcomes of
this study provide accurate predictions of flexural strength in the composite materials.

Keywords: composite materials; carbon fiber/epoxy composite; artificial intelligence; artificial neural
network; Levenberg–Marquardt backpropagation

1. Introduction

The increasing demand for natural materials can be attributed to the growth of con-
struction, industry, and household devices. However, the utilization of natural materials
has detrimental effects on the environment, and falls short in meeting human needs. It leads
to negative consequences such as habitat degradation, biodiversity loss, desertification, and
increased carbon dioxide levels in the atmosphere. To address these challenges, alternative
materials have been developed to fulfill human requirements, while considering important
material properties such as strength, weight, and usability [1–4]. Among the wide array
of alternative materials, composite materials have gained significant popularity. They are
composed of two or more distinct structures or chemical compositions that are mixed
together. These materials must be visually distinguishable while exhibiting improved
mechanical properties. Composite materials typically consist of a matrix material and
reinforcing fibers [5–10]. Carbon fiber/epoxy composites, in particular, have exceptional
mechanical properties, including high strength, fatigue resistance, corrosion resistance, and
creep resistance [11–13]. These properties demonstrate the material’s ability to withstand
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external forces. In engineering applications, mechanical properties play a crucial role,
serving as the primary consideration when selecting appropriate materials for a given task.
Various testing methods, such as tensile, bending, and compression tests, are employed
to determine these mechanical properties [14–16]. In this research, particular attention is
given to flexural strength, which refers to a material’s ability to withstand a load or external
force [17].

The flexural strength of carbon fiber/epoxy resin composites is influenced by var-
ious variables, including ply orientation, the number of layers, manufacturing process,
and the percentage of graphite filler. Among these variables, ply orientation and the
number of carbon fiber layers are considered as primary factors that significantly impact
the flexural strength and other mechanical properties [18–23]. In a study conducted by
M. Ghasemi et al. (2016) [18], polymer matrix composites (PMCs) using glass fiber/epoxy
composites were subjected to thermal cycling, which involved varying temperature, ply
orientation, volume of fiber, and the number of heating cycles. Their study revealed that op-
timal mechanical properties were attained when the ply orientation was at 0◦ and consisted
of 8 layers in all cases. Furthermore, increasing the temperature enhanced the bonding
between the fiber and the matrix, leading to improved mechanical properties. Another
study by M. Ataeefard et al. (2014) [24] examined toner powder comprising a mixture of
polystyrene and acrylic polymer using scanning electron microscopy (SEM) to analyze the
size, shape, and cohesion of the polymer. Their research demonstrated that heating the
toner resulted in improved binding between the two materials, particularly with the use of
polystyrene acrylic. Moreover, the morphology analysis revealed that the incorporation of
carbon particles in the toner enhanced the electrical conductivity of the material.

To determine the flexural strength when changing ply orientation and number of
layers, multiple specimens must be tested for reliable results. However, this can lead to
long production and testing times. Therefore, methods have been developed to reduce
the time and materials required to form test specimens by predicting the flexural strength
of materials. Nowadays, various innovative methods (such as artificial intelligence (AI),
fuzzy) can be used to predict the interested things [25,26]. Artificial intelligence (AI) is
a science of technology that has developed computer systems to perceive the process of
thinking, acting, reasoning, adaptation, inference, and functioning of the human brain. AI
is used in many lines (i.e., industry, surveying, and research) [27–29]. There are various
methods for processing AI to accurately predict values of interest, and the most popular
and suitable method for numerical analytics is the artificial neural network (ANN) [30].

The ANN method is an automated learning technique that mimics the operation of
human neural networks (neurons). The ANN system is constructed by overlapping several
layers and learning sample data, which are then used to detect patterns or classify the
data so that the neural network system can process data as complexly as the human brain.
Therefore, the ANN’s hidden layer must have multiple layers to process data sequentially,
enabling it to compute more complex tasks [31–35]. For instance, M. Kazi et al. (2020) [36]
presented an approach to using the ANN method to design cotton fiber-reinforced polymer
composites with polypropylene to identify the amount of cotton fiber that affects the opti-
mum mechanical properties. The input data included initiation energy, propagation energy,
total energy, ductility index, tensile strength, modulus of elasticity, percentage elongation,
and net weight of fiber, while the output data predicted the optimum filler content. Based
on the results of the artificial intelligence method, the developed ANN could predict the
optimum filler content of cotton fibers by considering the input mechanical properties.
Recent research by S. A. Martini et al. (2023) [37] investigated the mechanical properties
of recycled concrete aggregate (RCA). The researchers blended granulated blast-furnace
slag and fly ash with RCA in various proportions (0, 20, 40, 60, and 100 percent). At varied
time intervals (3 days, 7 days, and 28 days), uniaxial compressive and flexural tests were
performed. Their study aimed to evaluate the impact of recycled aggregates using machine
learning techniques. The findings demonstrated that the use of high levels of fly ash re-
placement (30%) combined with a high content of RCA (60% and 100%) resulted in higher
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compressive strength after 28 days compared to other mixtures. Regarding the equation
developed to predict compressive strength at 3 days, it yielded satisfactory results, with
an R2 value exceeding 0.80. Moreover, the proposed equation for predicting compressive
strength at 28 days and 7 days proved to be highly accurate, with an R2 value above 0.90.
These results highlight the potential of machine learning in analyzing and predicting the
mechanical properties of recycled concrete aggregates. By leveraging such techniques,
researchers and engineers can gain valuable insights and optimize the use of recycled
materials in construction applications. A.R. Knowlton et al. (2021) [38] investigated com-
posite materials using carbon nanotubes in combination with cement to develop composite
materials. To obtain accurate and similar values before analysis, the data were validated
and normalized with the number of hidden layers and neurons in each hidden layer to
fit the data. They found that using two hidden layers and 20 neurons provided the most
accurate prediction value. In a recent study conducted by Abushanab A. et al. (2023) [39],
the flexural strength of reinforced concrete beams was evaluated using machine learning
(ML) techniques. Various models, including SVM, DT, ADB, and GB, were employed for
analysis. The dataset was randomly initialized, with 80% of the data used for training and
the remaining 20% for testing. The GB model demonstrated the highest predictive accuracy
among the tested models, as evidenced by the R2 values and the lowest maximum error.
These results indicate that the GB model can effectively predict the flexural strength of
reinforced concrete beams. Using machine learning, researchers can improve their under-
standing of the behavior of concrete beams and make precise predictions. This study’s
findings contribute to advancing machine learning (ML)-based techniques in structural
engineering, and offer valuable insights for optimizing the design and analysis of reinforced
concrete structures.

Artificial neural network prediction has many algorithmic methods (i.e., Levenberg–
Marquardt: LM, Bayesian regularization: BP, scaling conjugate gradient: SCG). The choice
of algorithm depends on the extent of the data and the amount of data [40–44]. Jiaojiao F.
(2018) [41] studied the estimated monthly mean daily global solar radiation using the neural
network approach with the LM and BP algorithms. The results showed that both algorithms
can predict the utilization of solar and heat energy, with a root mean squared error (RMSE)
of 1.34 MJ·m−2. SCG is a method that is suitable for predicting information with a width
of the dataset to reduce the scope before prediction. The LM algorithm is widely used
for predicting mathematical data, and can reduce the range between mathematical data.
Therefore, the LM algorithm is appropriately used in this research [42].

Building upon the existing literature, the primary objective of this study is to investi-
gate the strength characteristics of carbon fiber/epoxy composites. It is worth noting that
the production process of composite materials is relatively costly when compared to the
expense of the materials themselves. Consequently, the focus of this research is to minimize
the expenses associated with composite molding by accurately predicting the flexural
strength. Conducting a significant number of tests for each case can be quite expensive.
In order to mitigate the costs associated with material testing, the potential of artificial
intelligence (AI) has been explored as a means of accurately predicting material strength.
This research, in particular, concentrates on predicting the flexural strength derived from
the 3-point bending test. By harnessing the power of AI to forecast flexural strength,
the objective is to develop a valuable tool applicable to various scenarios, eliminating
the necessity for new manufacturing processes, while still ensuring the desired level of
flexural strength.

2. Methodology
2.1. Manufacturing

In this section, the manufacturing process of carbon fiber/epoxy composites is ex-
amined as a significant factor influencing their mechanical properties. The comparison
is drawn explicitly between two methods: vacuum bagging and vacuum infusion. Addi-
tionally, the effect of adding graphite fillers to the matrix at various ratios is explored. By
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delving into these manufacturing aspects, a comprehensive understanding of how they
impact the mechanical properties of carbon fiber/epoxy composites can be achieved.

2.1.1. Materials

In this study, a 3 K carbon fiber fabric was employed, woven in a 1 × 1 plain weave
pattern, with a weight of 200 g/m2 and a density of 1.8 g/cm3. The chosen matrix ma-
terial is ER550, an epoxy resin, with a resin-to-hardener ratio of 100:35. Furthermore, a
graphite filler with a particle size of 5 µm was incorporated into the composite material as a
filler component.

2.1.2. Preparation of Specimens

During the specimen preparation process, the resin and graphite filler are meticulously
blended at varying ratios of 5 wt%, 7.5 wt%, 10 wt%, 12.5 wt%, and without any graphite
filler to create the matrix. After reaching the desired ratios, a hardener is introduced into
the mixture, enabling the manufacturing process of the carbon fiber/epoxy composite.
Subsequently, the carbon fiber fabric is integrated with the resin–filler mixture to form
the composite material. The specific manufacturing conditions for the carbon fiber/epoxy
composite are detailed in Table 1. The manufacturing scope, as outlined in Table 1, consists
of 103 specimens comprising 8 layers of fabric, which were adopted from the study by
Phunpeng V. et al. [20]. The remaining 384 specimens were newly manufactured for this
research. Figure 1 depicts an example of a specimen with eight layers of carbon fabric
and graphite filler in a [0◦/90◦]4s configuration. In Figure 2, a completed manufacturing
sample is illustrated, showcasing various boundaries. For instance, the specimen labeled
as “200_VB_5CF1_0%” in Figure 2 refers to the use of carbon fabric with a weight of
200 g/m2, produced through a Vacuum Bagging (VB) process. It comprises five layers of
carbon cloth arranged in a [0◦/90◦/0◦/90◦/0◦] configuration, with no graphite filler (0%
content). The numbers 3, 20.98, and 1.2 correspond to the quantity of specimens, width, and
thickness, respectively.
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Table 1. Condition of manufacturing of carbon fiber/epoxy composite.

Number of
Layers Ply Orientation Manufacturing Graphite Filler

(wt%)
Number of
Specimens

4

[0◦/90◦]2s

Vacuum bagging
and

Vacuum infusion
0

16
[45◦/−45◦]2s 16

[0◦/45◦]2s 16
[90◦/45◦]2s 16
[0◦/−45◦]2s 16

[90◦/−45◦]2s 16

5

[0◦/90◦/0◦/90◦/0◦] 16
[45◦/−45◦/45◦/−45◦/45◦] 16

[0◦/45◦/0◦/45◦/0◦] 16
[90◦/45◦/90◦/45◦/90◦] 16
[0◦/−45◦/0◦/−45◦/0◦] 16

[90◦/−45◦/90◦/−45◦/90◦] 16

6

[0◦/90◦]3s 16
[45◦/−45◦]3s 16

[0◦/45◦]3s 16
[90◦/45◦]3s 16
[0◦/−45◦]3s 16

[90◦/−45◦]3s 16

7

[0◦/90◦/0◦/90◦/0◦/90◦/0◦] 16
[45◦/−45◦/45◦/−45◦/45◦/−45◦/45◦] 16

[0◦/45◦/0◦/45◦/0◦/45◦/0◦] 16
[90◦/45◦/90◦/45◦/90◦/45◦/90◦] 16

[0◦/−45◦/0◦/−45◦/0◦/−45◦/0◦] 16
[90◦/−45◦/90◦/−45◦/90◦/−45◦/90◦] 16

8

[0◦/90◦]4s

Vacuum bagging
and

Vacuum infusion

0 11
5 11

7.5 10
10 10

12.5 10

[−45◦/45◦]4s

Vacuum bagging
and

Vacuum infusion

0 10
5 10

7.5 11
10 10

12.5 10

2.1.3. Vacuum Bagging and Vacuum Infusion Processes

In this step, a vacuum bagging process is applied by laying down a carbon fiber cloth
and adding a matrix (i.e., epoxy resin mixed with graphite filler and hardener) to each
layer of carbon fiber fabric. After that, the process of sucking the air out with a pressure of
−0.8 bar was applied, and the specimen was heated in an oven at 100 ◦C for 2 h.

The vacuum infusion process uses a manufacturing method similar to vacuum bagging
process. Instead, a vacuum system is used to guide the matrix into the fabric layer and
distribute it across the carbon fibers on the mold. The pressure is maintained at −0.8 bar
for 15 min, after which the specimen is left to dry for 2 days, and then heated in an oven at
100 ◦C for 2 h. This would make it clearer and more concise [20]. An example of a specimen
in the case of eight layers of carbon fabric with graphite filler in [0◦/90◦]4s is shown in
Figures 1 and 2.
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2.1.4. Scanning Electron Microscopy (SEM)

In the study of carbon fiber/epoxy composites, the researchers examined the carbon
fibers and graphite filler using scanning electron microscopy (SEM) spectroscopy. The
carbon fibers and graphite filler were carefully positioned on a specimen stand, and then
gold-plated through electron deposition for a duration of 2 min. Subsequently, the carbon
fibers and graphite filler were subjected to SEM spectrophotometry to observe and analyze
their respective characteristics. By progressively increasing the magnification, detailed
images of the fiber and filler characteristics were captured, as depicted in Figure 1.

2.1.5. Testing for Flexural Strength

The objective of this research was to evaluate the flexural strength using the 3-point
bending test. The motivation for this study stems from its connection to previous research
conducted on hybrid composites with waste graphite fillers for UAVs [20]. Considering
the wings and other structural components of UAVs, it becomes evident that tensile and
compression forces contribute significantly to bending. Hence, the focus on the bending
test in this research is justified, as it helps assess the material’s ability to withstand bending
stresses in relevant applications. The test was performed utilizing a universal testing
machine (UTM) with a 100 kN capacity, in accordance with the ASTM D790-02 standard.
The crosshead speed was set to 5 mm/min, and the base width was 100 mm. The specimens
used for testing had dimensions of 191 × 20 × 2 mm3. To determine the flexural strength,
the following equation was employed:

σ =
3FL
2bt2

where σ is flexural strength, F is the maximum load, L is base width, b is width of the
specimen, and t is the thickness of the specimen [43].

2.2. Factors Affecting Flexural Strength

The objective of the study was to investigate the effect of varying manufacturing
parameters on the mechanical properties of composite materials. Various factors, such as ply
orientation, number of fabric layers, and infill, have been shown to impact flexural strength
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in previous research. Nonetheless, this study investigates the effect of a particular variable
on flexural strength. The research demonstrates that the calculation of flexural strength is a
crucial variable that has a direct effect on the thickness and width values derived from the
flexural strength equation. Once the manufacturing of the carbon fiber/epoxy composite
with graphite filler is completed, the specimen will be tested for flexural strength using
the 3-point bending test, and the data collected will include the flexural strength values.
In finding factors that affect flexural strength among the many methods of production,
this research conducted studies related to factors and predictions. Chong S.S et al. [44]
studied the intensity of color by using the method of finding an equation that can calculate
or predict color intensity by various methods. Multiple linear regression is another way
to find color intensity, by choosing from factors that affect the previous variables studied.
This method will facilitate the identification of factors that impact flexural strength. This
research will collect flexural strength data while varying width, thickness, ply orientation,
manufacturing parameters, and weight percentage of graphite filler. These obtained values
will be analyzed using the IBM® SPSS® Statistics 22.0 program, specifically employing the
linear regression method. The researcher has observed a linear trend in the data, indicating
the suitability of the linear regression method for prediction purposes. The reliability of the
prediction results further supports the selection of this method for the study [45].

2.3. Normalization

Normalization involves transforming or scaling existing input data to a common
range to ensure equal importance and avoid biases in the training process. In the case
of the 103 datasets, normalization was applied as a preprocessing step. Initially, the R-
squared (R2) value was used as a measure of accuracy, which provided a reliable criterion.
However, it was observed that the mean squared error (MSE) value was high, likely
due to data anomalies and variations in the range of parameter values. To address this
issue, training was conducted using a low learning rate to ensure better convergence and
improved performance during the normalization process. To address the mentioned issue,
the normalization method was employed to mitigate the problem of high MSE values
and ensure that the R2 value approaches 1, indicating accurate and reliable data. In this
context, the boundary set for normalization was defined as 0 to 1 across the 103 datasets.
By applying various algorithms to these datasets, the one yielding the best prediction
performance for flexural strength was selected. This chosen algorithm was then utilized
for the 487 datasets, encompassing the entire dataset. For these 487 datasets, a length
normalization range of −1 to 1 was set. The entire process was verified and implemented
using the MATLAB® R2022a program.

2.4. Evaluation of Prediction Errors

This research requires the selection of an algorithm for prediction by considering the
accuracy from MSE and R2. After careful consideration, the LM and SCG algorithms of the
ANN with MATLAB® R2022a program were selected. MSE and R2 are selected for training,
with the formulas as follows:

MSE = ∑N
i=1

(yi − ŷi)
2

N

R2 = 1 − ∑ (yi − ŷi)
2

∑ (yi − y)2

where N is the number of data, yi is true value at data i, ŷi is prediction value at data i, and
y is an average value.

2.5. Hidden Layers

In this research, the determination of the optimal number of hidden layers was con-
ducted using the MATLAB® R2022a program. The nntool function was utilized to iterate
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through different configurations of hidden layers and assess their impact on prediction
accuracy. The process involved adjusting the number of hidden layers within the range of 1
to 10, with each hidden layer containing 10 neurons. The criterion for selecting the best
configuration was based on the adjustment of the mean squared error (MSE) and R2 values.
The boundaries of the hyperparameters were defined in accordance with Table 2 (applied
to the 103 datasets) and Table 3 (applied to the 487 datasets).

Table 2. Setting parameters of ANN.

Parameters Description

Number of input layer 1
Number of output layer 1
Number of hidden layers 7
Learning rate 0.01
Activation function Sigmoid
Number of epochs 1000
Algorithm LM and SCG
The number of hidden neurons 10
Number of datasets 103
Training dataset 70% (73 data)
Validation dataset 15% (15 data)
Testing dataset 15% (15 data)
Error function MSE
Initializer Random

Table 3. ANN parameters of carbon fiber/epoxy composite.

Parameters Description

Number of input layer 1
Number of output layer 1
Number of hidden layers 1–10
Learning rate 0.01
Activation function Sigmoid
Number of epochs 1000
Algorithm LM
The number of hidden neurons 10
Number of datasets 487
Training dataset 70% (341 data)
Validation dataset 15% (73 data)
Testing dataset 15% (73 data)
Error function MSE
Initializer Random

3. Results
3.1. Analyzing the Factors Affecting Flexural Strength

In analyzing the data, the input and dependent variables must be selected first, in
order to analyze the data by the IBM® SPSS® Statistics 22.0 program. In this research, the
initial variables are width, thickness, ply orientation, manufacturing, and the percentage
of graphite filler (wt% of graphite), while the dependent variable is the flexural strength.
The accuracy of the equation for predicting the flexural strength from the initial variables is
determined by the R2 value. The criteria value for determining the factors that affect the
dependent variable is set to 0.05, indicating that the variable being studied affects 95% of
the dependent variable. If the significance value from the analysis results is less than 0.05,
the predetermined variable will be considered a factor that significantly affects the flexural
strength. Table 4 shows that the thickness and ply orientation have the greatest effect on
flexural strength, while manufacturing and percentage of graphite filler are minor factors
that affect flexural strength.
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Table 4. Factors affecting flexural strength.

Coefficient a

Model Significant Meaning

Thickness 0.000 It greatly affects the flexural strength
Width 0.240 Affects the flexural strength
Ply orientation 0.000 It greatly affects the flexural strength
Manufacturing 0.001 It greatly affects the flexural strength
wt% of graphite 0.001 It greatly affects the flexural strength

a. Dependent Variable Flexural strength.

Based on the analysis conducted using the IBM® SPSS® Statistics 22.0 program to
determine the factors influencing flexural strength, this research identified the following
input variables that significantly impact flexural strength: thickness, width, ply orientation,
manufacturing, and wt% graphite filler. These variables were found to have a substantial
influence on the flexural strength of the material.

3.2. The Algorithm to Predict Flexural Strength

In this section, a suitable algorithm is discussed for predicting the flexural strength of
carbon fiber/epoxy composites to ensure accurate results. To predict the flexural strength,
this research utilized five input variables: percentage of graphite filler, manufacturing
process, ply orientation, width, and thickness. The output variable was the flexural strength
itself. To achieve this, the research employed the Levenberg–Marquardt backpropagation
(LMBP) and scaled conjugate gradient (SCG) algorithms of the artificial neural network
(ANN) implemented in the MATLAB® R2022a program. The ANN architecture consisted
of seven hidden layers (specifically, an architecture of 5-7-1-1), as shown in Table 5. This
number of hidden layers was determined as the optimal choice based on the analysis of
103 flexural strength datasets. The dataset considered in this study consists of carbon
fiber/epoxy composite testing data at eight layers, resulting in a total of 103 datasets. These
datasets were divided into training dataset (70%, 73 datasets), validation dataset (15%,
15 datasets), and testing dataset (15%, 15 datasets). The data within each dataset were
randomly selected to ensure the representative nature of the samples used in this study. By
choosing these dataset boundaries, the predictions can be made with higher accuracy, as
the training data are shared with the validation data, leading to improved data accuracy.
The artificial neural network (ANN) parameters were set according to the specifications
shown in Table 2. Additionally, Figure 3 illustrates the procedure and steps involved in
utilizing the artificial neural network prediction methods.

Table 5. Comparison of MSE and R2 values to find the optimal number of hidden layers from
103 datasets.

Architecture Testing Set MSE Training Set MSE Validation Set MSE

5-1-1-1 2.61 × 10−2 1.37 × 10−2 1.05 × 10−2

5-2-1-1 8.92 × 10−3 1.01 × 10−2 1.88 × 10−2

5-3-1-1 1.53 × 10−2 8.73 × 10−3 5.06 × 10−3

5-4-1-1 8.96 × 10−3 3.79 × 10−3 1.13 × 10−2

5-5-1-1 1.11 × 10−2 2.14 × 10−2 9.81 × 10−3

5-6-1-1 5.78 × 10−3 2.79 × 10−3 3.75 × 10−3

5-7-1-1 A 4.4 × 10−3 2.08 × 10−3 2.41 × 10−3

5-8-1-1 5.22 × 10−3 3.54 × 10−3 1.63 × 10−2

5-9-1-1 1.40 × 10−2 2.80 × 10−3 7.89 × 10−3

5-10-1-1 1.61 × 10−2 1.14 × 10−2 1.07 × 10−2

A The selected ANN network structure.
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Using the algorithms of LMBP and SCG, the flexural strength values of both algorithms
were compared with the experimental values, as shown in Figure 4. It is found that both
algorithms can predict the flexural strength close to the experimental values. To be able
to indicate which of the two algorithms can predict flexural strength closer to the results
of the experiment, the MSE and R2 of the testing data are considered, as shown in Table 6.
Prediction using the LM algorithm can predict the flexural strength more accurately than
the SCG algorithm. The MSE value of the LM algorithm from the testing data was 0.0044,
which was less than the prediction by the SCG algorithm, which was 0.00838, indicating that
the LM algorithm’s flexural strength prediction error value demonstrated less prediction
error than the SCG algorithm. The R2 value from testing with the LM algorithm was 0.9926,
which was closer to 1 than the prediction from the SCG algorithm, with an R2 of 0.9791,
indicating that the LM algorithm was more suitable for predicting the flexural strength
than the SCG algorithm.

Table 6. Appropriate algorithms were used to predict flexural strength.

Method
R2 MSE

Test Overall Test Overall

LM b 0.9926 0.9925 4.4 × 10−3 4.3 × 10−3

SCG 0.9791 0.9823 8.38 × 10−3 9.06 × 10−3

b LM is a suitable method for predicting flexural strength more than SCG.
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3.3. The Appropriate Number of Hidden Layers for the Data

To predict the flexural strength of the 487 tested specimens, an equal number of
datasets, i.e., 487 datasets, will be used with the MATLAB® R2022a program. It is important
to note that when the number of datasets changes, normalization and optimization of
the number of hidden layers may be necessary to ensure that the MSE and R2 values
fall within the desired boundaries. This adjustment is required because the data values
must be appropriately scaled to fit the program’s requirements. After the program makes
predictions based on the normalized data, it is necessary to convert the data back to its
original form in order to interpret the predicted values from the artificial neural network
(ANN) with the LM algorithm. The hyperparameters of each model were optimized using
the LM algorithm during training. The specific data to be considered in this process are
presented in Table 3.

The databases were randomly divided into three sets: training data, validation data,
and test data, comprising 70%, 15%, and 15% of the total data, respectively. The training
data are used to develop and optimize the predictive model, while the test data are the
final dataset used to evaluate the model’s performance. In order to determine which model
can best predict the flexural strength, an exploration of the optimal number of hidden
layers is conducted. The learning rate is adjusted within the range of 0.1 to 0.01, decreasing
by increments of 0.01. It was observed that a learning rate of 0.01 yielded the highest
prediction accuracy. By selecting 1000 epochs, the researcher aims to set a wide range
of epochs to allow for convergence and capture the complexity of the data. Common
statistical performance metrics such as mean squared error (MSE) and R-squared (R2) are
utilized to measure the predictive performance and assess the improvement in model
performance [46].

Finding the optimal quantity of hidden layer datasets is required [47]. In this section,
considering the number of hidden layers from 1 to 10, the appropriate number of hidden
layers for the 487 datasets used to predict flexural strength is shown in Table 7. The suitable
number of layers for the dataset used to predict flexural strength was found to be 5-10-1-1,
which includes 5 input layers, 10 hidden layers, 1 output layer, and 1 bias layer within
the artificial neural network (ANN) architecture, as shown in Figure 5. This prediction
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demonstrates an MSE value of less than 0.01, and the R2 value of training, validation, and
testing is greater than or equal to 0.95. This ensures that the error value of flexural strength
prediction does not exceed the specified boundary.

Table 7. Comparison of MSE and R2 values to find the optimal number of hidden layers from
487 datasets.

Network
Structure

Training MSE Validation Testing

MSE R2 MSE R2 MSE R2

5-1-1-1 2.24 × 10−2 0.57 2.67 × 10−2 0.39 2.40 × 10−2 0.55
5-2-1-1 1.25 × 10−2 0.79 1.15 × 10−2 0.79 1.86 × 10−2 0.70
5-3-1-1 1.36 × 10−2 0.76 1.05 × 10−2 0.81 1.09 × 10−2 0.85
5-4-1-1 1.05 × 10−2 0.83 1.10 × 10−2 0.82 1.16 × 10−2 0.79
5-5-1-1 9.13 × 10−3 0.83 1.45 × 10−2 0.82 1.17 × 10−2 0.84
5-6-1-1 5.88 × 10−3 0.90 9.33 × 10−3 0.86 1.06 × 10−3 0.84
5-7-1-1 3.95 × 10−3 0.93 7.02 × 10−3 0.93 4.90 × 10−3 0.93
5-8-1-1 5.47 × 10−3 0.91 6.60 × 10−3 0.91 9.70 × 10−3 0.85
5-9-1-1 3.29 × 10−3 0.95 3.91 × 10−3 0.94 3.83 × 10−3 0.94

5-10-1-1 c 2.84 × 10−3 0.95 3.12 × 10−3 0.95 3.90 × 10−3 0.95
c The selected ANN network structure.
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The convergence of data, taking into account the error or MSE values, can be observed
in Figure 6, considering the 5-10-1-1 prediction structure. The data initially started with
higher error values and gradually adjusted to reduce the errors, resulting in more accurate
predictions. As depicted in the figure, all three sets of data (training, validation, and
testing) converge towards the line representing the lowest error reduction at epoch 94. This
indicates that the model achieved optimal performance in terms of minimizing errors and
producing reliable predictions.

To evaluate the accuracy of predicting the output data (flexural strength), the R2 value
was considered, which is represented in the regression plot. Figure 7 displays the R2 values
for the training, validation, testing, and all data sections. The scatter plot in the Figure 7
shows that the data points (represented by circle symbols) cluster around the fit line or
regression line, indicating a strong tendency for the predicted data to align closely with
the true values. The closer the fit curve is to the dotted line or the Y = T line, the lower the
predictive error, indicating a suitable dataset for prediction purposes.
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3.4. Comparison of Predicted Values with Experimental Values

The flexural strength prediction from the ANN with the LM algorithm compared
with the experimental results is shown in Figure 8. It was found that the flexural strength
predicted using the LM algorithm was quite close to the flexural strength obtained from
the experimental results, and MSE and R2 values of all predicted data were 0.003039
and 0.95274, respectively. This shows that the prediction of flexural strength of carbon
fiber/epoxy composites using the ANN method results in high accuracy.
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Figure 8. Comparison of the flexural strength of carbon fiber/epoxy composites predicted using the
LM algorithm with experimental results.

Using the ANN method with the LM algorithm and five input data (percentage of
graphite filler, manufacturing, ply orientation, width, and thickness), the flexural strength
was predicted. The MSE values of testing and all data were found to be 0.0039 and 0.003039,
respectively, which were within the set boundary of the MSE value being lower than 0.001,
indicating a low error value and highly accurate prediction. The R2 values of testing
and all data were 0.95 and 0.95274, respectively, close to 1, which further confirms the
high accuracy of the predicted data using this algorithm. In general, the sample size
determines the number of datasets required for precise and accurate predictions. This
research designates a case study, as shown in Table 1, which provides a comprehensive
overview of the investigation. The results reveal that the MSE is less than 0.001 and R2 is
greater than or equal to 0.95, indicating a high level of prediction accuracy and a sufficient
number of samples for this study.

3.5. Prediction the Flexural Strength

By comparing the flexural strength predicted by the ANN method with the flexural
strength obtained from the experimental results, the accuracy of this model can be de-
termined. Therefore, it can be applied in practice to predict the flexural strength when
the data are not in the modeled dataset. To test the accuracy of the model, three sets of
predictive data were considered, as shown in Table 8, which includes the input data for
carbon fiber/epoxy composite manufacturing.
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Table 8. Carbon fiber/epoxy composite manufacturing data or predictive input.

Dataset Thickness (mm) Width (mm) Ply Orientation Manufacturing %wt Graphite
Filler (wt%)

1 2.1 23 [−45 ◦/45◦]4s Vacuum bagging 12.5
2 2 17 [0◦/90◦]4s Vacuum bagging 10
3 2.4 20.2 [−45◦/45◦]4s Vacuum infusion 7.5
4 0.9 18 [0◦/−45◦]s Vacuum bagging 5
5 1.63 19.8 [0◦/90◦/0◦/90◦/0◦/90◦/0◦] Vacuum infusion 0
6 1.2 20.6 [0◦/45◦/0◦/45◦/0◦] Vacuum infusion 0
7 0.8 20.5 [0◦/90◦]3s Vacuum bagging 0
8 1.1 20.34 [90◦/−45◦/90◦/−45◦/90◦] Vacuum infusion 0

In order to predict the flexural strength, the data to be predicted must be normalized to
the available data to obtain a boundary value between −1 and 1, according to the boundary
of the normalized flexural strength. To obtain the predicted value by the flexural strength
prediction results of the data in Table 7, the prediction is shown in Table 9.

Table 9. Comparison data of flexural strength between prediction and experimental results.

Dataset Flexural Strength
from Prediction (MPa)

Flexural Strength from
Experimental (MPa) MSE R2

1 159.8931 152.5143 2.33 × 10−10 0.9977
2 394.8466 384.621 4.38 × 10−7 0.9797
3 317.87 296.05 2.03 × 10−7 0.9558
4 128.1012 122.5136 8.49 × 10−10 0.9999
5 679.3791 668.4299 4.99 × 10−7 0.9900
6 330.0794 327.7892 6.41 × 10−10 0.9999
7 382.3560 358.2715 1.07 × 10−6 0.9698
8 347.8172 339.9457 3.46 × 10−7 0.9639

The prediction result of this model is close to the experimental result, with the MSE
value being less than 0.01, indicating that the error in the prediction of flexural strength
is small, and R2 is more than 0.95, indicating a high prediction accuracy. Therefore, this
research can be applied to predict flexural strength without wasting materials, while
shortening the testing time.

From the predictions, flexural strength should be compared with other studies to test
whether the prediction model can predict the flexural strength of other works. The tendency
for accuracy in determining flexural strength verifies the reliability of the manufacturing in
this research. This result showcases the reliability of the manufacturing process employed
in this research, which is comparable to the test specimens used in other studies. Therefore,
the prediction results of flexural strength were compared in this research. The current
prediction of flexural strength and values from other studies are shown in Table 10.

Table 10. Comparison of flexural strength in this research with other studies.

Specimens Flexural Strength from
Researcher (MPa)

Flexural Strength from
Prediction (MPa) (Present Work)

Flexural Strength from
Experimental (MPa)

(Present Work)

[−45◦/45◦]4s 105.49 [48] 92.78 96.13
[0◦/90◦/0◦/90◦/0◦] 754 [49] 648.5 635.89

[45◦/−45◦/45◦]s 167.39 [50] 135.01 149.06

It can be seen that the flexural strength of the ANN prediction method and the
experimental results are similar. Similarly, when comparing the flexural strength with other
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studies, it was found to be close to the prediction and value from this study. Therefore, it
can be concluded that the flexural strength prediction model of this research can be used to
predict values in other research, to the extent specified by the research. By adhering to the
specified input parameters, researchers can ensure that the manufactured material meets
the desired requirements. This enables the prediction of flexural strength without the need
for time-consuming and resource-intensive testing. By accurately predicting the flexural
strength, valuable time and resources can be saved in the material manufacturing process.

4. Conclusions

The objective of this research is to predict the flexural strength of carbon fiber/epoxy
composites. A dataset comprising 487 carbon fiber/epoxy composites was fabricated
and used for analysis. The input parameters considered in the study are ply orientation,
manufacturing process, percentage of graphite fillers, width, and thickness. The output
parameter of interest is the flexural strength. To accomplish the prediction task, this research
employed artificial neural network (ANN) methods within the MATLAB® R2022a program.
The details of the research methodology and findings are summarized as follows.

1. When taking the values from the 3-point bending test of carbon fiber/epoxy
composite to determine the factors that effect to the flexural strength values, it can be
seen that the ply orientation, thickness, manufacturing, and percentage of graphite filler
significantly affect the flexural strength.

2. Algorithms that can accurately predict flexural strength with input data within
the scope specified by this research are the LMBP and SCG algorithms. They have high
prediction accuracy and reduced prediction error, which are determined from the MSE and
R2 values, with an MSE greater than 0.01 and R2 greater than or equal to 0.95.

3. To predict the flexural strength of carbon fiber/epoxy composites in various cases, a
total of 487 datasets were generated and fed into the learning program using the artificial
neural network (ANN) method. The Levenberg–Marquardt backpropagation (LMBP)
algorithm was employed, and the results indicated that the prediction of flexural strength
achieved mean squared error (MSE) values of 0.0039 for the testing dataset and 0.003039
for all the data. Furthermore, the coefficient of determination (R2) was assessed for both
the testing dataset and all the data, yielding values of 0.95 and 0.95274, respectively. These
R2 values align closely with the predefined boundaries, demonstrating the accuracy and
effectiveness of the prediction model.

In order to predict the flexural strength based on this research, the input and output
data specified within the research scope are the key requirements. The input data comprise
ply orientation, manufacturing method, graphite filler percentage, breadth, and thickness.
On the other hand, the output data must consist of the flexural strength, as it serves as the
basis for implementing the prediction model in this study. Moving forward, the researcher
intends to broaden the range of inputs used to predict flexural strength across various
manufacturing applications. This expansion will involve the development of more accurate
predictions, not only for flexural strength, but also for other vital mechanical properties
such as tensile strength and impact strength. By incorporating these enhancements, this
research aims to provide a comprehensive understanding of the material’s performance in
diverse scenarios.
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