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Tuğba Selcen Atalay Kalsen 1 , Hakan Burak Karadağ 1,* and Yasin Ramazan Eker 2
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Abstract: In this study, the mechanical behavior of aluminum honeycomb (AHC) sandwich structures
filled with ethylene vinyl acetate copolymer (EVA) foam in situ under out-of-plane compression
loading was investigated experimentally. Both non-filled and EVA-foam-filled sandwich specimens
with three different AHC core cell sizes (5.20, 6.78, and 8.66 mm) were studied to correlate the foam-
filling effect with a key structural parameter. The results showed that compression characteristic
properties such as peak stress, plateau stress, and absorbed energy per unit volume of the sandwich
structure increased with EVA foam filling. The structure showed high recoverability when the
compression loading was removed due to the viscoelastic nature of EVA foam. Cored EVA sandwich
with 8.66 mm AHC cell size was recovered at 44% of the original thickness. This result promises
groundbreaking applications such as impact-resistant and self-healing structures. The microstructures
were also observed using scanning electron microscopy (SEM) to investigate the failure and the
recoverability mechanisms.

Keywords: aluminum honeycomb; out-of-plane compression; ethylene vinyl acetate foam; in situ
foaming; springback

1. Introduction

Recently, the search for lightweight structural materials, which are substantial for
critical application areas such as aviation, space, automotive, and railways, has been the
driving force in the development of lightweight and stiff structures. The use of cellular
solids such as honeycomb, metal foam, polymer foam, and their combinations, which can
be produced in different configurations and have specific mechanical properties, especially
in thin-walled structures, has become increasingly common [1–5]. The AHC, which has
been used as a core material in sandwich structures, has undoubtedly been one of the
most important members of this group. Its specific hexagonal shape ensures that the
cell walls are arranged symmetrically and periodically in the maximum volume using
the minimum amount of material, as seen in the honeycomb of bees in nature. Many
theoretical and experimental studies have been conducted on the mechanical properties and
damage mechanism of AHCs with characteristic geometric parameters such as cell size, wall
thickness, and core thickness [6–12]. According to these studies, the mechanical property
of high strength in the out-of-plane direction compared to the other two in-plane directions
(longitudinal/ribbon and width/transverse to ribbon) due to their anisotropic nature has
been demonstrated [8,13]. Moreover, certain characteristic compression properties, such
as yield strength, load-bearing capacity, plateau stress, and densification point, that affect
their usability in critical applications could be obtained from the mechanical behavior of an
AHC under quasistatic out-of-plane loading.
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Recently, reinforcement of cellular materials used as cores made of different base
materials (aluminum [14–16], Nomex [17,18], polycarbonate [19], and paper [20]) with
filling foams, as in thin-walled structures, has shown an increasing trend in the literature
due to its improved specific mechanical properties. Nia and Sadeghi [14] stated that
the mean crushing strength and energy-absorbing capacity of the AHC structures filled
with polyurethane foam at different densities (16, 29, and 52 kg/m3) increased. Their
experimental study also showed that the number of folds increased with the decrease in
the half-wavelength of folds, with a more regular trend in PU-foam-filled honeycomb after
out-of-plane compression [14]. Similarly, Mahmoudabadi and Sadighi [21] investigated the
crushing properties of the PU-foam-filled AHC under quasistatic conditions via an out-of-
plane compression test and investigated the dynamic conditions via a low-velocity impact
test. They reported that the ratio of the peak load to the mean crushing load decreased
in foam-filled samples and that the mean crushing stress increased with foam-filling [21].
Mozafari et al. [22] studied the in-plane compression behavior of a honeycomb structure
filled with PU foam of different densities (65, 90, and 145 kg/m3), and they stated that the
in-plane crushing strength and specific absorbed energy were significantly increased in
the foam-filled AHC. Moreover, Liu et al. [23] investigated the mechanical properties of an
AHC filled with expanded polypropylene (EPP) foam instead of polyurethane foam under
quasistatic compression loadings in both in-plane and out-of-plane directions. Similarly,
Zhang et al. [16] also used EPP-foam-filled honeycomb under dynamic conditions. Their
results indicated that filling with the EPP foam increased the load-bearing capacity of the
honeycomb, especially under lateral compression, and provided an improvement in the
mean strength and initial peak strength under dynamic conditions due to the interaction
between the aluminum cell wall and the foam [16,23]. Additionally, Mohamadi et al. [24]
revealed that the energy absorption capacity of AHC structure increased when filling it
with elastomeric polyurethane foam and emphasized that elastomeric foams could play
an important role in energy absorption applications due to their damping properties and
reversibility versus deformation.

Studies including foam-filled aluminum hexagonal structures have shown that filling
provides reinforcement for the structure concerning its physical and mechanical aspects.
However, the foaming process and polymer foam properties have become significant factors
in the manufacturing of these structures and resultant mechanical properties, considering
the interaction between the aluminum cell wall and the polymer foam. Polymer foams,
except polyurethane, are not recommended for in situ foaming techniques used for filling
hexagonal honeycomb structures. In one study, EPP foam pieces cut in hexagonal cell sizes
were transferred to honeycomb cells after applying adhesive inside; thus, filled sandwich
structures were obtained [16,23]. Such insertion techniques do not seem suitable for the
mass production of large parts, even when assuming that geometrically perfect aluminum
hexagonal structures are produced, and involve economic concerns as they involve extra
processing steps. Consequently, the use of novel polymer foams for filling structures with
critical physical and mechanical properties is becoming increasingly important, especially
considering the in situ foaming process.

Ethylene vinyl acetate (EVA) copolymers, containing thermoplastic ethylene and elas-
tomeric vinyl acetate blocks, are used in wide application areas, such as footwear, sports
equipment, adhesive films, and cable coverings, owing to their variable properties mainly
depending on their vinyl acetate content [25,26]. EVA is also easily processable due to its
low softening temperature, and adding additives such as crosslinking and foaming agents
can modify its physical and mechanical properties [27]. Moreover, EVA has a relatively low
cost when evaluated for a similar polymer group such as thermoplastic polyurethane [27].
Foams made from EVA exhibit high impact resistance, vibration absorption capacity, and
great recoverability characteristics after compression due to their viscoelastic nature [28–30].
Chang et al. [31] demonstrated that the impact absorption is better by EVA foam when
compared with the same density EPP foam when used as cushioning materials for bullet-
proof plates. Moreover, Zhang et al. [32] stated that the compression set, which is inversely
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proportional to the elastic recovery characteristic after releasing the compression loadings
of EVA foam, was significantly lower than that of elastomeric polyurethane. Therefore,
EVA foam has great potential as a filler for reinforcing thin-walled structures due to its
high energy-absorbing capability and providing a characteristic mechanical response under
compressive loading.

The first purpose of this study was to fill ethylene vinyl acetate (EVA) foam into an
AHC via an in situ thermochemical foaming process avoiding thermal and mechanical
damage to aluminum cell walls. The second purpose of this study was to investigate the
out-of-plane compression behavior of novel in situ EVA-foam-filled aluminum hexagonal
sandwich structures considering the interaction between aluminum cell walls and polymer
foam. The novelty of the study is the introduction of EVA copolymer within aluminum
honeycomb via both in situ polycondensation and foaming. Moreover, the compression
behavior of the EVA foam and the AHC was investigated as a sandwich structure with face
sheets actually usable in application areas. The study also investigated the effect of cell size
of both empty and foam-filled AHC and its failure mechanism after compression using
detailed SEM analysis.

2. Materials and Methods

The AHC cores (Al 3005 H19) with different cell sizes, facing sheets (Al 5754), and
polyurethane adhesives were supplied from 6Gen Panel Aerospace Shipbuilding Panel
Industry Inc., Konya, Turkey. The properties of the core material such as cell size, thickness,
and density (calculated according to Bitzer [33]) are given in Table 1.

Table 1. Properties of the aluminum core material.

Specimen Code * Cell Size
(mm)

Foil Thickness
(mm)

Core Thickness
(mm)

Density
(kg/m3)

5.20 >5.20 0.05 10 69.76
6.78 >6.78 0.05 10 53.50
8.66 >8.66 0.05 10 41.89

* F5.20, F6.78, and F8.66 were used as the nomenclature of filled specimens.

Greenflex® ML 50 Ethylene vinyl acetate copolymer (EVA) containing 19% vinyl
acetate (0.941 g/cm3 density at RT, 83 ◦C melting point) was used as the raw material. Com-
mercially available and widely used additives—azodicarbonamide (AZD) as a chemical
blowing agent (97%, Kimteks), zinc oxide (ZnO) as an activator (99%, Melos A.Ş.), and
dicumyl peroxide (DCP) as a chemical crosslinking agent (99%, Promagnus)—were used
for the EVA foaming process. Toluene (Emsure® Grade) used for homogeneously mixing
EVA and additives via solution mixing method was purchased from Merck, Germany.

EVA granules were first dissolved in toluene, which was added at a 1:4 (EVA/Toluene)
ratio calculated as g/mL at approximately its melting temperature (80 ◦C). The process
was carried out until the dissolution of the whole EVA granule. AZD, ZnO, and DCP were
added to the EVA solution as 3 wt%, 3 wt%, and 1 wt%, respectively. After evaporating the
toluene, the mixture was introduced into the honeycomb by hand. To realize foaming, EVA
mixture-filled HC in a square mold was heated at 160 ◦C for 1 h with PID-controlled heat
plates under 20 kg·f.

Aluminum face sheets were bonded to the empty or EVA-filled honeycombs by
polyurethane adhesive. During the process, PU adhesive mix was applied on each 5754 alu-
minum sheets at a constant thickness of 400 µm via a cylindrical baker film applicator.
Afterwards, the sandwich panels were cured at 80 ◦C for 15 min.

The quasistatic compression tests were performed using the SHIMADZU AGS-X
universal (SHIMADZU CORPORATION Analytical & Measuring Instruments Division
Address: 1,NISHINOKYO-KUWABARACHO, NAKAGYO-KU,KYOTO,604-8511, JAPAN)
testing machine at ambient temperature. The foam-filled HC and the unfilled HC sandwich
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panels were placed on a support platen and loaded axially with a movable crosshead at a
rate of 1 mm/min. Three samples were tested for each parameter.

The energy efficiency parameter (E f ) was calculated according to [23]:

E f =

∫ εa
0 σ(ε)dε

σa
(1)

dE f (εa)

dεa
= 0 0 ≤ εa ≤ 1, (2)

where εa denotes the particular strain and σa is the stress at the corresponding strain values.
The strain at the maximum point of E f is the densification initiation strain (εd) based on the
energy efficiency method described by Avalle et al. [34], Tan et al. [35], and Li et al. [36].

The plateau stress (σpl) between the obtained collapse initiation strain (εc0) and the
densification initiation strain (εd) was calculated as described by Sun and Li [37]:

σpl =

∫ εd
εc0

σ(ε)dε

εd − εc0
(3)

Moreover, the plastic energy, which is absorbed (per unit volume) by the material,
obtained from the area under the stress–strain curve between the collapse initiation strain
(εc0) and the densification initiation strain (εd), was calculated according to Equation (4) by
Sun and Li [37]:

Upl =
∫ εd

εc0

σ(ε)dε (4)

where Upl denotes the plastic energy per unit volume.
The springback (εsb%) is defined:

εsb(%) =
hac1 − hac0

hbc
× 100 (5)

where hbc is the initial height/thickness of the sandwich structure before compression; hac0
denotes the height of the sandwich under compression loading, which was obtained from
the force-displacement data of the compression test; and hac1 denotes the specimen’s height
after compression loading was removed. Springback (εsb) also means the temporary defor-
mation ratio (%) according to the initial thickness/height of the sample. The application of
these characteristic compression properties is discussed in Section 3.2.

Thermal analysis was performed with Setaram Labsys Evo (Setaram, Adress: 28 Av.
Barthélémy Thimonnier, 69300 Caluire-et-Cuire, France) simultaneous differential scanning
calorimetry and thermogravimetry under an air atmosphere with 20 mL/min gas flow and
10 ◦C/min for DCP, EVA, and dissolved EVA in toluene (TEVA), and 1 ◦C/min heating rate
for AZD and its mixture with ZnO in order to optimize the in situ foaming process. The
analysis of EVA copolymer chemical structure after and before foaming was performed
using a Thermo Scientific Nicolet iS20 FT-IR Fourier-transform infrared spectrometer (FT-
IR).(Thermo Fisher Scientific Inc., Waltham, MA, USA).

Investigation of the samples’ morphology and failure mechanism was carried out
using a HITACHI SU 1510 scanning electron microscope (Tokyo, Japan) with a tungsten
filament to samples obtained both after and before the compression test. Samples were cut
by an abrasive cutting machine and coated with gold–palladium (for EVA-filled HC) via
sputter before imaging.

3. Results and Discussion

AHC structures are generally manufactured with the adhesive bonding method [33].
These structures are generally manufactured from Al 3000 and 5000 alloys and have a
service temperature of 177 ◦C [33]. Therefore, the foaming temperature of the polymer
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should not exceed the service temperature of the AHC to prevent the debonding of nodes.
Accordingly, the in situ foaming temperature was optimized via thermal analysis. The
production of polymer foam with desired parameters depended on the concentration of
additives and their activation temperature. To understand the foaming process mechanism
of the AZD/ZnO mixture, the thermal behavior of EVA dissolved in toluene (TEVA),
DCP, AZD, and AZD/ZnO mixtures were investigated under air between RT and 250 ◦C.
Compression tests were performed for three EVA-filled AHC sandwich samples with
different cell sizes. Their average values were used to evaluate their performance.

3.1. Production Optimization of Polymer Foam

Figure 1a presents DSC curves of EVA and TEVA. The two endothermic peaks at
60 ◦C and 87 ◦C indicate the existence of two crystalline forms in EVA [38]. The lowest one
indicates the crystal imperfection in the polymer matrix, while the second is related to the
melting of the thicker crystalline form [38,39]. Figure 1a (EVA-TEVA) also shows that the
molecular structure of EVA was not changed when dissolved in toluene. Thus, the solvent
casting method is suitable to introduce chemical agents within the EVA mixture without
any thermal alteration.
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Figure 1b depicts the heat flow and TG curves of DCP used for thermochemical
crosslinking agent. The endothermic peak indicates that the melting of DCP occurs at 47 ◦C.
Then, the exothermic reaction suddenly starts at 154 ◦C and lasts up to 182 ◦C. During this
thermal decomposition stage, DCP generates free radicals that abstract hydrogen atoms to
produce alkyl radicals [40].

Figure 1c,d show the thermogram and DSC curves of AZD and AZD:ZnO (1:1) mix-
ture, respectively. The AZD without ZnO started to decompose via an exothermic reaction
at nearly 175 ◦C and accelerated at 205 ◦C, as seen in Figure 1c. During the decomposition
process, solid and gaseous products occurred from the AZD [41]. ZnO triggered an abrupt



Materials 2023, 16, 5350 6 of 17

degradation of AZD at 175 ◦C, inducing a high heat flow and a high gas volume release
(Figure 1d). In other words, ZnO decreases the activation energy for AZD decomposi-
tion [42]. The baseline slope of the DSC curve at temperatures above 150 ◦C could be
related to the change in the AZD heat transfer due to the liberation of gaseous and degra-
dation of the solid products [43]. The AZD mass loss after the exothermic peak was about
54%, followed by an endothermic peak indicating possible structural recombination above
210 ◦C involving an additional 14% mass loss. With the AZD:ZnO mixture, as expected,
the mass loss was half-reduced at 175 ◦C but not followed with an important endothermic
reaction. An additional 7% mass loss is detected at the end of the thermogravimetric analy-
sis indicating that the possible structural recombination is triggered but slowed down after
AZD activation at the lowest temperature. Finally, since the total AZD loss is comparable
for both samples, it can be considered that ZnO is not chemically present in the product of
activated AZD. Accordingly, the temperature of the in situ foaming of EVA was selected as
160 ◦C for 1 h.

The foaming process consists successively of mechanical reinforcement of the melted
EVA via DCP decomposition, followed by the decomposition of AZD, which involves the
spreading of gas bubbles within the strengthened mixture. Each of the two steps strongly
depends on the other to prevent cell coalescence and provide a sufficient expansion. In
addition, the process time and proportion of the additives played a significant role in the
foaming process. In this study, 1% DCP, 3% AZD, and 3% ZnO mixtures prepared with
EVA (Figure 2a) were in situ foamed at 160 ◦C for 1 h in the AHC structure (Figure 2b). The
weight and volume values of the AHC and the polymer mixture were measured during the
production of hybrid materials. The 0.941 g/cm3 density EVA as raw material decreased
to about 0.38 g/cm3 for the mixture after the in situ foaming process according to these
calculations.
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In order to control the evolution of EVA copolymer chemical structure after foaming,
the FT-IR spectrum of raw EVA was compared with the foam (Figure 3). Both spectra are
almost similar, except for differences in the two regions. Two weak peaks at about 3300 and
3200 cm−1 were not observed on the raw EVA granules that appeared after foaming. These
peaks are attributed to the hydroxyl and peroxide functional groups possibly resulting
from the crosslinking and foaming reaction [44]. The second region is at about 1150 cm−1

ascribed to the stretching of ester (-C-O-C-) bonding, where the EVA granule weak peak
disappears after the EVA foam preparation [45,46]. These results demonstrate that the
foaming is not modifying the fundamental structure of EVA copolymer; it only involves
the formation of new bonding around the oxygen functional groups.

Figure 4 shows the cross-section area of the microstructure of the in situ EVA-foam-
filled AHC structure with different cell sizes of 5.20, 6.78, and 8.66 mm, respectively. EVA
expanded between the aluminum cell walls without any significant shrinkage gap via in
situ foaming method. Additionally, the EVA foam mainly comprised a closed cell structure,
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which affected the compression response of the hybrid sandwich panel as described in
Section 3.2.
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Figure 4. SEM images of the cross-sectional areas of the EVA-filled AHC core with 5.20/6.78/8.66 mm
cell sizes.

3.2. Compression Behavior of Sandwich Panels

The stress–strain curve obtained from the compression test of a typical cellular material
consists of three distinct regions. The first one is the linear elastic region. The nominal
stress increases almost linearly with increasing strain up to the first maximum stress and
ends with the buckling of the cell walls [8]. The collapse initiates at the first maximum
stress, which also indicates the yield strength (plastic deformation) of cellular materials.
The strain value corresponding to the first peak stress is called the collapse initiation strain.
It describes the strain value at which the plateau region begins, and it is the characteristic
of cellular materials. The second stage is the plateau region where the stress is nearly
constant with increasing strain. Large plastic deformations occur in this region, and the
material absorbs most of the energy [47]. Therefore, the plateau stress determines the energy
absorption capacity of the material [37]. The third characteristic region is the densification
stage, where the cell walls contact each other. At this stage, the nominal stress increased
sharply with strain. Cells come too close to each other, causing the structure to densify and



Materials 2023, 16, 5350 8 of 17

increase the stiffness of the material [8,13]. The strain value, which represents the end of
the plateau region and the transition to the densification region, is called the densification
initiation strain (onset densification strain) [36]. This strain value can be determined by the
energy efficiency method, as previously mentioned in the literature [34–36].

Figure 5a,b gives our study’s stress–strain curves for sandwich panels of unfilled and
EVA-foam-filled AHCs with various cell sizes. As can be seen in these figures, the stress–
strain curves from the panels’ compression tests panels consist of three regions: (i) linear
elastic region; (ii) plateau region; and (iii) densification region, similar to the compression
behavior of typical cellular materials. In the elastic region, compressed aluminum cell walls
undergo local deformation as buckling at a certain stress value (peak stress) [8,13,48,49].
Afterward, stress showed a decreasing trend called post-yield softening. In Figure 5a, the
peak stress of the sandwich panels increased as the cell size of AHC decreased from 8.66
mm to 5.20 mm. The same trend was also seen in the stress–strain curves of EVA-foam-filled
HC sandwich panels (Figure 5b). In both unfilled and EVA-filled samples, the highest
mechanical properties are observed with the lowest cell-sized AHC (5.20 mm). However,
the plateau region is shorter for EVA-filled specimens, indicating that densification starts at
low strain values.
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Figure 5. Stress–strain curves of sandwich structures with different cell sizes of aluminum HC:
(a) unfilled aluminum HC; (b) EVA-filled HC.

Microstructural observations of the unfilled honeycomb sandwich panels before and
after compression test were investigated by SEM with both secondary and backscattered
electrons. The cross-sections of the unfilled AHC sandwich panels with 5.20 mm, 6.78, and
8.66 core cell sizes before compression and after compression are presented in Figure 6.
Some critical and characteristic failure points of the sandwich panel were marked on the im-
ages. The adhesive applied for bonding between the facing sheet and the AHC core flowed
throughout the facing plates with the effect of the curing temperature. During this process,
the adhesive accumulated at the junction of the aluminum core and face sheets creates
menisci-shaped fillets [50]. The gasses released during the adhesive polycondensation are
trapped within the AHC cells increasing the inside pressure and contributing to the forma-
tion of these menisci. The effect of the fillet characteristics, such as size, height, and depth,
on the panel mechanical properties was complex [51]; however, their existence provided
strength enhancement of the sandwich panels, as previously described by Bitzer [33] and
Paik et al. [52]. Therefore, the collapse strength of AHC with smaller cell sizes is enhanced
due to the increase in adhesive bonding points with the facing sheet (Figure 5a).

Nevertheless, the interfacial bonding failures in the forms of debonding or delam-
ination between the aluminum core and the facing sheet occur after a sufficiently high
out-of-plane compression loading (Figure 6). However, the structure still has the capability
of transferring the stress via fillet. This phenomenon could also be seen in the cross-section
image of sandwich panel with 8.66 mm cell-sized AHC core. The cell walls folded progres-
sively during the plateau stage and ended as completely folded with the contact of walls at
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the end of the densification stage. However, the double-wall side of the aluminum core,
which was adjacent to the facing sheet, was prevented from collapsing. This phenomenon
was considered during the investigation of the failure mechanism of the foam-filled and
the unfilled AHC sandwich structures [53,54].
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Figure 6. Cross-sectional electron images of the empty aluminum honeycomb with 5.20 mm, 6.78 mm,
and 8.66 mm cell sizes (top the bottom) before compression and after compression (left to right).

The stress–strain and energy efficiency curves of the EVA-filled and the unfilled AHC
panels with 5.20 mm cell size are presented in Figure 7. The maximum point of the energy
efficiency curve indicates the densification strain. The left vertical axis shows the stress
values. At first, the stress increased almost linearly with increasing strain for both specimens
associated with axial waves occurring on the cell walls due to the elastic response. When
the stress reached a certain value, the materials had lost their stiffness, and right after, this
decreased with increasing strain. Ashby defines this decrement as post-yield softening [55].
An abrupt decrease in the stress is observed with the unfilled AHC sandwich panel, while
it is delayed with the EVA-foam-filled structure showing the beneficial contribution of
the polymer on the compression strength performance (Figure 7). The cell walls of the
aluminum were bent and buckled at the local maximum point and started a creating fold,
which is the main deformation in thin-wall-type structures [48,55,56]. Following buckling,
the structure started to carry a low load due to stress relaxation and this led to a minimum
local point formation.

The stress decreased nearly from 3 MPa to 0.8 MPa for the unfilled honeycomb and
from 3.4 MPa to 2.51 MPa for the EVA-foam-filled honeycomb sandwich panel. The
fold walls within the unfilled AHC contribute independently toward the out-of-plane
compression. The presence of EVA involves two beneficial effects: (i) physical contact
between them allowing load transfer; and (ii) an additional strength tightly related to
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the foam density. Furthermore, in the plateau stage of the curve, further plastic hinges
and folding formation cause stress oscillations. The latter decrease significantly for the
EVA-foam-filled AHC compared with the unfilled samples. Consequently, foam-filled
panels are more rigid and stable under compression loads.
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honeycomb panel with 5.20 mm core cell size.

Figure 8 shows electron images of the EVA-foam-filled aluminum HC with 5.20 mm
cell size after the out-of-plane compression test. Folded aluminum cell walls are not in
contact with each other due to the existence of EVA foam between the cell walls. Although
some EVA foam cells were compressed by the peak sides of the folded Al walls, some
remained with gas inside and preserved their shape. Gas inside the EVA foam cells was
first squeezed out in closed cells or diffused from open cells under loading [57]. After that,
some air was withdrawn back to the cells again and the EVA foam between the aluminum
cell walls was recovered up to somewhat-strain level when the load was removed due
to the viscoelastic nature of the foam. The EVA-foam-filled AHC sandwich structure still
had energy-absorbing capability with the foam cells with gas and recovered strain even
after compression loads at high levels. However, delamination failure also occurred at the
junction of the rigid aluminum double walls and facing sheet because of the strain recovery
behavior (Figure 8).
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During the out-of-plane compression test, delamination was observed between the
AHC wall extremity and the facing sheet (Figure 8). However, the adhesion between the
EVA-foam and the aluminum surfaces (AHC wall and facing sheet) was maintained and
contact between the folded aluminum cell walls was prevented. Thus, there is a synergetic
effect between the EVA foam and the AHC toward compression forces.

The highest compression strength of the EVA-foam-filled sandwich panels was also
observed when increasing the AHC cell size (Figures 9 and 10). Mahmoudabadi et al. [21]
obtained similar results. However, three main differences appear: (i) the energy absorbed is
lowest; (ii) the difference between the unfilled and filled specimen is increasing; and (iii) the
stress oscillations are reduced. Therefore, the damage mechanism in the stretch-dominated
aluminum cell walls was primary in the general deformation mode for foam-filled samples.
Furthermore, the contribution of EVA foam filler to the stiffness and energy-absorbing
capacity became more evident as the cell size of the AHC increased.
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Figures 9 and 10 also show the energy efficiency curves. The maximum values of these
curves indicate the densification strain. It was also deduced that the densification strain of
the structure decreased when the aluminum honeycomb was filled with EVA foam.

Compression characteristic criteria of empty and foam-filled aluminum honeycomb
with cell sizes 5.20 mm, 6.78 mm, and 8.66 mm are given in Figure 11 to compare both the
cell size and filling effect. As can be seen from Figure 11a, the peak stress of empty HC
with cell size of 5.20mm increased from 2.98 MPa to 3.26 MPa when filled with EVA foam,
increasing by 9.56%. In contrast to the smaller cell size (5.20 mm), the enhancement of the
peak stress by EVA-filling was significantly evident as the cell size increased. While the
peak stress of the aluminum HC panel with 6.78 mm cell size was increased by 70.78%,
the peak stress of the 8.66 mm cell size honeycomb was doubled and increased by 102%
when filled with EVA. It was also determined that the peak stress increased as the cell size
decreased from an examination of the peak stress trend of both filled and empty aluminum
honeycomb panels. Thus, the observation of a similar trend in both the empty and filled
samples indicated that the first local deformation mechanism at the end of the elastic region
was dominated first by the buckling of AHC.
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(d) absorbed energy per unit volume.

Plateau stresses of the empty and EVA-filled HC structures obtained from the stress–
strain curves between the collapse initiation and onset densification strain are given in
Figure 11b. In contrast to the low increase in the peak stress of HC with 5.20 mm cell size
(see Figure 11a), the plateau stress increased by 83% when filled with EVA foam. The partial
restriction of yield softening after critical strain through the filling EVA foam provided
the occurrence of this difference between the two stresses. Additionally, progressively
plastic buckling of the cell walls required more stress because the cells of aluminum were
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full of EVA foam. From Figure 11b, this relation was also observed for honeycombs with
6.78 mm and 8.66 mm cell sizes. While the plateau stress increased by 176% when EVA was
filled for a honeycomb with a 6.78 mm cell size, the stress of the honeycomb with a larger
cell size (8.66 mm) increased by 190%. The significant enhancement of plateau stresses of
EVA-filled sandwich structures indicated that the aluminum cell walls and EVA foam have
great compatibility and provide a strong interaction.

On the other hand, as seen in Figure 11b, the plateau stress decreased as the cell
size increased for both empty and EVA-filled honeycombs considering the geometrical
design parameter. Several authors have described before the relationship between the
enhancement of the plateau stress and increasing the ratio of the wall thickness and edge
length (t/l) [47,58,59]. In this study, the cell size was represented as inversely proportional
to the t/l ratio due to the use of the same aluminum foil thickness (t) for all sandwich
structures. Decreasing the cell size of aluminum honeycombs increased the volume of the
aluminum material for the same specimen size. Therefore, the sandwich structure behaved
more rigidly during the folding mechanism due to the high volume of aluminum and
provided enhancement of the plateau stress [60]. The same trend was also observed for
EVA-filled honeycombs despite their higher strength.

Figure 11c shows the onset densification strain of the sandwich structures for empty
and EVA-filled HC. The densification initiation strain of aluminum honeycombs with cell
sizes of 5.20 mm decreased by 22%, and decreased by 33% and 30% for 6.78 mm and
8.66 mm, respectively, when filled with EVA foam. The drop in the densification strain
indicated that the plateau stage ended earlier in comparison to the HC without EVA foam.
Similar results were also obtained from PU or EPP foam-filled honeycombs according to
Nia et al. [14] and Liu et al. [23], respectively. However, the total absorbed energy (per unit
volume) given in Figure 11d of the structures is enhanced due to the correlation between
the increase in plateau stress and the decrease in onset densification strain. In Figure 11d,
the absorbed energy per unit volume by the sandwich structure increased by 23, 54, and
73% for EVA-filled honeycombs with 5.20 mm, 6.78 mm, and 8.66 mm cell size, respectively.

3.3. Post-Compression Behavior of the EVA-Filled Panels

Finally, the EVA-foam-filled aluminum HC sandwich panel thickness recovered at
a particular strain level when the compression loading was removed. This phenomenon
clearly indicated that the use of a thermoplastic elastomer filler for a relatively rigid
aluminum material ensured characteristic springback behavior in the structure. Figure 12
represents the springback (%) of the EVA-foam-filled structures of Al cores with different
HC cell sizes. As can be seen in Figure 12, the springback percentage increased from 35%
to 44% as the HC cell size increased from 5.20 mm to 8.66 mm. These recovery rates were
related to relatively dependent parameters. One of these was that increasing the density
of aluminum rigid ribbons as the aluminum HC cell size decreased partially prevented
the springback of compressed EVA foam. The other was that the increased aluminum
honeycomb cell size allowed more continuous EVA-foam cells and provided more gas
drawn back per unit area.
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Springback phenomenon was also observed in microscopic investigations of EVA-
foam-filled honeycomb structures after the compression test. Cross-sectional areas of the
folded double wall of foam-filled HC with 5.20 mm and 8.66 mm cell sizes are given in
Figure 13. According to Figure 13, a measurement of each distance between peaks of double
wall folds toward the axial direction indicated that the distance increased due to increasing
springback (%). The EVA foam triggered more recovery of the compressed strain as the cell
size of aluminum HC increased due to the relatively easier movement of the squeezed-out
gas inside the EVA cells.
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structure with 5.20mm and 8.66mm cell sizes.

Ultimately, given the entire compression properties as well as the failure mechanism
of the panel, the compressive response of the structure was strongly controlled by the
interaction between the aluminum cell walls and the EVA foam. If the polymer foam
were not sufficiently interacting with aluminum cell walls, it would have resulted in more
permanent and sudden failure due to rupture after compression. At this point, the in situ
foaming process for filling the HC structure provided a strong interaction between the
aluminum cell walls and EVA. Figure 14 shows the recovered EVA cells after compression
and interaction between the EVA cell and aluminum cell wall. As seen in Figure 14, which
provides a compositional contrast between the polymer and metal (BSE image), melted EVA
was stretched to an aluminum cell wall as a film by the formation of bubbles during the
foaming process. Moreover, the recovered EVA foam cells marked in Figure 14 indicated
that the structure still has the energy-absorbing capability through the viscoelastic nature
of the foam even after high compression loading conditions.
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cell walls.

4. Conclusions

This study determined the compression behavior of novel in situ EVA-foam-filled and
empty aluminum hexagonal honeycomb sandwiches under quasistatic out-of-plane loading
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conditions. Scanning electron microscopy was used to investigate the failure mechanisms in
detail. According to the optimization of the foaming process, microstructural observations,
and compression test data, the following results were obtained.

The EVA foaming process is suitable for in situ foam-filling into honeycomb without
damaging aluminum cell walls. In situ filling of foam provides a strong interaction between
EVA and aluminum cell walls due to stretched EVA during the foaming process.

The general stress–strain pattern was dominated by the buckling and folding of the
aluminum walls in both empty and EVA-foam-filled HC. Buckling at peak stress comprised
several strain values, and the difference between local maximum and minimum stress
points decreased in EVA-foam-filled honeycombs.

Plateau stress increased by 83%, 176%, and 190% in the honeycomb with 5.20, 6.78,
and 8.66 mm cell sizes, respectively. Absorbed energy per unit volume of sandwiches was
also significantly enhanced with EVA foam filling for out-of-plane loading.

The filling of EVA foam led to a decrease in the densification strain of 22%, 33%, and
30% for 5.20, 6.78, and 8.66 mm cell size HC, respectively. An EVA-foamed sandwich with
an 8.66mm aluminum cell recovered 44% of the initial height after the compression load
was removed.

Since the sandwich panels maintained their structural integrity largely after compres-
sion loadings, the structure still had an energy-absorbing capacity due to the springback.
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