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Abstract: The production of concrete leads to substantial carbon emissions (~8%) and includes re-
inforcing steel which is prone to corrosion and durability issues. Carbon-fiber-reinforced concrete
is attractive for structural applications due to its light weight, high modulus, high strength, low
density, and resistance to environmental degradation. Recycled/repurposed carbon fiber (rCF) is
a promising alternative to traditional steel-fiber reinforcement for manufacturing lightweight and
high-strength concrete. Additionally, rCF offers a sustainable, economical, and less energy-intensive
solution for infrastructure applications. In this paper, structure–process–property relationships
between the rheology of mix design, carbon fiber reinforcement type, thermal conductivity, and
microstructural properties are investigated targeting strength and lighter weight using three types
of concretes, namely, high-strength concrete, structural lightweight concrete, and ultra-lightweight
concrete. The concrete mix designs were evaluated non-destructively using high-resolution X-ray
computed tomography to investigate the microstructure of the voids and spatially correlate the
porosity with the thermal conductivity properties and mechanical performance. Reinforced concrete
structures with steel often suffer from durability issues due to corrosion. This paper presents ad-
vancements towards realizing concrete structures without steel reinforcement by providing required
compression, adequate tension, flexural, and shear properties from recycled/repurposed carbon
fibers and substantially reducing the carbon footprint for thermal and/or structural applications.

Keywords: fiber-reinforced concrete; recycled carbon fiber; mechanical properties; X-ray tomography

1. Introduction
1.1. Overview: Fiber-Reinforced Ultra-Lightweight, Structural Lightweight, and High-
Strength Concrete

Concrete is a versatile material utilized in civil infrastructure for applications ranging
from simple architectural features to critical structural elements in bridges and
buildings [1–4]. The concrete industry produces 4.4 billion metric tons of cement world-
wide, a figure which has been steadily increasing year to year [5]. Due to the many different
applications of concrete, the mix designs must be tailored to meet numerous different
specifications and requirements. Energy-efficient buildings are under environmental re-
quirements to reduce CO2 at lower cost; thus, there is a need to develop lightweight and
high-strength concrete to improve or develop construction materials [6–11]. Thermal con-
ductivity is a key property that affects the insulation characteristics of buildings. Reduction
in energy consumption coupled with sustainable design can decrease thermal losses in
buildings [12]. Among the primary factors affecting the thermal conductivity of concrete
are its porosity and density [13,14]. Therefore, lightweight aggregate concrete (LWAC) is at-
tractive for buildings and concrete floor slab applications as it has lower density and better
thermal insulation than normal concrete [7,15–17]. Lightweight aggregates are derived from
materials such as perlite, vermiculite, pumice, expanded-clay mix, sintered fly ash, coconut
shell, and expanded shale, to name a few, which are incorporated in concrete to entrain

Materials 2023, 16, 5451. https://doi.org/10.3390/ma16155451 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16155451
https://doi.org/10.3390/ma16155451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-3667-2568
https://orcid.org/0000-0002-7029-3561
https://doi.org/10.3390/ma16155451
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16155451?type=check_update&version=2


Materials 2023, 16, 5451 2 of 33

air in lightweight concrete designs [7,18,19]. A commonly used structural application for
lightweight concrete is decking for bridges and building floors; here, concrete mixes that are
both strong and lightweight are utilized in the form of structural lightweight concrete that
can reduce the overall weight of the structure while still providing adequate strength, thus
increasing the building efficiency [20,21]. Furthermore, for architectural details and esthetic
pieces, where the strength of the concrete is not critical, the use of ultra-lightweight concrete
can make installation easier and reduce the load on the structure [22–24]. Additionally,
due to its air voids ultra-lightweight concrete can provide superior thermal insultation
properties to traditional concrete [25].

Aggregates such as manufactured sand (M sand), consisting of crushed sand, have
been investigated as a sustainable aggregate due to their lower cost and have been used
in high-strength concrete structural applications, including mix designs with lightweight
aggregates [26–29]. If effective concrete mix designs for different applications are to be
developed, a comprehensive understanding of concrete’s workability, rheological and
mechanical properties, thermal characteristics, and many other properties is essential [30].
For all the differing concrete mixes and applications, concrete has one major drawback:
its tensile strength is typically much lower than its compressive strength. Therefore, a
typical reinforced concrete design does not consider the tensile strength of the concrete.
To carry tensile loads, a steel rebar is embedded into the concrete, and the tensile stress
is transferred from the concrete to the embedded rebar [2]. However, a rebar is both
expensive and time-consuming to install and makes up about 18% of the cost of concrete
construction [31]. Additionally, a rebar can corrode, leading to reduced strength and
rust jacking that damages the surrounding concrete [32–34]. This reduced strength from
corrosion of the rebar-reinforced concrete is largely due to the loss of adhesion between the
rebar and the concrete [35,36].

Fiber-reinforced cementitious and concrete have been investigated to explore sus-
tainable solutions for structural applications [37–40]. Fiber-reinforced concrete (FRC) has
been incorporated into LWAC and normal concrete and can potentially improve the tensile
strength of concrete [26–29,41,42]. Henceforth, as defined for this study, FRC consists of
randomly oriented short fibers mixed into the concrete to serve as a form of tensile reinforce-
ment [30,43]. FRC improves the tensile properties of the concrete by transferring the tensile
stresses within the concrete to the fibers through an interfacial bond between the fiber and
surrounding concrete matrix [44–47]. The fibers possess significantly higher tensile strength
than neat concrete, allowing them to carry higher tensile force and resulting in increased
tensile strength and durability for FRC [2,44–47]. Several fiber types have been studied,
including polypropylene, glass, basalt, and natural fibers, and incorporated into concrete
to tailor the performance of different concrete mixes for varied applications [30,48–51].
Traditionally, steel fibers have been the fiber type most commonly used in FRC struc-
tural applications due to their enhancement of mechanical properties and relatively low
cost [48,52,53]. Typically, high-strength concrete is used in these applications, as it has a
strength greater than 50 MPa [54–64]. P.S. Song et al. evaluated the use of steel fibers in
high-performance concrete and found that the impact resistance was greatly increased
with the addition of steel fibers [44]. P. Balaguru and A. Foden investigated structural
lightweight concrete reinforced with steel fibers and found that steel fibers significantly
increased split tensile strength and flexural strength and moderately increased compressive
strength [65]. J. Wang et al. observed that the addition of steel fibers increased the density,
as well as the compressive and flexural strength, of the concrete [66]. A potential alterna-
tive to steel fiber is carbon fiber, which is promising for FRC applications due to its high
modulus, strength, and chemical inertness [67,68].

1.2. Carbon Fiber and Recycled Carbon Fiber Overview

As carbon fibers have higher tensile strength and modulus than steel fibers, they can
carry higher tensile forces in concrete [67,69]. A. B. Kizikanat evaluated high-strength con-
crete with carbon-fiber reinforcement and found that the flexural and split tensile strength
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significantly increased with the addition of carbon fiber, and the compressive strength
increased slightly [70]. Few studies have investigated carbon fiber as a reinforcement for
ultra-lightweight concrete or examined how it affects the thermal properties of the concrete.
B. Chen and J. Liu explored lightweight concrete reinforced with polypropylene fiber,
carbon fiber, steel fiber, and hybrid combinations of the different fibers in compression
and split tension [71]. They found that the compressive strength and split tensile strength
increased with the addition of carbon fiber, and the combination of steel and carbon fiber
further increased the compressive strength [71]. Additionally, the steel fiber and carbon
fiber hybrid mix had the highest toughness index [71]. Thus, carbon fiber could be an ideal
replacement for steel fiber in concrete; however, carbon fibers can be more costly than steel
fibers, potentially making them much less economical [72–74]. One possible way to reduce
the cost is to utilize recycled carbon fiber (rCF) [75–77].

Carbon fiber has not yet realized its full potential commercial utilization cost for
market entry, which has limited its use outside of high-performance applications such as
aerospace and high-end performance vehicles. The conversion of a precursor, such as poly-
acrylonitrile (PAN), to carbon fiber is energy- and cost-intensive, and a significant amount
of waste carbon fiber is disposed into landfills when end-of-the-lifecycle-part stage is
reached [78–83]. Waste carbon-fiber-reinforced polymers (CFRP) from the automotive
and aerospace industries can be recycled for use in concrete, helping to prevent the ac-
cumulation of CFRP in landfills [77,84,85]. The CFRP waste can be recycled into fibers
through three processes: thermal, chemical, and mechanical [77]. However, the recycling
of carbon fiber is difficult and can lead to fiber damage, fiber length variation, fiber diam-
eter change, contamination, and loss of strength, as well as potentially producing toxic
fumes [76,77,86–99].

Studies have shown the use of recycled CFRP in concrete. Ogi et al. investigated the
flexural and compressive strength and fracture behavior of concrete reinforced with recycled
CFRP pieces [100]. Additionally, Mastali et al. showed that recycled CFRP improved
the compressive strength, flexural strength, and impact resistance of self-compacting
concrete [101,102]. However, although the fiber length and volume fraction increased the
impact resistance, the workability of the concrete was reduced, leading to increased defects
and voids [102].

The surface of the carbon fiber can play an important role in the fiber-to-cement bond.
Fibers with a rough surface have a stronger attachment to the cement than those with a
smoother surface [103–105]. It is therefore important to understand the microstructure
of the carbon fibers. Akbar et al. studied the surface of milled rCF by using scanning
electron microscopy (SEM) combined with energy X-ray dispersive spectroscopy (EDS),
X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform infrared
spectroscopy (FTIR) [84]. Through XRD, TGA, and FTIR, Akbar et al. found that the
defects on the surface of the milled rCF created locations for nucleation for Portland
cement [84]. This improved bonding, combined with the uniform dispersion of the fibers,
helps to improve the compressive and flexural strength of cement paste compared to neat
cement paste [84]. Wide angle X-ray scattering (WAXS) is an invaluable tool to characterize
amorphous and crystalline regions within polymer materials and fibrous materials such as
carbon fiber, whose crystalline parameters have been correlated to single-fiber mechanical
properties [106–108].

1.3. Micro X-ray Computed (µ-XCT) and Thermal Conductivity of Concrete Mix Designs

X-ray computed tomography (XCT) is an effective technique to evaluate complex ge-
ometry, including lightweight concrete, M sand, and high-performance concrete, by detect-
ing microstructural features of interest such as air voids, fiber, and concrete
phases [109–113]. Furthermore, the addition of fibers can affect the thermal conductivity
of the concrete due to the fibers having a higher thermal conductivity than the concrete
matrix [114,115]. K. Liu et al. investigated how the addition of carbon and steel fiber
affects the thermal conductivity of normal-weight concrete. They found that as the volume
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fraction of steel fiber increased, so did the thermal conductivity. For the carbon-fiber-based
mixes, they found a similar trend, that is, the thermal conductivity increased with increased
fiber content; however, if the mix did not have adequate workability, the addition and pore
dispersion of the fibers could lead to it having decreased thermal conductivity [114].

1.4. Significance of This Study

The main knowledge gaps in the literature involve the consideration of recycled car-
bon fibers which dramatically reduce the carbon footprint by capturing the high embodied
energy needed to manufacture virgin carbon fibers and identifying them for augmenting
tensile properties to minimize or eliminate reinforcing steel rebars. High performance
concrete is being considered currently by many state and federal transportation projects
and this paper provides an alternative to replace steel fibers with much more durable and
environmentally friendly recycled carbon fibers. In addition to structurally demanding
applications, concrete is utilized extensively for other applications that require improved
thermal insulation. This paper addresses these critical knowledge gaps and also overcomes
the limited studies that exist on the structure–process–property relationship of carbon fibers
utilized in ultra-lightweight, structural lightweight, and high-strength concrete. Thus, there
is a need for a comprehensive study of the microstructure of the interfacial bonds between
the fiber, fiber sizing, and surrounding concrete matrix, including microstructural features
such as voids. In this study, a multiscale analysis experimental program was developed
to evaluate the influence of rCF-reinforced concrete on three concrete mixes made from
three aggregate types compared to a commercially available steel fiber reinforcement. The
three concrete mix designs incorporating rCF were high-strength, structural-light, and
ultra-light concrete. The rCF-reinforced concrete designs were evaluated for their me-
chanical properties, such as compression, tensile, and flexural strength. The crystal lattice
parameters of the rCF were calculated using a WAXS technique to provide insight into the
structural–mechanical performance of the fibers. The surface morphology of the fibers was
examined using SEM, and the elemental chemical composition of the fibers was observed
using energy dispersive X-ray spectroscopy (EDS). Furthermore, high-resolution micro
X-ray computed tomography (µ-XCT) was utilized to analyze the pore geometry content
spatially in 3D to investigate porosity structure in relation to each concrete mix design’s
mechanical performance. The thermal conductivity of the tensile samples was measured
to investigate the relationship between the porosity obtained from µ-XCT for each con-
crete mix design. The thermal conductivity results were compared with reconstructed
3D volumes obtained through µ-XCT to investigate how the voids and fiber distribution
affect the thermal conductivity of the different concrete mixes. The surface of mechani-
cally failed tensile samples was imaged using SEM to observe the failure mechanism of
the fibers and concrete. This study highlights novel insights on the effects of rCF when
incorporated into various concrete mix designs for lightweight and high-strength concrete
structural applications, including the microstructure and porosity effects of the final con-
crete mix, thermal insulation effects, and the fiber reinforcement failure mechanisms of the
concrete mix.

2. Materials and Methods
2.1. Experimental Program for the Concrete Mix Designs

A multiscale analytical experimental program was used in this study to character-
ize the concrete mix design and was divided into three stages. The first stage involved
characterizing the fibers for their structural properties. The microstructure of the fibers
was examined using SEM, and the chemical elemental composition of each fiber type
was identified using EDS. Additionally, the structure of the recycled carbon fibers was
evaluated for their crystalline structure using a WAXs technique. In the second stage, the
concrete mix design was evaluated non-destructively using µ-XCT to investigate the void
volume content spatially and the effects of void formation from incorporating fibers in the
concrete mixes coupled with the resulting reinforcement mechanisms between the host
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concrete matrix and surrounding the fibers [111]. The third stage consisted of evaluating the
concrete mix designs for compressive, tensile, and flexural strength properties. The failed
tensile briquette samples were then evaluated for their thermal conductivity properties.
The mechanical properties were correlated with the porosity and thermal conductivity
properties of the concrete mixes.

2.2. Fiber Properties

This study involved the use of rCF and steel fiber as reinforcement for concrete. The
rCF used for this study was supplied by Carbon Fiber Recycling LLC (Tazewell, TN, USA)
and was used as received. The steel fibers were manufactured in accordance with ASTM
A820 type 1 with a 13 mm length [116]. Figure 1 shows the fiber types used in this work,
namely steel fiber and rCF. The physical properties of the fibers, including density, length,
and diameter, are summarized in Table 1, and detailed characterizations are given in a
previous study [111]. Briefly, the rCF fiber length and diameter were measured using a
high-resolution digital microscope (Keyence, VHX 7000 series, Itasca, IL, USA); 70 fibers
were measured for length, and 38 measurements were taken for diameter. Additionally, the
densities for the rCF were measured using a gas pycnometer (Micromeritics, AccuPyc II
1340, Norcross, GA, USA). The fiber-sizing content for rCF was measured as 0.99% based
on a TGA conducted in a previous study [111].
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Table 1. Physical properties of fibers [111].

Fiber Type Standard Density
(g/cm3)

Fiber Length
(mm)

Diameter
(µm)

Aspect
Ratio

Steel fiber ASTM A820
Type 1 [116] 7.8 [117] 13 200 65

Recycled carbon fiber (±SD) - 1.81 1.5 ± 1.2 6.7 ± 0.8 224
Note: ±values are standard deviation.

2.3. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy of Fibers

The surface morphology of the fibers was examined using SEM, specifically, a Ther-
moFisher Scientific Apreo S SEM instrument (ThermoFisher Scientific, Waltham, MA, USA)
with an accelerating voltage of 20 kV. Additionally, the chemical elemental composition was
observed using EDS. The fibers were Au sputter coated using a sputter coater (SPI-Module
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Sputter Coater, West Chester, PA, USA) for 40 s. An environmental SEM (Zeiss SEM EVO®

MA15, Carl Zeiss, Oberkochen, Germany) was used to examine the surface topography of
the tensile briquette samples after mechanical failure with an accelerating voltage of 20 kV
using variable pressure [111].

2.4. Wide Angle X-ray Scattering of Carbon Fiber

WAXS was performed to examine the crystalline microstructure of the fibers for two
different batches of rCF and a reference commercial carbon fiber (T700). The scanning was
performed on a Xenocs GeniX 3D microfocus instrument equipped with a Cu K-alpha
1.54 Å X-ray source with a voltage of 50 kV and a current of 0.60 mA over a 2θ angular
range of approximately 0 to 55 degrees. The d-spacings, crystal size (La), and stacking
height (Lc) were calculated using the following two relationships based on Bragg’s law
(Equation (1)) and the Debye–Scherrer equation (Equation (2)):

di =
λ

2sinθ
(1)

Ln =
Kλ

βcosθ
(2)

where λ is the wavelength, θ is the Bragg angle in radians, and di is the interlayer distance
between the crystalline planes determined from the peak position of the diffracting planes
002 and 100 as illustrated in Figure 2. Additionally, the crystalline parameters Ln (Lc or
La) are based on Bragg’s law, and K is Scherrer shape factor constant corresponding to a
value of 0.9 for Lc and 1.8 for La. β is the FWHM corresponding to 002 and 100 reflections
or peaks corrected for instrument broadening [106,118,119]. The T700, a standard modulus
carbon fiber used in the industry, was used as a reference carbon fiber for comparison with
the rCF samples [120].
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Figure 2. Illustration of graphitic lattice structure showing the d-spacing for 002 and 100. The planes
are designated A and B to illustrate the AB stacking sequence of the graphene [106].

2.5. High-Strength and Lightweight Concrete Mix Designs

Three types of concretes were utilized for the concrete mix designs in this study. The
first was a high-strength concrete mix design for structural applications. The second was
structural-light concrete typically used for floor slabs and other applications where both
the strength and density of the concrete are essential properties. The third was ultra-
light concrete for increased thermal insulation and lower density than the two previously
mentioned types. To investigate the effect of rCF, three mixes were reinforced with rCF
along with two control mixes, namely a mix reinforced with steel fibers and a neat concrete
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mix containing no fiber reinforcement. Henceforth, the three types of concrete in this study
are identified as high-strength, structural-light, and ultra-light.

Table 2 summarizes the mix designs used in this study, presented in kilograms of
material per cubic meter of the final concrete mix. The mix design for each of the three
base mixes utilized a Type I all-purpose Portland cement and silica fume (MasterLife SF
100, Cleveland, OH, USA) as the cementitious materials and a 0.3 water-to-cementitious
materials ratio. The ratio of cementitious materials was 90% Portland cement and 10%
silica fume by volume. The Portland cement and silica fume react with water and bind the
concrete mix constituents together [30,121,122]. The silica fume’s small particle size plays
an important role in filling microscopic pores and improving bonding with fibers [123,124].
For the structural-light and ultra-light mixes, additional water was added to account
for the water absorbed by the high number of pores in the aggregates. The mixes all
utilized a high range water reducer (HRWR) (MasterGlenium 7920, Cleveland, OH, USA) at
756 mL/kg of cement. The HRWR helps to increase the workability of the concrete while
maintaining the same water content. For the concrete mix designs incorporating fibers, the
fiber volume fraction was set to 2% to strike a good balance between workability and tensile
strength, based on a study conducted by Park, Lee, and Lim [123]. For the high-strength
and ultra-light concrete mixes, the cementitious material content was set to 30% of the total
volume of the mix. For the structural-light concrete mix, the cementitious volume was set
to 20% in order to further reduce the density of the mix.

Table 2. Summary of concrete mix designs: Note that all values are in the units of kg of material
per m3 of total concrete mix.

Mix Fiber Type Manufactured Sand
(kg/m3)

Type I Portland
Cement (kg/m3)

Silica Fume
(kg/m3)

Water
(kg/m3)

HRWR
(kg/m3)

Fibers
(kg/m3)

High-
strength

rCF 1077 851 67 275 6.9 36
Steel 1077 851 67 275 6.9 156
None 1131 851 67 275 6.9 0

Fiber Type Stalite (kg/m3)
Type I Portland

Cement (kg/m3)
Silica Fume

(kg/m3)
Water

(kg/m3)
HRWR

(kg/m3)
Fibers

(kg/m3)

Structural-
light

rCF 901 567 44 242 4.6 36
Steel 901 567 44 242 4.6 156
None 931 567 44 244 4.6 0

Fiber Type Perlite (kg/m3)
Type I Portland

Cement (kg/m3)
Silica Fume

(kg/m3)
Water

(kg/m3)
HRWR

(kg/m3)
Fibers

(kg/m3)

Ultra-light
rCF 119 851 67 350 6.9 36
Steel 119 851 67 350 6.9 156
None 125 851 67 353 6.9 0

Three different aggregate types were used for each of the three concrete mix designs
and were the primary factor affecting the density of the final resulting concrete mixes.
All of the aggregates were classified as fine aggregates to help reduce potential stress
concentrations caused by large aggregates. M sand or crushed sand with a measured
density value of 2.71 g/cm3 based on ASTM C128 was used for the high-strength concrete
mix design [125]. Stalite (Stalite washed MS16 fines, Salisbury, NC, USA), an argillite slate
aggregate with a density of 1.69 g/cm3, was used for the structural-light concrete design
mix [126]. Perlite (Vigoro Organic Perlite soil amendment) was used for the ultra-light
concrete mix design. The measured density of the perlite was 0.37 g/cm3 using a modified
procedure of ASTM C128 [125]. As the perlite aggregates have a lower density than water,
a modified procedure was performed in order to keep the perlite submerged in water.
First, the aggregates were sieved using a number 20 (0.841 mm) sieve, and any material
passing through the sieve was discarded to remove dust and fine particles. The aggregates
were then placed in a glass vial covered with a no. 30 (0.595 mm) mesh screen. The mesh
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was weighted down with a small piece of metal over the top such that air could escape
from the vial, but the aggregate could not. A clear plastic tube, approximately 10 mm
in diameter, was attached to the bottom of the vial and carefully marked with a datum
reference to ensure a repeatable volume of water was used for each measurement. The vial
was then filled with water to the datum reference fill line and weighted with and without
the aggregates in the vial, and the density was calculated based on the measurements in
accordance with ASTM C128 [125]. Figure 3 shows the apparatus used to measure the
density of perlite aggregates.
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Figure 3. Experimental apparatus for density measurements of aggregates lighter than water by
submerging aggregates in water.

2.6. Concrete Mixing Procedure

It is important to note that the neat concrete mix design was used as a control for
each concrete type in this study, thereby reducing variability when adding steel fiber and
rCF for the other two mix designs. The same method was used to mix the high-strength
and structural-light concrete mixtures. The silica fume and Portland cement were mixed
together in a 7.6 L Hobert tabletop mixer for 1 min. The water and HRWR were added
to the mixture slowly as the mixer was operating and were mixed for 2 min to promote
optimal fluidity of the mix and reduce the cementitious materials from clumping. The
aggregates were added to the mixture and mixed for an additional 3 min. Finally, for the
fiber-reinforced mixes, the fibers were added and mixed for 5 min. For the neat concrete
mix designs, the mixture was mixed for 5 min to ensure each batch received the same total
mixing time.

The ultra-light mix was prepared in a similar manner as described for the high-
strength and structural-light concrete mix designs. The dry cementitious material mixing,
water, HRWR addition, and mixing steps were also the same as for the high-strength
and structural-light concrete mixes. However, instead of adding the aggregate next, for
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the fiber-reinforced mixes the fibers were added and mixed for 5 min. As with the neat
high-strength and structural-light mixes, the neat ultra-light mixture was mixed for 5 min
to ensure consistent mixing times for all batches. For the last step, the aggregates were
added to the mix and mixed for 3 min. The aggregates were added last to reduce potential
damage to the relatively fragile perlite aggregates from over-mixing. For all the concrete
batches, a flow test in accordance with ASTM C1437-20 was performed immediately after
mixing to evaluate and compare their rheology [127].

2.7. Casting Samples

Three types of samples, namely tension briquettes, compression cubes, and flexural
beams, for all nine concrete mix designs, were cast for mechanical characterization as shown
in Figure 4. The steel or brass molds for each sample type were first filled halfway with
concrete and then tamped down using a 10 mm by 25 mm wooden tamper. Care was taken
to ensure that the entire surface of the concrete was tamped. The molds were then filled to
capacity and tamped again. The sides of the molds were tapped with a rubber mallet to
help release air pockets. The surfaces of the samples were then smoothed and flattened
with a straight edge. For the neat and steel-fiber-reinforced samples, care was taken to
hand mix the concrete as it was being molded to ensure each sample was representative
of the whole mix since the high flow of the mixes could cause the aggregates and cement
to separate.
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2.8. Mechanical Testing of Casted Samples

The concrete samples were evaluated for compression, tensile, and flexural strength
as summarized in Table 3 and Figure 5. Figure 5a shows the experimental setup for
compression testing where the compression strength was evaluated in accordance with
ASTM C109, where the samples were monotonically loaded on a 600 kN load test frame
(Instron, Norwood, MA) to mechanical failure. The samples should be loaded at a rate of
900–1800 N/s according to the ASTM C109 standard. However, as the testing load frame
had insufficient force control, it was determined to use a displacement control at a rate
0.1 mm/min to provide consistent results meeting the ASTM C109 specifications with
the required force rate [128]. The tensile tests were performed in accordance with ASTM
C307, and the test setup is shown Figure 5b. Using a 100-kN MTS servo hydraulic load
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frame, the tension briquette samples were mounted into custom-made stainless steel grips
using ASTM specifications and loaded monotonically at a crosshead rate of 2 mm/min
until mechanical failure [111,129]. The flexural samples were tested in accordance with
ASTM C947, and Figure 5c shows the experimental setup with a four-point bending fixture
(Wyoming Test Fixtures model WTF-LF, Salt Lake City, UT, USA) [130]. The samples were
loaded monotonically at a crosshead rate of 1.27 mm/min to mechanical failure on a 100-kN
MTS load frame [131]. The test deviated from the ASTM C947 standard where the 25 mm
depth × 25 mm width × 305 mm length samples were cast as previously described instead
of being cut from a sheet of concrete [131]. The force and displacement values for all the
test samples were collected at a rate of 5 Hz [111].

Table 3. Summary of mechanical testing for the concrete mix designs.

Mechanical Testing Type ASTM Testing
Standard

Number of Samples per Concrete Type
(High-Strength, Structural-Light,

Ultra-Light)

Compression ASTM C109 [128] 3
Tension ASTM C307 [129] 3
Flexural ASTM C947 [131] 4
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2.9. Micro X-ray Computed Tomography

In order to examine the microstructure of the concrete mix designs, a custom-developed
µ-XCT machine consisting of a four-axis (x, y, z, θ) rotary stage (Aerotech, Pittsburgh, PA,
USA) was used to mount and scan nine samples cored from the tensile briquette sample
(approximately 18 mm in diameter by 25 mm in length). Each sample was scanned over
an angular range of 360 degrees with a voxel resolution of approximately 12 µm using a
voltage of 150 kV and amperage of 137 µA (Hamamatsu L8121-03, Shizuoka, Japan). A total
of 3001 12-bit 2D projections (2316 × 2316 pixels) were collected and normalized, and sino-
grams were obtained to reconstruct 2D slices using a commercial reconstruction algorithm
(Octopus 8.9.3, Ghent University, Ghent, Belgium). Additionally, artificial artifacts such as
ring artifacts and beam hardening were reduced using correction methods applying the
aforementioned reconstruction algorithm [111,132]. Each 2D-reconstructed slice consisted
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of a grayscale value between a maximum pixel value of 65,535 (white pixel), corresponding
to the densest region of the material, and a minimal pixel value of 0 (black pixel), corre-
sponding to the least dense region, such as air [133,134]. The 3D volume visualization was
obtained from the 2D-reconstructed slices, where these slice images were post-processed
for quantitative data using a commercial 3D visualization software (ScanIP, Simpleware
U-2022.12 Build 325). To characterize the concrete mix designs for porosity, each 3D volume
was cropped to approximately 16.5 mm diameter by 14.88 mm height. The image data sets
for each sample were resampled from 12 µm to 30 µm to reduce the computational image
processing time. Additionally, it must be noted that individual rCF fibers were difficult to
detect at 30 µm resolution; however, larger bundles of the fibers could be identified within
the concrete mix designs obtained using µ-XCT.

An upper- and lower-threshold grayscale value was applied manually as a first step
in image segmenting to create masks for the concrete, pore (air), and fiber phases within
the reconstructed 3D volume. To further enhance the segmenting, concrete and voids
geometries flood-fill algorithms were applied. Overlapping masks were subtracted to
unambiguously identify concrete and void phases within the 3D reconstructed volume
using Boolean operations [135]. The 2D reconstructed slices for each volume were carefully
inspected for overlapping phases or masks. It must be noted that the fiber phases were
segmented only for steel-fiber-reinforced concrete mix design samples because the grayscale
value contrast between the steel fiber and concrete phase was high. Although the rCF-
reinforced fiber phase had similar neighboring grayscale values to the concrete phases,
bundles of the rCF were identified within the 3D volumes and are discussed later in this
study [111]. Hence, an investigation of the microstructure of the concrete and voids phases
in the concrete mix designs was the primary aim for this study.

2.10. Thermal Conductivity

In this study, the thermal conductivity of the mixes was measured to investigate how
porosity and different fibers affected the concrete mix design. Thermal conductivity mea-
surements were performed on two halves of tensile briquettes for each concrete mix design
using a transient plane source instrument (Hot Disk® TPS 2500 S, Göteborg, Sweden) con-
sisting of a 6.403 mm radius Kapton sensor in accordance with ISO 22007-2 [136]. To obtain
accurate results, prior to performing thermal conductivity measurements, each surface in
contact with the sensor was ground using silicon carbide grinding paper (CarbiMet PSA,
180 [P180], Buehler, Lake Bluff, IL, USA), followed by 320-grit silicon carbide grinding pa-
per (CarbiMet PSA, 320 [P400], Buehler, Lake Bluff, IL, USA) on a grinder-polisher (Buehler
MetaServ 250). The samples were then dried in the oven at 80 ◦C for approximately 2 h to
remove moisture. Figure 6 shows an example of the sensor setup positioned between the
samples where measurements were conducted at room temperature. It must be noted that
a sample holder hood was used to cover the sample before each measurement to minimize
any environmental effects and any air flow around the samples [137]. According to Hot
Disk®, an electrical current is passed through the sensor to the samples with sufficient
current to generate heat up to several degrees, and it records the resistance or temperature
as a function of time. This temperature change rate of thermal transport from the sensor
to the materials is “highly dependent on thermal transport properties of the surrounding
material” [110,137,138].

According to Hot Disk®, the thermal conductivity measurement is based on the
following theoretical relationship shown in Equation (3) for a time-dependent temperature
increase for the Transient Plane Source technique:

∆Tave(τ) =
P0

π3/2 × α × Λ
× D(τ) (3)
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the total output power P0 from the sensor, α represents the overall radius of the disk, D(τ)
is a dimensionless time dependent function, and Λ represents the thermal conductivity of
the tested samples. The D(τ) function has the following relationship

τ =

√
t
Θ

(4)

where t represents the measured time from the start of the transient recording. The charac-
teristic Θ is defined as the following:

Θ =
α2

κ
(5)

where κ represents the sample’s thermal diffusivity. A computation plot is generated of the
recorded temperature increase versus D(τ) to obtain a straight line, where P0

π3/2×α×Λ is the
slope and ∆Ti is the intercept. Due to both Θ and κ are not known prior to the experiment,
the thermal conductivity is calculated through a iterative process [137].

Materials 2023, 16, x FOR PEER REVIEW  13  of  35 
 

 

 

Figure 6. Thermal conductivity measurement experimental setup using the transient plane source 

(TPS) approach with the (left image) Hot Disk® sensor (right image) positioned between two con-

crete parts of the tensile sample. 

According to Hot Disk®, the thermal conductivity measurement is based on the fol-

lowing theoretical relationship shown in Equation (3) for a time-dependent temperature 

increase for the Transient Plane Source technique: 

∆𝑇 𝜏
𝑃

𝜋 / 𝛼 ᴧ
𝐷 𝜏   (3)

the total output power P0 from the sensor, α represents the overall radius of the disk, 

D(τ) is a dimensionless time dependent function, and ᴧ represents the thermal conductiv-

ity of the tested samples. The D(τ) function has the following relationship 

𝜏
𝑡
𝛩
  (4)

where t represents the measured time from the start of the transient recording. The char-

acteristic Θ is defined as the following: 

𝛩
𝛼
𝜅
  (5)

where κ represents the sample’s thermal diffusivity. A computation plot is generated of 

the recorded temperature increase versus D(τ) to obtain a straight line, where  / ᴧ
  is 

the slope and ΔTi is the intercept. Due to both Θ and κ are not known prior to the experi-

ment, the thermal conductivity is calculated through a iterative process[137]. 

2.11. Statistical Analysis   

Statistical analysis was performed for each concrete mix design to compare the meas-

ured physical, mechanical, and thermal conductivity properties. The average and stand-

ard deviation values were calculated for the flow, compression, tension, and flexural prop-

erties, in accordance with ASTM standards. The average and standard deviation values 

were calculated for the thermal conductivity properties. Since only two density measure-

ments were obtained for each concrete mix design, the two density values were reported. 

It must be noted that density values are averaged for the Results and Discussion portions 

of this study to compare the density for each concrete mix design.   

Figure 6. Thermal conductivity measurement experimental setup using the transient plane source
(TPS) approach with the (left image) Hot Disk® sensor (right image) positioned between two concrete
parts of the tensile sample.

2.11. Statistical Analysis

Statistical analysis was performed for each concrete mix design to compare the mea-
sured physical, mechanical, and thermal conductivity properties. The average and standard
deviation values were calculated for the flow, compression, tension, and flexural properties,
in accordance with ASTM standards. The average and standard deviation values were
calculated for the thermal conductivity properties. Since only two density measurements
were obtained for each concrete mix design, the two density values were reported. It must
be noted that density values are averaged for the Results and Discussion portions of this
study to compare the density for each concrete mix design.

3. Results
3.1. Scanning Electron Microscopy and Element Chemical Composition of Fibers

Figure 7 shows example surface morphologies for both rCF and steel fibers. The steel
fiber exhibited longitudinal grooves from the manufacturer’s drawing process. Similarly,
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the surface roughness and longitudinal grooves of the rCF are indicative of the precursor
fiber type, fiber spinning, and converting from precursor fiber to carbon fiber. Figure 8
shows the EDS spectra for rCF and steel fiber. The elemental chemical composition of
the steel fibers consisted of carbon (C), iron (Fe), and copper (Cu). Strong C and O peaks
were observed for the rCF, where the O peak corresponds to the oxidation from complex
chemical reactions of converting a carbon fiber precursor to carbon fiber [139]. Additionally,
the presence of Si suggests that residual polymer fiber sizing is present on the surface of
the rCF [111,140]. Moreover, the peaks observed for Fe and aluminum (Al) detected for the
rCF suggest that the fibers were exposed to impurities during handling and pyrolysis in
the recycling process.
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3.2. Wide Angle X-ray Scattering of Carbon fibers

Table 4 summarizes the WAXS for rCF compared to the reference commercial carbon
fiber T700 carbon fiber. Both batches of rCF had similar d-spacings and crystalline parame-
ters. Furthermore, the rCF fibers had similar results to those of T700 carbon fiber with the
exception that the rCF had smaller crystalline dimensions. The WAXS results suggest that
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rCF has a comparable crystalline structure to the industrial carbon fiber T700 and possesses
suitable mechanical properties as a fiber reinforcement in concrete mix designs.

Table 4. Wide angle X-ray scattering structural properties of carbon fiber.

Fiber ID 002 Peak 100 Peak Position Crystalline Parameters

2θ
(o)

FWHM
(o)

d-Spacing
(Å)

2θ
(o)

FWHM
(o)

d-Spacing
(Å)

Lc
(Å)

La
(Å)

rCF-1 25.67 5.07 3.47 44.11 5.48 2.05 14.9 33.8
rCF-2 24.42 4.76 3.64 42.74 5.70 2.11 14.3 35.9
T700 25.19 4.68 3.53 43.33 4.14 2.09 19.7 36.5

3.3. Mechanical Properties of the Fiber-Reinforced Concrete Mix Designs

Table 5 summarizes the comparison of mechanical properties, flow properties, and
density of the concrete mixes. The steel fibers and neat concrete mix design were used as
a baseline measurement as a comparison to the rCF-reinforced concrete mix designs. For
the high-strength concrete, the compressive strength of the rCF mix design (77.0 MPa) was
approximately 16.3% lower than the neat mix design (90.7 MPa) and approximately 13.4%
lower than the steel fiber mix design (88.1 MPa). The tensile strength of the rCF mix design
(4.55 MPa) was approximately 0.7% higher than the neat mix design (4.52 MPa) and about
34.2% lower than the steel fiber mix design (6.43 MPa). The flexural strength of the rCF mix
design (9.40 MPa) was approximately 21.0% higher than the neat mix design (7.61 MPa)
and approximately 88.4% lower than the steel mix design (24.28 MPa). The flow of both
the steel and neat mix was 150+%, with rCF having a flow of 25%. The average density of
the rCF mix design (2.23 g/cm3) was approximately 4.8% lower than the neat mix design
(2.37 g/cm3) and approximately 6.1% lower than the steel mix design (2.37 g/cm3). For
the structural-light concrete, the compressive strength of the rCF mix design (28.4 MPa)
was approximately 73.2% lower than the neat mix design (61.2 MPa) and approximately
20.8% lower than the steel mix design (35.0 MPa). The tensile strength of the rCF mix
design (2.90 MPa) was approximately 14.8% higher than the neat mix design (2.50 MPa)
and approximately 48.8% lower than the steel mix design (4.77 MPa). The flexural strength
of the rCF mix design (2.57 MPa) was approximately 82.8% lower than the neat mix design
(6.20 MPa) and approximately 118.3% lower than the steel mix design (10.02 MPa). The
neat mix had the highest flow, at 84.4%, followed by the steel fiber mix, with a flow of
20.3%. Unfortunately, due to low workability and poor cohesion in the concrete mix, the
rCF mix design crumbled during the test, leading to an invalid test or an effectively 0%
flow. The average density of the rCF mix design (1.53 g/cm3) was approximately 10.5%
lower than the neat mix design (1.70 g/cm3) and approximately 15.7% lower than the
steel mix design (1.79 g/cm3). For the ultra-light concrete, the compressive strength of
the rCF mix design (21.7 MPa) was approximately 13.7% lower than the neat mix design
(24.9 MPa) and approximately 62.4% lower than the steel fiber mix design (41.4 MPa). The
tensile strength of the rCF mix design (3.21 MPa) was approximately 72.6% higher than the
neat mix design (1.50 MPa) and approximately 58.6% lower than the steel fiber mix design
(5.87 MPa). The flexural strength of the rCF mix design (5.62 MPa) was approximately
48.7% higher than the neat mix design (3.42 MPa) and approximately 97.5% lower than the
steel fiber mix design (16.32 MPa). The flow of both the neat and the steel fiber was 150+%,
with rCF having a flow of 1.6%. The average density of the rCF mix design (1.48 g/cm3)
was approximately 2.0% lower than the neat mix design (1.51 g/cm3) and approximately
12.7% lighter than the steel fiber mix design (1.68 g/cm3).

Figure 9 shows the compression force–displacement curves for an example sample for
each concrete mix design. The neat mix had a minimal force-carrying capacity or ductility
after reaching its maximum force whereas the rCF and steel-reinforced samples showed a
small amount of ductility. Figure 10 shows the tensile force–displacement curves for the
different concrete mixes. It can be observed that both the neat and rCF samples have no
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ductility after peak force whereas the steel samples exhibited a considerable amount of
ductility. Figure 11 shows the flexural force–displacement curves for the concrete mixes.
Similar to the tensile results, the rCF and neat samples had minimal post-peak-force ductility
whereas the steel fiber exhibited a significant amount of ductility. It is also interesting to
note the failure behavior of the flexural high-strength and ultra-light steel-fiber-reinforced
samples where, beyond the peak force, the force seems to oscillate up and down. This
behavior can be attributed to the fiber pull-out mechanisms of the steel fibers. The steel
fibers gradually pull out of the concrete due to the friction bond between the concrete
and fiber, resulting in a repeated catch and slip failure mechanism which, in turn, leads
to a jagged force verses deflection curve. In contrast to the steel-fiber-reinforced flexural
samples, the rCF exhibited rupture failure behavior, showing that rCF-reinforced concrete
mix designs in this study are not ductile.

Table 5. Mechanical properties, flowability, and density values of the concrete mix designs.

Material Fiber Type Compression
(MPa)

Tension
(MPa)

Flexural
(MPa) Flow Density

(g/cm3)

High-strength
rCF 77.0 ± 1.2 (n = 3) 4.55 ± 0.31 (n = 3) 9.40 ± 0.82 (n = 4) 25.00% 2.22–2.24 (n = 2)
steel 88.1 ± 0.8 (n = 3) 6.43 ± 0.58 (n = 3) 24.28 ± 1.06 (n = 4) 150+% 2.33–2.39 (n = 2)
neat 90.7 ± 8.3 (n = 3) 4.52 ± 0.39 (n = 3) 7.61 ± 1.11 (n = 4) 150+% 2.34–2.35 (n = 2)

Structural-
light

rCF 28.4 ± 0.1 (n = 3) 2.90 ± 0.14 (n = 3) 2.57 ± 0.60 (n = 4) N/A * 1.51–1.54 (n = 2)
steel 35.0 ± 9.6 (n = 3) 4.77 ± 0.45 (n = 3) 10.02 ± 1.46 (n = 4) 20.3% 1.78–1.80 (n = 2)
neat 61.2 ± 2.9 (n = 3) 2.50 ± 0.24 (n = 3) 6.20 ± 0.88 (n = 4) 84.4% 1.66–1.74 (n = 2)

Ultra-light
rCF 21.7 ± 0.6 (n = 3) 3.21 ± 0.17 (n = 3) 5.62 ± 1.10 (n = 4) 1.60% 1.47–1.49 (n = 2)
steel 41.4 ± 0.7 (n = 3) 5.87 ± 1.31 (n = 3) 16.32 ± 2.62 (n = 4) 150+% 1.57–1.79 (n = 2)
neat 24.9 ± 5.3 (n = 3) 1.50 ± 0.13 (n = 3) 3.42 ± 0.84 (n = 4) 150+% 1.50–1.52 (n = 2)

Note: ±values are standard deviation and * represents the flow test not being valid due to the concrete crumbling
during the test. Density values are range values for two measurements.
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3.4. Micro X-ray Computed Tomography

Figure 12 shows example 2D-reconstructed slices for neat high-strength, structural-
light, and ultra-light concrete mix designs. The high-strength concrete exhibited the densest
regions within the concrete phase of the sample with grayscale values having a baseline
value of approximately 9000, whereas the less dense structural-light and ultra-light both
had baseline grayscale values of 8000 for the concrete matrix phase. Additionally, the
pores, or least dense regions, where the grayscale values approach zero, are more frequent
and visible in the structural-light and ultra-light than in the high-strength concrete. These
grayscale differences for the concrete phase can be attributed to greater X-ray attenuation
of the denser neat high-strength concrete mix (average: 2.34 g/cm3) than in the neat
structural-light (average: 1.70 g/cm3) and neat ultra-light (average: 1.51 g/cm3) mixes.
Additionally, unambiguous detection of the microstructure granularity within the concrete
phases and pore phases within the 2D-reconstructed cross-section for each concrete mix
design demonstrates the effectiveness of this µ-XCT technique. Figures 13–15 show example
2D-reconstructed cross-sections and 3D-reconstructed volumes highlighting the segmented
pores within the cored samples used in this study for the neat, rCF-reinforced, and steel-fiber-
reinforced concrete mix designs (high-strength, structural-light, and ultra-light). The details
of the microstructure of the pore formation and distribution spatially can be clearly observed
for each concrete mix. Table 6 summarizes the void volume content for each concrete
mix, where, considering all mix designs, the high-strength concrete had the lowest porosity
(0.9–4.7%), followed by an increase in voids for structural-light (12.2–16.2%), with the highest
void content observed for ultra-light (27.7–37.1%). This void volume, calculated using the 3D
visualization software, agrees visually with the spatially sparser voids observed for the high-
strength concrete (Figure 13(2A–2C,3A–3C)), compared to the presence of significantly more
voids observed spatially for the structural-light (Figure 14(2A–2C,3A–3C)) and ultra-light
concretes (Figure 15(2A–2C,3A–3C)).

Table 6. Void volume fraction of high-strength, structural-light, and ultra-light concrete mix designs.

Concrete Type Neat or Reinforcement Type Void Volume Fraction (%)

High-strength Neat 0.9
Steel 1.4
rCF 4.7

Structural-light Neat 12.2
Steel 14.9
rCF 16.2

Ultra-light Neat 37.1
Steel 30.1
rCF 27.7

Additionally, it is interesting to note the interconnectivity of the pores observed for
the structural-light and ultra-light concrete mix designs. Due to the interconnectivity
of voids and the segmentation procedure used in this work, individual voids could not
be quantified for a pore size distribution. However, this demonstrates the effectiveness
of using the µ-XCT technique to obtain void volume content spatially and quantitative
information including the effects of the fiber reinforcement of the concrete. As shown
in Table 6, incorporating fiber reinforcement increased the void volume content for the
high-strength concrete and structural-light concrete mix designs. Notably, with respect to
the neat high-strength concrete void volume content (0.9%), the incorporation of rCF (4.7%)
into the concrete mix had the highest effect, with a 3.8% increase in void volume content
compared to the steel fiber (1.4%). Similarly, with respect to the neat structural-light void
volume content (12.2%), the incorporation of rCF (16.2%) had the highest effect with an
increase of void volume content by 4% compared to the steel fiber (14.9%). Conversely, the
void volume decreased with fiber reinforcement for the ultra-light concrete mix design,
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where, with respect to the neat ultra-light (37.1%), the steel fiber (30.7%) decreased the void
volume content by 7% compared to a higher decrease (9.4%) observed in the rCF (27.7%).

Materials 2023, 16, x FOR PEER REVIEW  20  of  35 
 

 

calculated using the 3D visualization software, agrees visually with the spatially sparser 

voids observed for the high-strength concrete (Figure 13, 2A–2C and 3A–3C), compared 

to the presence of significantly more voids observed spatially for the structural-light (Fig-

ure 14, 2A–2C and 3A–3C) and ultra-light concretes (Figure 15, 2A–2C and 3A–3C).   

 

Figure 12.  (Left column) The 2D-reconstructed cross-section of different concrete samples desig-

nated as 1: high-strength concrete, 2: structural-light concrete, 3: ultra-light concrete. (Right column) 

Corresponding  line profiles  showing grayscale  intensity values based on a minimum value of 0 

(black pixel), and where 65,535 (white pixel) corresponds to the densest region. Key microstructural 

features of  interest, porous air void regions, are designated by points  (A–J) and shown spatially 

across the 2D cross-section in the left column. 

Figure 12. (Left column) The 2D-reconstructed cross-section of different concrete samples designated
as 1: high-strength concrete, 2: structural-light concrete, 3: ultra-light concrete. (Right column)
Corresponding line profiles showing grayscale intensity values based on a minimum value of 0 (black
pixel), and where 65,535 (white pixel) corresponds to the densest region. Key microstructural features
of interest, porous air void regions, are designated by points (A–J) and shown spatially across the 2D
cross-section in the left column.
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Figure 13. (1A–1C) The 2D-reconstructed cross-sections showing fiber bundle phases, air voids,
within the high-strength host concrete. (2A–2C,3A–3C) The 3D-reconstructed volume visualization
of voids spatially within the high-strength host concrete. Note: (1C,2C,3C) fiber phase for steel fiber
is shown.
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Figure 14. (1A–1C) The 2D-reconstructed cross-sections showing fiber bundle phases, air voids,
within the structural-light host concrete. (2A–2C,3A–3C) The 3D-reconstructed volume visualization
of voids spatially within the host concrete. Note: (1C,2C,3C) fiber phase for steel fiber is shown.
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within the ultra-light host concrete. (2A–2C,3A–3C) The 3D-reconstructed volume visualization of
voids spatially within the host concrete. Note: (1C,2C,3C) fiber phase for steel fiber is shown.

3.5. Thermal Conductivity of Fiber-Reinforcement Concrete Mix Designs

Table 7 summarizes the thermal conductivity for the high-strength, structural-light,
ultra-light neat, steel-fiber-reinforced, and rCF-reinforced mixes. Considering all mix de-
signs, the high-strength concrete had the highest thermal conductivity (1.502–1.666 W/mK),
followed by the structural-light (0.551–0.752 W/mK), and the lowest thermal conductivity
was observed for the ultra-light (0.341–0.535 W/mK). With respect to the neat high-strength
concrete (1.666 W/mK), the incorporation of rCF (1.502 W/mK) had a lower thermal con-
ductivity (10.4%), and the steel fiber mix (1.787 W/mK) had a higher thermal conductivity
(7%). Similarly, with respect to the neat structural-light concrete (0.752 W/mK) the incorpo-
ration of rCF (0.551 W/mK) resulted in lower thermal conductivity (30.9%), and the steel
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fiber mix (0.945 W/mK) had a higher thermal conductivity (22.7%). Notably, with respect
to the neat ultra-light concrete (0.341 W/mK), the incorporation of rCF (0.535 W/mK)
had the highest thermal conductivity (44.3%), and the incorporation of the steel fiber
(0.515 W/mK) had a lower increase in thermal conductivity (40.7%) than the neat concrete.

Table 7. Thermal conductivity properties of high-strength, structural-light, and ultra-light concrete
mix designs.

Concrete Type Neat or Reinforcement Type Thermal Conductivity (W/mK)

High-strength Neat 1.666 (0.011)
Steel 1.787 (0.004)
rCF 1.502 (0.027)

Structural-light Neat 0.752 (0.012)
Steel 0.945 (0.024)
rCF 0.551 (0.018)

Ultra-light Neat 0.341 (0.003)
Steel 0.515 (0.032)
rCF 0.535 (0.010)

Note: Values in parentheses are standard deviation.

3.6. Scanning Electron Microscopy of Failed Concrete Mix Designs

The mechanically failed tensile samples for each of the nine different concrete mix
designs were examined using SEM to investigate the failure mechanisms for the fibers
and surrounding host concrete matrix, as shown in Figure 16. Figure 16A1 shows the
fracture surface of the neat tensile sample with minimal voids and a dense concrete matrix.
Figure 16A2 shows the structural-light mix; note the sponge-like structure of the expanded
shale aggregate in the top right corner and the higher number of pores than in the high-
strength mix. Figure 16A3 shows the ultra-light mix, demonstrating the highly porous
structure of the perlite aggregate in the bottom left and top right corner and the larger
number of pores than those found in either the high-strength or structural-light mixes.
Additionally, for the neat concrete mix designs (Figure 16A1–A3), an increase in the presence
of voids can be clearly observed from the high-strength, with minimal voids, followed
by structural-light, with an increased presence of voids, to a significant presence of voids
in the ultra-light, agreeing well with void volume content trends observed in Table 6,
µ-XCT 2D-reconstructed slices, and 3D-reconstructed volumes (Figures 12–15). For each
of the steel fiber-reinforced mixes (Figure 16B1–B3), it can be seen that the steel fibers are
relatively clean and show a minimal bonding concrete matrix. Figure 16C1–C3 show the
rCF-reinforced mixes, and it can be observed that there is fiber clumping and minimal
concrete adhering to the fibers, indicating poor bonding between the concrete and fibers
similar to that seen with steel fibers.
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Figure 16. SEM images of the failed tension samples. (A1): neat high-strength mix, (A2): neat
structural-light mix, (A3): neat ultra-light mix, (B1): steel high-strength mix, (B2): steel structural-
light mix, (B3): steel ultra-light mix, (C1): rCF high-strength mix, (C2) rCF structural-light mix,
(C3) rCF ultra-light mix.

4. Discussion

Investigation of the structure–process–property relationships between the rheological
behavior, porosity, and influence of rCF on the mechanical performance for all the consid-
ered concrete mix designs was the primary aim of this study. The SEM surface morphology
(Figure 7) and EDS elemental composition (Figure 8) confirmed minimal polymer sizing
was present on the surface of the rCF. Furthermore, crystalline parameters for rCF (Table 4)
were comparable to those of a high-performance commercial carbon fiber. Thus, the combi-
nation of SEM, EDS, and WAXS suggests that rCF have suitable physical and mechanical
integrity for incorporation into concrete mix designs for structural applications.

It can be observed in Table 5 that, with regards to both tension and flexural strength
values, the rCF mix designs were lower than steel fiber but higher than neat concrete with
the one exception being the structural-light flexural strength. It is hypothesized that the



Materials 2023, 16, 5451 25 of 33

poor results for the structural-light mix were due to the negligible flow of the mix. The
lack of flowability led to samples with more voids and less consistency as the concrete
was unable to adequately consolidate into the molds. The structural-light mix’s low flow
was due to the reduction in cementitious material content by 20% volume compared to
the 30% by volume of the other mix designs, as can be seen in Table 2. The effects of the
reduced cementitious material content on the flow of the concrete were seen for both the
neat (84.4%) and steel (20.3%) samples; however, the addition of rCF worsened the issue.
It was observed across the high-strength, structural-light, and ultra-light mixes that the
addition of rCF negatively affected the flow of the concrete. The probable reason for rCF
reducing flow is dispersion, where the carbon fibers have a smaller fiber diameter (6.7 µm),
a higher aspect ratio (224), consisting of significantly more individual carbon fibers than
steel fiber with a 200 µm fiber diameter, and a smaller aspect ratio (65). For the rCF, this
increases the fiber surface area that needs to be wetted by the water and allows for fibers to
entangle more frequently during mixing. Furthermore, the fibers can only be mixed into
the cement matrix portion of the concrete; thus, for the structural-light mix there was less
volume for the fibers to disperse into, creating compounding issues that led to a mix with
negligible flow. It is therefore important to consider not just the volume fraction of fibers
based on the total concrete volume, but also the fiber volume fraction of fibers based on the
cementitious material volume. However, it can be observed, based on the high-strength
and ultra-light mixes, that rCF reinforcement is an effective method of increasing the tensile
(Figure 10A,C) and flexural strength (Figure 11A,C) of neat concrete when the flow of
the concrete is maintained. This was also observed in Patchen, Young, and Penumadu,
where the addition of rCF to ultra-high performance concrete led to an increase in tensile
strength [111].

It can be seen in Table 5 that the rCF-reinforced concrete mix design was the least
dense of each of the three primary mixes, followed by the neat and then the steel fiber. It
was expected that the steel-fiber-reinforced mixes would be densest because the steel fibers
(7.8 g/cm3) are much denser then the aggregates (2.71–0.37 g/cm3) or the rCF (1.81 g/cm3)
they are replacing. The ultra-light mix illustrates this the best as the steel-fiber-reinforced
mix (1.68 g/cm3) was 0.2g/cm3 denser than the rCF-reinforced mix (1.48 g/cm3). Therefore,
rCF reinforcement could be ideal in applications where the density of the concrete is critical.
It should be noted that while the rCF-reinforced structural-light mix (1.53 g/cm3) had a
much lower density than the other structural-light mixes (1.70–1.79 g/cm3), this was mostly
because the poor flow traps air and creates voids during mixing and casting.

Table 5 shows that compressive strength of neat concrete had the highest strength
values for both the high-strength mixes (90.7 MPa) and the structural-light mix concrete
designs (61.2 MPa). However, for the ultra-light mix, the steel-fiber-reinforced mix had
the largest compression strength (41.4 MPa). This can be attributed to the fact that in the
ultra-light mix, the perlite aggregate’s low-density characteristic makes it light enough
to float to the surface of the concrete in the neat mix. Conversely, the steel fibers help to
constrain the aggregates by reducing flow and trapping them in the fibers, allowing for
more structurally consistent samples to be mixed and cast while maintaining excellent flow
and consolidation. For the structural-light mix, the reduction in compressive strength is
significant at approximately half the strength of the neat mix (61.2 MPa) for both the steel
fiber (35.0 MPa) and rCF (28.4 MPa) mixes. This is, again, because the low flow causes an
increase in voids volume within the concrete mix and poor consolidation of the concrete,
further illustrating the importance of adequate flow and adjusting the fiber loading based
on the cement content to maintain flow.

Figures 9–11 show example force–displacement curves for the different mixes and
reinforcement types. Overall, it was observed that steel fiber provides far superior ductility
to neat concrete and rCF concrete. Additionally, it was observed with the flexural test how
the steel fibers provided higher ductility. Instead of rupturing like rCF, the steel fibers
gradually pulled out of the concrete when loaded with tensile forces. This is best illustrated
in Figure 11C. After the peak strength is observed, the flexural-force–displacement curve



Materials 2023, 16, 5451 26 of 33

has a saw-tooth pattern: Where the steel fibers undergo frictional debonding during
mechanical failure (i.e., they pull out of the concrete then catch, causing a small amount
of drop in the force load and then an increase in the loading to a maximum or spike in
the load in a repeating pattern), this saw-tooth curve results. The ductility of concrete can
be critical in structural applications and is one of the areas that requires optimizing when
future studies consider incorporating rCF.

Table 6 shows porosity data calculated from the µ-XCT technique showing that the void
content of the mixes increased from the high-strength (0.9–4.7%), followed by structural-
light (12.2–16.2%), with the highest porosity observed for the ultra-light mix (27.7–37.1%).
This trend is due to the aggregates used in the structural-light and ultra-light mixes having
a large number of air voids, increasing the overall void content of the concrete and reducing
its density. Additionally, it can be observed that in the high-strength neat mix (0.9%) and
structural-light neat mix (12.2%), the void content goes up with the addition of fibers with
rCF (4.7% for high-strength and 16.2% for structural-light), causing a larger increase than
the steel fiber (1.4% for high-strength and 14.9% for structural-light). For the ultra-light
mix, the opposite trend was observed: The neat mix (37.7%) had the highest void content,
followed by steel fiber (30.1%), and rCF (27.7%) had the lowest void volume. This result
could be due to the perlite aggregate used in the ultra-light mix being light enough to
float in the neat mix whereas, when fibers were included, these helped to constrain the
aggregate and keep the mix more uniform through the depth of the sample. Additionally,
it was detected that a majority of the void space was interconnected in the structural-light
and ultra-light mixes. This is due to both a high porosity, and therefore inherently higher
interconnection of the voids, and overlapping grayscale values around the edges of the
voids because the concrete matrix and void are within the same pixel value range, which
could cause the separate voids to blend together during the image segmentation analysis.

As shown by the thermal conductivity measurements presented in in Table 7, the
high-strength mix (1.502–1.666 W/mK) had the highest thermal conductivity, followed
by the structural-light (0.551–0.752 W/mK), and the ultra-light (0.341–0.535 W/mK) had
the lowest thermal conductivity. This trend corresponds well to the void volume values
obtained from the µ-XCT technique (Table 6), which show the inverse trend with increasing
void content. This trend is expected because air is a significantly less effective thermal
conductor than the host concrete matrix. Furthermore, both the steel fiber and rCF by
themselves have a higher thermal conductivity than neat concrete, suggesting that the
addition of fibers will increase the thermal conductivity of the composite mix. This can be
clearly observed with the steel-fiber-reinforced high-strength (1.787 W/mK) and structural-
light (0.945 W/mK) mixes having higher thermal conductivity than the corresponding
neat (1.666 W/mK for high-strength and 0.752 W/mK for structural-light) mixes. For
the rCF-based high-strength (1.502 W/mK) and structural-light (0.551 W/mK) mixes,
a decrease in thermal conductivity was observed compared to the neat (1.666 W/mK
for high-strength and 0.752 W/mK for structural-light) concrete. This is likely due to
the increased void content of the rCF-reinforced mixes causing a decrease in thermal
conductivity that outweighs the increase in thermal conductivity caused by the fibers. For
the ultra-light mixes, the neat (0.341 W/mK) had the lowest thermal conductivity but also
the highest void content (37.1%). The steel fiber and rCF had similar void content (30.1%
for steel fiber and 27.7% for rCF) and thermal conductivity (0.515 W/mK for steel fiber and
0.535 W/mK for rCF), suggesting that for the same amount of voids, the different fiber
types affect the thermal conductivity in a similar manner. Overall, it can be concluded that
the void content is the primary factor affecting the thermal conductivity followed by the
addition of fibers. However, the increase in thermal conductivity caused by the fibers can be
outweighed by the additional voids created because the fibers reduce the workability of the
concrete. This demonstrates the effectiveness of correlating the effect of void volume content
within the rCF-reinforced concrete mix designs in this study using µ-XCT and thermal
conductivity measurements.
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Figure 16 shows the SEM images of the different mixes. For both the structural-light
and ultra-light mixes, small voids within the aggregates can be seen that help to reduce
the density of the concrete. It can be observed in the steel fiber mix that the fibers do
not break, but instead pull out of the concrete, showing that they do not develop their
full rupture strength. Likewise, it can be seen in the rCF mixes that while the fibers have
been broken, they still pull out of the concrete, showing that the bonding between the
fibers and concrete matrix is still not ideal. This can be confirmed by observing that very
little concrete is bonded onto the rCF fibers. Therefore, increasing the bond between
the steel fibers or rCF with the concrete matrix could increase the tensile capacity of the
concrete significantly.

The mechanism involved with optimizing concrete mix design with carbon fibers
involves lengths of chopped fiber to be long enough to provide bridging of tensile cracks in
the cement composite phase and sufficient fiber volume fraction to augment the mechanical
properties. For workability, the fiber volume fraction should be such that the rheology is
not too far from the neat mix design. For optimal load transfer, one needs to optimize the
interfacial shear strength between the carbon fiber surface and the cured cement phase using
appropriate physical and chemical coating. For thermal insulation, increasing the trapped
air/void phases uniformly distributed and small enough in size to minimize strength loss
is targeted. For improved ductility, one needs to optimize fiber length distribution and fiber
bridging without clumping in a well-dispersed state. Though, all of these features were
not realized in this paper, we have provided controlling mechanisms and example mix
designs to realize strong, light, and multifunctional concrete mix designs utilizing durable,
lightweight, and low carbon footprint recycled carbon fibers.

5. Conclusions

In this study, recycled carbon fiber was evaluated for its mechanical properties (com-
pression, tensile, and flexural strength) for high-strength, structural-light, and ultra-light
concrete mix designs. The mechanical performance of the recycled carbon rCF-reinforced
concrete mix designs was compared to traditional commercial steel-fiber-reinforced con-
crete and neat mixes. Scanning electron microscopy was used to examine the surface
morphology of fibers coupled with energy dispersive X-ray spectroscopy to identify the ele-
mental chemical composition of the recycled carbon fiber and steel fiber. Additionally, wide
angle X-ray scattering was performed on the recycled carbon fibers to examine the crys-
talline parameters of the fibers. The concrete mix designs were evaluated non-destructively
using high resolution micro X-ray computed tomography to visualize the voids spatially
within the concrete tensile samples and to provide quantitative information on the porosity
effects on mix design and the influence of incorporating recycled carbon fibers. Thermal
conductivity was performed on the concrete mix designs to evaluate the effect of porosity,
inclusion of recycled carbon fiber and steel fiber, and concrete mix design type. The results
of the thermal conductivity were correlated with the porosity obtained from micro X-ray
computed tomography and the compressive, tensile, and flexural strength.

The following general conclusions can be drawn for the incorporation of the recycled-
carbon-fiber-reinforced method into the three concrete mix designs considered in
this study:

1. Incorporation of recycled carbon fibers into the three concrete types can increase the
tensile and flexural strength of neat concrete.

2. The recycled carbon-fiber-reinforced concrete has slightly higher ductility compared
to the neat concrete for tension and flexural strength but lower than the steel-fiber-
reinforced concrete mix designs.

3. The recycled carbon fibers tended to increase the void content in the concrete, with
the exception of the ultra-light mix where the fibers constrained the aggregates and
allowed for their more uniform dispersion.

4. An increase in void volume content is the primary factor affecting the decrease in
thermal conductivity for the concrete mix designs.
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5. The addition of fibers increases the thermal conductivity of the concrete; however, the
additional voids caused by the fibers can negate the effects.

It can be observed across the different mix designs that recycled carbon fiber improves
the tensile and flexural strength of the concrete while not significantly decreasing the
compression strength in most cases. It was observed that the steel fibers performed better
in compression, tensile, and flexural strength across the board but had a higher density
than the recycled carbon fiber and neat mixes. Furthermore, it was observed that the
flow of the concrete mixes was significantly reduced with the addition of recycled carbon
fiber, and the effects on flow were significantly magnified when the cement content was
reduced. This result suggests that the fiber volume content in the concrete mixes should be
based on the cementitious material volume content as opposed to the total mix volume.
It is theorized that when the fibers are mixed into the volume, they are mixing into the
cementitious portion of the mix and not the aggregate portion. It must be noted that there
is a need for continued studies on the microstructural and chemical properties of fiber
sizing and interfacial bonding with concrete mixes to enhance flowability and mechanical
performance. Overall, recycled carbon fibers are a viable reinforcement for fiber-reinforced
concrete and are particularly effective when incorporated in structural-light and ultra-
light applications.
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