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Abstract: A growing number of people are interested in using silver nanowires (AgNWs) as potential
transparent and conductive materials. The production of high-performance and high-throughput
AgNWs was successfully optimized in this work using a one-step, straightforward, and reproducible
modified polyol approach. The factors influencing the morphology of the silver nanowires have
undergone extensive research in order to determine the best-optimized approach for producing
AgNWs. The best AgNW morphology, with a length of more than 50 m and a diameter of less than
35 nm (aspect ratio is higher than 1700), was discovered to be produced by a mixture of 44 mM
AgNO3, 134 mM polyvinylpyrrolidone (PVP) (Mo.Wt 40,000), and 2.4 mM KCl at 160 ◦C with a
stirring rate of 100 rpm. With our improved approach, the overall reaction time was cut from almost
an hour with the conventional polyol method to a few minutes. Scanning electron microscopy (SEM),
X-ray diffraction (XRD), and ultraviolet (UV) spectroscopy were used to characterize AgNWs. The
resultant AgNWs’ dispersion was cleaned using a centrifuge multiple times before being deposited
on glass and PET substrates at room temperature. In comparison to commercial, delicate, and pricey
indium-doped tin oxide (ITO) substrates, the coated samples displayed exceptionally good sheet
resistance of 17.05/sq and optical haze lower than 2.5%. Conclusions: Using a simple one-step
modified polyol approach, we were able to produce reproducible thin sheets of AgNWs that made
excellent, flexible transparent electrodes.

Keywords: silver nanowires; transparent conductive electrode; flexible electrodes; polyol method

1. Introduction

One-dimensional nanomaterials have attracted the attention of scientists and re-
searchers in recent years. Nanowires are an important type of one-dimensional nanos-
tructure, with a diameter of fewer than 100 nanometers and a length ranging from a few
hundred nanometers to tens of microns [1]. It is worth mentioning that the development
of silver nanowires (AgNWs) is studied because of their unique and excellent optical, me-
chanical, and electromagnetic properties, allowing them to be introduced in many modern
applications, such as catalysis, sensors, optoelectronic devices, and nano electronics [2].
Silver has been found to have the highest thermal and electrical conductivity among all
metals compared to other metals [3–5]. Therefore, many attempts were conducted to obtain
silver transparent conductive electrodes (TCEs) [6–8].

As a result of the unique optical and electrical properties of silver nanowires, there are
many applications, based on AgNWs. Examples of applications based on silver nanowires
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are flexible displays, biosensors, electronic textiles, artificial organs, and other portable and
wearable electronic devices In addition to applications in power supplies and transparent
conductive electrodes. Most photovoltaic devices depend on transparent conductive
electrodes to be suitable for some desired photovoltaic applications, so silver nanowires
were the best for designing transparent electrodes [9–12].

Silver nanowires are synthesized by more than one method, including hard template
and soft template methods [13]. Examples of the hard template method have been per-
formed using deoxyribonucleic acid (DNA) templates [14] and nanoporous membranes
template [15]. The soft template method was conducted in the past ten years by using
cetyltrimethylammonium bromide (CTAB) as a capping agent [16], polyvinyl alcohol [17],
double-hydrophilic block copolymers [18], and polyvinyl pyrrolidone, which is known as
the polyol method [19]. In 1989. Fievet et al synthesized nanostructures for the first time
through polyol technology [20]. The polyol method is the most common and the simplest
method for large-scale and high-quality production of AgNWs, and it does not require
much technical knowledge. However, it is not easy to produce AgNWs of uniform shape
and size, and the final products are usually contaminated with silver nanoparticles (AgNPs)
that must be removed from AgNWs to obtain AgNWs with good optical and electrical
properties [21].

The morphology of AgNWs is extremely sensitive to the reaction environment and
elements thereof, such as reaction temperature, the molar ratio of chemicals used in the
synthesis, and the agitation speed [5]. It has also been reported that AgNWs produced
by the polyol process depend on the type of PVP used as a capping agent [22]. Different
solvents that simultaneously acted as reducing agents have been used in the preparation of
AgNWs, including ethylene glycol (EG) [23], glycerol, and propylene glycol [23].

The previous strategies, such as the hard method and its types, are complicated, require
special conditions, and take a long time. Usually, the traditional polyol technique requires
more than 12 h in an environment filled with inert gas and involves multiple steps [24–26].
Additionally, the produced nanowires lack controlled morphology, which serves as our
motivation for undertaking this research [27,28]. In the present study, we specifically
concentrated on creating AgNWs using a quick and simple modified polyol approach.
By improving the reaction conditions, the reaction time was significantly shortened, and
AgNWs with an excellent aspect ratio of approximately 1766 were produced. Additionally,
the cleaned AgNWs solution was effectively coated on glass and PET substrates, producing
materials with good transparency (78%) and low electrical resistance (17.05/sq). As a result,
the resulting electrodes make an excellent ITO replacement.

2. Materials and Methods

All the chemicals used for this work were of high analytical quality and did not require
further purification. Silver nitrate (AgNO3), ethylene glycol (EG), glycerol, propylene
glycol, KCl, KBr, and Polyvinylpyrrolidone (PVP) (Molecular Weight ≈ 400,000) were all
purchased from Sigma Aldrich (St. Louis, MO, USA).

2.1. Synthesis of AgNWs

First, 10 mL of ethylene glycol, 5 mL of KCl (0.005 g of KCl in 5 mL of ethylene
glycol), 0.3 g of PVP solution (50% in ethylene glycol), and 0.15 g AgNO3 were mixed in a
single container and heated to 160 ◦C until the desired color was obtained. The reaction
was then stopped by cooling it with an ice bath [24]. Afterward, the product was washed
several times with distilled water and ethanol using a centrifuge at 2500 rpm. The final
product was re-suspended in ethanol.

2.2. Electrodes Designing

AgNWs suspension solution of 1% was well re-dispersed using ultrasonication for
10 min. The AgNWs were made into formulated AgNWs ink using 0.1% by weight of
chitosan (MW~10,000) as a thickening agent, and the clean AgNWs suspension (0.2%) was
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then diluted to (0.05% by weight). The final AgNWs suspension (ink) was then coated by
using a spin coater at different steering speeds for one minute on a clean glass substrate. To
coat AgNWs on PET sheets, PET was first immersed in H2O2 for 2 h to become hydrophilic
and then washed with ethanol several times before use. A Meyer rod was used to coat
AgNWs on the pretreated PET sheets.

3. Morphological Characterization

X-ray diffraction spectra were collected using a Philips PW 1710 (Tokyo, Japan) V-
530 X-ray diffractometer, which employed Cu Kα radiation at 40.1 V and 30 mA with a
wavelength of 0.154 nm. Scanning Electron Microscopy images were taken with a Joel
(Tokyo, Japan) JSM 5600 LV Scanning Electron Microscope equipped with an Oxford
Instruments 6587 EDX (Energy Dispersive X-Ray) Microanalysis detector. Additionally,
UV spectroscopy was conducted using a JASCO Model V-530 UV-Vis spectrophotometer
(Tokyo, Japan).

4. Results and Discussion

The reduction of silver atoms using EG, which is used as a solvent and at the same
time acts as a reducing agent, at an elevated temperature of about 160 ◦C can be represented
according to the following’s chemical equations [29]:
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As shown in Equation (1), in the presence of halide anions as metal chlorides or metal
bromides, AgNO3 reacts with chlorides or bromides to form AgX, which promotes the re-
duction process of Ag+ and can control silver concentration [30,31]. In the second step, Ag+

ions were reduced by EG to form silver atoms (seeds) as explained in Equations (2) and (3).
The concentration of the seeds reaches the level of supersaturation at which the nucleation
of Ag atoms takes place, and they start to grow into silver nanostructures in the solution
phase [27,28].

PVP works as a good capping agent, and it plays a significant role in the final morpho-
logical shape of the silver nanostructure [5,32]. PVP has a high ability to form coordination
bonds with many chemical compounds. The coordination properties are due to the skeleton
of PVP which has a strong polar group (pyrrolidone ring). Carbonyl polar groups (C=O)
were coordinated with Ag+ ions to form the PVP-Ag complex, as shown in Figure 1. Ag+

ions were absorbed on the active sites of the PVP polymer surface, and then Ag ions were
converted to nuclei of AgNWs [30].
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Figure 1. Growth mechanism of AgNWs.

The AgNWs’ nuclei were growing in one direction of the face-centered-cubic (FCC)
(111) structure, which is the available face crystal growth as is proposed and confirmed
with X-ray diffraction analysis in the following section. As proposed in Figure 1, PVP was
covering the (100) plan and accordingly, Ag crystal was blocked from growth through the
(100) plan and forced to grow through the (111) plan to form AgNWs. It has been reported
that an excess amount of PVP will bind to the (111) plan of the Ag crystalline structure,
which will lead to high coverage of every facet of the silver crystal nucleus, and therefore
no AgNWs will be formed [27,28].

4.1. X-ray Diffraction (XRD)

The XRD pattern of the AgNWs film coated on a glass substrate (Figure 2) was analyzed
and found to have a high crystalline structure and compatibility with Joint Committee on
Powder Diffraction Standards (JCPDS) File No. 98-018-0878, which reflects a cubic crystalline
structure [33]. Five distinct characteristic patterns at 38.37, 44.6, 64.91, 77.991, and 82.18◦ were
observed in the XRD data, corresponding to Miller Indices in (FCC) (111), (200), (220), (311),
and (222) planes, respectively. The crystal lattice structure constant was determined to be
4.0861 Å, which agrees with the standard reported value of 4.0862 Å [34–36].
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Figure 2. The XRD spectrum with the reference pattern of AgNWs synthesized by the one-step polyol
method and its corresponding SEM image.

For AgNWs, XRD examination yielded crystal lattice (d) spacing values of 2.31 and
2.14 A◦, respectively, which correspond to the planes (111) and (200). These results demon-
strated that samples of AgNWs were effectively synthesized into high-purity crystalline
structures [37]. Additionally, the intensity ratio between the (111) and (200) peaks was
shown to be 3.5 compared to the theoretical value of 2.5, which may indicate the enhance-
ment of the (111) crystal plane in AgNWs as mentioned in the previous studies [27–29,38].

4.2. UV-Spectroscopy

Plasmon surface resonance frequencies are frequently employed in UV-visible spec-
troscopy to describe the morphological characterization of silver nanostructures [39,40].
The result of a conventional polyol-based AgNWs synthesis comprises silver nanowires,
nanoparticles, and other metallic detritus. This combination may be separated using ade-
quate centrifugation to obtain practically pure AgNWs. Figure 3 depicts the UV-spectroscopy
of AgNWs before and after centrifuge cleaning. AgNPs peaked at 419 nm in UV absorbance
peaks, which can be attributed to pre-cleaning the AgNWs (Figure 3A). To preserve addi-
tional information, Gaussian fitting was used for the collected UV peaks. Three distinct
peaks were seen at 343, 375, and 419 nm (Figure 3B). The first and second peaks were as-
signed to the AgNWs, whereas the third peak was assigned to the AgNPs [36]. Figure 3C
depicts cleaned AgNW samples, whereas Figure 3D depicts the Gaussian fitting. Only
two peaks associated with AgNWs were found at 343 and 375 nm, whereas the third peak
associated with AgNPs vanished, indicating that the cleaning method was successful in
eliminating nanoparticles [37]. The presence of two AgNW generations with slightly varying
diameters may explain the development of two AgNW peaks [38]. The findings reveal that
the location of the AgNW surface plasmon resonance peak is highly dependent on wire
diameter.
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4.3. Polyol Method Versus One-Step Modified Polyol Method

Silver nanowires were synthesized by the reduction of AgNO3 by ethyelen glycol in
the presence of PVP [3,5,41,42]. A comparison was made between the traditional polyol
method, which requires several steps, and our one-step modified polyol method. All
chemicals used, their temperatures, and the agitation speed were kept the same in the
two methods.

Figure 4 shows SEM images and their corresponding histogram distribution for Ag-
NWs prepared by the traditional polyol method (Figure 4A–D) and the new modified
polyol method (Figure 4E–H). Different SEM magnifications of 10 and 500 nm for the same
samples were taken and were used for calculating the average AgNWs lengths and diame-
ters shown in the corresponding histograms. The average length of AgNWs synthesized
by the traditional polyol method was found to be 18.47 µm while their diameters were
about 50 nm. On the other hand, the average length and diameter for AgNWs obtained
by one-step modified polyol were found to be 58.25 µm and 34.33 nm, respectively. The
aspect ratio for the traditional polyol method was 369.4 while for the modified method
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was 1664.2. SEM images also showed that the new method has a more uniform and clean
wire distribution than the traditional method at the same reaction conditions.
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prepared by the one-step method.

Based on the previous data, AgNWs produced by the new modified polyol method
had a better aspect ratio and highly pure and uniform AgNWs compared to the traditional
polyol method. Moreover, the reaction time was reduced from 45 min to about 8 min.

4.4. Parameters Affecting the Synthesis of AgNWs

AgNWs’ crystal growth is strongly affected by both chemical and physical conditions
during its synthesis. In this current work, we optimized the methodology of AgNWs
synthesis by studying the main parameters that affect the synthesis such as PVP: AgNO3
molar ratio, temperature, agitation speed, solvent, and halide salt type.
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AgNO3 Concentrations

It has been reported that the morphology of Ag nanostructures obtained by the polyol
method is strongly influenced by the silver source concentration [3,43,44]. Figure 5 shows
SEM images of AgNWs synthesized by four different AgNO3 concentrations. A very thin
wire with an average diameter of 25 nm and an average length of 8.49 µm. Additionally, a
lot of nanoparticles were produced with 20.6 mM AgNO3 (Figure 5A–C). Using a higher
concentration of AgNO3 produces thicker AgNWs without AgNPs (Figure 5D–L). Average
diameters of 49.87, 137, and 270 nm and average lengths of 25.87, 30.37, and 39.17 µm were
observed for 44, 88.3, and 176.6 mM of AgNO3, respectively.
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Figure 5. SEM images at different magnifications for AgNWs prepared with different AgNO3

concentrations: (A–C) 20.6 mM of AgNO3, (D–F) 44 mM of AgNO3, (G–I) 88.3 mM of AgNO3, and
(J–L) 176.6 mM of AgNO3.

Figure 6A shows the effect of AgNO3 concentration on the average diameter of Ag-
NWs. The average diameter was increased by increasing AgNO3 concentration, whereas
the average AgNWs length reached a maximum at an AgNO3 concentration of 44 mM
(Figure 6B).
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The UV-absorbance spectra of AgNWs synthesized with different AgNO3 concentra-
tions are shown in Figure 7. Five characteristic UV absorbance peaks were observed at 368,
376, 390, 397, and 410 nm which correspond to AgNWs synthesized with four different
AgNO3 concentrations. The first three peaks were attributed to AgNWs with average
diameters of 270, 137, and 49.87 nm which were prepared under 176.6, 88.3, and 44 mM of
AgNO3 concentrations, respectively. The two other peaks of the characterized AgNWs had
an average diameter of 25.43 nm. Based on these data, with increasing the concentration
of silver nitrate, the thickness of the wires increases, which leads to the emergence of
UV absorption values towards a redshift (Figure 7A) [45,46]. Figure 7B,C show the UV
absorbance spectra for the AgNW suspension sensitized with 20.6 mM AgNO3 and its
corresponding Gaussian fitting, respectively. Two UV absorbance peaks were observed at
368 and 418 nm, which were assigned to the thinner AgNWs and AgNPs, respectively [40].
Very thin AgNWs can be obtained by using a low concentration of AgNO3; however, silver
nanoparticles will also be obtained as indicated by the presence of a UV peak at 418 nm.
It may be concluded that using a low concentration of silver source not only will yield
AgNWs with thinner diameters, but the suspension will also contain silver nanoparticles.
Consequently, to obtain uniform and thin wire with a minimum amount of AgNPs, a
concentration of 44 mM was applied in this study.

4.5. Agitation Speed

The agitation speed of chemical reactions highly affects the growth of AgNWs crystals
and should be carefully adjusted [47]. Figure 8 shows SEM images of AgNWs synthesized
with different agitation speeds ranging from 0 to 700 rpm. As was expected, different
agitation speeds will lead to different AgNW morphologies. The average diameters of
AgNWs obtained with agitation speeds of 700, 300, 100, and 0 rpm were found to be
23.866, 42.67, 66.5, and 104.5 nm, while the lengths of the wires were 16.08, 41.066, 56.86,
54.506 µm, respectively. Additionally, SEM images proved that AgNWs synthesized with
controlled agitation will produce more uniform AgNWs than those obtained without
agitation (Figure 8L).
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Figure 9 summarizes the dependence of AgNW morphology on agitation speed.
Figure 9A shows that the average length of the synthesized AgNWs slightly increased
at 125 rpm and then gradually decreased with increasing agitation speed. On the other
hand, Figure 9B shows that AgNWs prepared with high agitation speeds were thinner than
those obtained at low agitation speeds. These results agree with previous reports [47,48].
This behavior may be attributed to the fact that the increased agitation speed leads to
high surface energy on the face of (111) that facilitates the Ag seeds to form multi-twin
particles, and accordingly, small seeds are produced, which leads to the formation of a
thinner wire [47].
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4.6. Temperature

Temperature is believed to be significant in controlling the growth of AgNWs crys-
tals [49]. Figure 10A–E demonstrate SEM images of AgNWs obtained at different tem-
peratures at 110, 135, 160, 175, and 190 ◦C, while Figure 10F shows the relation between
temperature and average AgNW length. The length of AgNWs is affected by the reaction
temperature, as indicated by the gradual increase in the average length of AgNWs at a
temperature range between 110 and 160 ◦C, followed by a rapid decrease at a temperature
above 160 ◦C, until 195 ◦C. This decrease in average wire length may be attributed to the
destruction of AgNWs being produced at temperatures over 175 ◦C.
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Figure 10. SEM images at 10 microns for AgNWs prepared under different temperatures: (A) 110 ◦C,
(B) 135 ◦C, (C) 160 ◦C, (D) 175 ◦C, (E) 190 ◦C, and (F) effect of the reaction temperature on the length
of the wires.

Figure 11A–E illustrate SEM images of AgNWs obtained at different reaction tempera-
tures. The relation between average AgNWs diameters and different reaction temperatures
is shown in (Figure 11F). A decrease in average AgNWs diameter with an increase in
the synthesis temperature until 160 ◦C followed by a slight increase were observed at a
temperature higher than 175 ◦C. It might be concluded that by increasing the reaction
temperature, AgNWs will be longer and thinner in agreement with previous reports [50].
A temperature of 160 ◦C was found to be the optimum temperature condition for AgNWs
in this study.
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As was mentioned earlier, reducing reaction time is of great economic significance.
In this study, the time required to form the wire at 110 ◦C was about 12 h. Figure 12
shows the relation between reaction temperature and reaction time. The time required
to produce AgNWs decreased from 12 h to 20 min when the reaction temperature was
raised from 110 to 160 ◦C. These results are consistent with previous research [32,49]. As
was found in the literature, using temperatures between 160 to 180 ◦C will produce good
AgNWs, but from an economic point of view, using elevated temperatures for a longer
time will increase the cost of AgNW production. Therefore, reducing the reaction time in
our one-step synthesis to 8 min compared to 45 min in the traditional polyol method is an
advantage.
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4.7. Halide Type

The addition of metal halide ions was found to facilitate the formation of AgNW crystal
growth [51–55]. In the current study, Br−, Cl−, and I−. were used as co-nucleants to obtain
AgNWs. Figure 13 shows SEM images of AgNWs synthesized by using different Potassium
halides. Ultrathin AgNWs (20 nm) were obtained by using 0.005 g KBr which functioned as
a co-nucleant that may inhibit the lateral growth of nanowires Figure 13A–C. An average
length of 23.6 µm and an average diameter of 21.67 nm were obtained when using Br as a
source of halogen in this study (Figure 13C). When using chloride ions, an average length
of 58.25 µm and an average diameter of 34.3 nm were obtained (Figure 13D–F). On the
other hand, Ag debris, AgNPs, and very few wires were observed when using iodide salts
as shown in (Figure 13G–I).

Accordingly, it can be concluded that AgNWs obtained with bromide ions will be
thinner and shorter than those obtained with chloride ions. Few wires were obtained when
using an iodide source at the same reaction conditions. AgNWs produced with a chloride
source will have a much better aspect ratio of about 1700 compared to 1089 obtained with
a bromide source. In agreement with previous research, thinner wires were produced
with bromide ions [56] and longer with chloride ions; [57] however, iodide is not valid for
preparing AgNWs.
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Figure 13. SEM images at different magnifications and the corresponding histogram for AgNWs
obtained with different halides: (A–C) 2.6 mM KBr, (D–F) 2.6 mM KCl, and (G–I) 2.6 mM KI.

Figure 14 shows SEM images for AgNWs synthesized with different concentrations of
potassium chloride. By increasing the amount of KCl, AgNWs not only become thinner but
also shorter and more nanoparticles and debris will be obtained. Figure 15A,B summarizes
the effects of potassium chloride concentration on the AgNWs’ morphologies. AgNWs’
average length reached a maximum length of about 55 microns at a KCl concentration of
2.6 mM, whereas the average length gradually decreased with the increase in KCl concen-
trations (Figure 14A). The diameters of AgNWs became thinner by increasing potassium
chloride concentration, which is in agreement with the previous studies (Figure 15B) [57].

Figure 15C shows the UV absorbance peaks for AgNWs synthesized with different KCl
concentrations. Four UV peaks at 401, 395, 387, and 364 nm were observed, corresponding
to KCl concentrations of 0.86, 2.6, 4.4, and 8.94 mM, respectively. In consistency with
previous results, it was found that by increasing the amount of halogen, the diameter of
the resulting wire was reduced as indicated by the appearance of a UV peak of a shorter
wavelength [45]. Based on the data shown in Figure 14, using an optimum concentration
of 2.6 mM KCl will produce AgNWs with a good aspect ratio (Figure 14B). Other KCl
concentrations will show nanoparticles and debris with shorter AgNWs.
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4.8. AgNWs Transparent Conductive Electrode (AgNWs-TCE)

High-performance transparent conductive electrodes should have excellent optical
clarity, excellent electrical conductivity, good mechanical properties, and flexibility. These
characteristics can be achieved by increasing the aspect ratio of the silver nanowires. A spin
coater was used to fabricate AgNWs electrodes on a glass substrate followed by annealing
at 120 ◦C for 5 min to design a conductive transparent electrode. Different transparent
conductive electrodes were designed by coating with different spin coating rates of 500 rpm,
1000 rpm, 2000 rpm, and 3000 rpm for 1 min.

Figure 16 shows both the optical and electrical properties of AgNWs-TCE prepared
at different spin coating rates. Transmittance of AgNWs electrodes prepared at spin
frequencies of 500, 1000, 2000, 3000, and 4000 rpm. The light transmittance obtained for the
corresponding samples were 72.23, 77.9, 81.3, 82.6, and 91.8%, as shown in Figure 16A.

Materials 2023, 16, x FOR PEER REVIEW 17 of 22 
 

 

Figure 15C shows the UV absorbance peaks for AgNWs synthesized with different 
KCl concentrations. Four UV peaks at 401, 395, 387, and 364 nm were observed, corre-
sponding to KCl concentrations of 0.86, 2.6, 4.4, and 8.94 mM, respectively. In consistency 
with previous results, it was found that by increasing the amount of halogen, the diameter 
of the resulting wire was reduced as indicated by the appearance of a UV peak of a shorter 
wavelength [45]. Based on the data shown in Figure 14, using an optimum concentration 
of 2.6 mM KCl will produce AgNWs with a good aspect ratio (Figure 14B). Other KCl 
concentrations will show nanoparticles and debris with shorter AgNWs.  

4.8. AgNWs Transparent Conductive Electrode (AgNWs-TCE) 
High-performance transparent conductive electrodes should have excellent optical 

clarity, excellent electrical conductivity, good mechanical properties, and flexibility. These 
characteristics can be achieved by increasing the aspect ratio of the silver nanowires. A 
spin coater was used to fabricate AgNWs electrodes on a glass substrate followed by an-
nealing at 120 °C for 5 minutes to design a conductive transparent electrode. Different 
transparent conductive electrodes were designed by coating with different spin coating 
rates of 500 rpm, 1000 rpm, 2000 rpm, and 3000 rpm for 1 min. 

Figure 16 shows both the optical and electrical properties of AgNWs-TCE prepared 
at different spin coating rates. Transmittance of AgNWs electrodes prepared at spin fre-
quencies of 500, 1000, 2000, 3000, and 4000 rpm. The light transmittance obtained for the 
corresponding samples were 72.23, 77.9, 81.3, 82.6, and 91.8%, as shown in Figure 16A. 

 
Figure 16. AgNWs-TCF designed under different spin coating rates: (A) transmittance (at λ = 550 
nm), (B) optical haze, (C) sheet resistance, (D) transmittance, and (E) images of AgNWs-TCFs with 
different coating thickness. 

Figure 16. AgNWs-TCF designed under different spin coating rates: (A) transmittance
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Optical haze is a basic but under-researched characteristic of transparent electrodes
in solar cells, and it is also affected by the shape of the nanostructures and the thin layer
thickness that makes up the electrodes. The haze factor was calculated according to the
following equation:

Haze% =
T4
T2

− T3
T1

(4)
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where T1 is the transmittance of the incident light, T2 is the total light transmitted by the
sample, T3 is the light scattered by the instrument, and T4 is the light scattered by the
instrument and the sample [29].

Figure 16B shows the optical haze of the corresponding samples. Higher spin-coating
speed will result in smaller film thickness, and an accordingly lower haze and higher
transmittance values are expected.

Figure 16C shows the effect of the spin coating rate on the sheet resistance of AgNWs-
TCF. The sheet resistance of the AgNWs-TCF was found to be 5.5, 17.05, 27.41, 57.41, and
105.3 Ω/sq for spin coating rates 500, 1000, 2000, and 3000 rpm, respectively. The amount
of AgNWs coated in glass substrate is inversely proportional to the spin rate. Therefore,
increasing the amount of coating will reduce the optical transmittance and the electrical
resistance [57]. The diameter and length of the nanowires are critical for transparency, haze,
and surface roughness. Moreover, Figure 16D describes the relationship between sheet
resistance and transmittance of AgNWs film on the glass substrates. Different images of
AgNWs-TCE and their corresponding electrical resistances are shown in Figure 16E.

Figure 17A shows a clear and uniform AgNW film coated on a glass substrate with
a sheet resistance of 16.7 ohms/sq, whereas Figure 17B shows a uniform layer of flexible
AgNWs on a PET substrate. The conductivity and flexibility of the designed electrode film
were shown clearly through the electrical circle [58]. Figure 17C shows the AgNW ink used
in the coating process.
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5. Comparison between the AgNW TCE with the Other Electrodes

The performance of AgNW mesh transparent electrodes was compared to indium tin
oxide (ITO) and carbon nanotube (CNT) electrodes. It was found that AgNW electrodes
had comparable sheet resistance and optical transmittance to ITO and CNT electrodes [59].
Additionally, AgNWs electrodes showed superior flexibility and mechanical stability com-
pared to ITO and CNT electrodes. Another study investigated the scalability of AgNWs
transparent electrodes by studying their coating properties on large-area substrates. The
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performance of AgNWs electrodes was compared to ITO films in terms of sheet resistance,
optical transmittance, flexibility, and reliability under bending conditions. The results
showed that AgNWs electrodes could achieve similar or better performance than ITO films
while being more scalable and cost-effective [60]. In addition, a comparison of transparent
AgNW electrodes with other works showed that the electrode resistivity of AgNWs was
27.41 Ω/sq, which was lower than the resistivity of 79 Ω/sq at a similar transparency for
other works [61]. These results suggest that transparent AgNW electrodes are an excellent
choice for transparent electrodes.

6. Conclusions

AgNWs with an excellent aspect ratio were produced using a one-step modified polyol
process. A comparison between the traditional polyol method and the one-step method
was made. It was found that AgNWs produced by the improved one-step polyol method
are longer and thinner than the wires obtained by the old traditional method under the
same conditions. A detailed study was performed to investigate the effect of different
parameters controlling the growth of silver crystals. Reaction temperature, silver source
concentration, polymer type, agitation speed, and halide source are believed to be the main
factors that control the growth of AgNWs. The optimum condition for our facile one-step
modified polyol process was achieved. It was found that by mixing all the reactants in one
pot and using a small agitation of 100 rpm, a temperature of 160 ◦C, 150 mM AgNO3, and
2.6 mM of KCl will yield AgNWs with an aspect ratio of 1764 that can be incorporated in
the manufacture of optical devices. By producing a high aspect ratio of AgNWs, highly
conductive transparent electrodes with fewer junctions and lower junction resistance can
be fabricated. In the current study, we prepared transparent conductive electrodes at
room temperature and without any post-processing procedures such as in the case of ITO
electrodes. These electrodes can be made by coating on glass substrates or a flexible PET
sheet. We constructed different AgNW electrodes that have low sheet resistances between
17.05 and 105.3 Ω. sq−1 and with transmittances greater than 76.8; 91.8% of these can be
introduced in optical devices and other applications. This method may be valid for the
preparation of other metal nanowires such as Cu and Al, but it requires the replacement of
the capping agent with another type.
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