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Abstract: In this study, we fabricated Si-based heterojunction solar cells (HSCs) with an asymmetric
TMO–metal–TMO (TMT) structure using both MoO3 and V2O5 as the hole-selective contacts. Our
HSCs offer enhanced long-term stability and effective passivation for crystal defects on the Si sur-face.
We analyzed the oxygen vacancy state and surface morphology of the MoO3- and V2O5-TMO thin
films using X-ray photoelectron spectroscopy and atomic force microscopy to investigate their passiva-
tion characteristics for Si surface defects. From the measured minority carrier lifetime, V2O5 revealed
a highly improved lifetime (590 µs) compared to that of MoO3 (122.3 µs). In addition, we evaluated
the long-term stability of each TMO thin film to improve the operation stability of the HSCs. We
deposited different types of TMOs as the top- and bottom-TMO layers and assessed the effect of
the thickness of each TMO layer. The fabricated asymmetric TMT/Si HSCs showed noticeable
improvements in efficiency (7.57%) compared to 6.29% for the conventional symmetric structure
which used the same TMO material for both the top and bottom layers. Furthermore, in terms of
long-term stability, the asymmetric TMT/Si HSCs demonstrated an efficiency that was 250% higher
than that of symmetric TMT/Si HSCs, as determined via power conversion efficiency degradation
over 2000 h which is mainly attributed by the lower oxygen vacancy of the top-TMO, V2O5. These
results suggest that the asymmetric TMT structure is a promising approach for the fabrication of
low-cost and high-efficiency Si-based HSCs with enhanced long-term stability.

Keywords: transition metal oxide; asymmetric; passivation; long-term stability; silicon; heterojunction
solar cell

1. Introduction

In recent decades, crystalline silicon (c-Si) has become a prominent technology in the
global photovoltaic market due to its numerous advantages, including high efficiency, long-
term stability, abundant and non-toxic silicon material, and a favorable energy bandgap that
allows for effective light absorption in the visible region [1]. c-Si solar cells can be classified
into homojunction and heterojunction solar cells based on the type of junction material. The
p–n junction-based homojunction c-Si solar cell is favored for its high power conversion
efficiency (PCE) and stability [2]. However, the production of homojunction solar cells
is costly, as it requires a complex manufacturing process that inevitably includes high-
temperature doping processes, ≥800 ◦C [1,3]. To address the limitations of conventional
homojunction c-Si solar cells, researchers have been exploring the use of heterojunction
structures to reduce manufacturing costs and improve PCE. Generally, heterojunctions can
be fabricated through a simpler and less costly process, and materials that allow for the
formation of junctions at relatively low temperatures are attracting significant attention.
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These materials include graphene [4], transparent conductive oxides (TCOs) [5,6], transition
metal oxides (TMOs) [7,8], organic materials [9,10], and perovskite [11,12]. Among the
materials mentioned, transition metal oxides (TMOs) have been shown to be effective
carrier-selective materials that provide electrical properties and photovoltaic performance
that are suitable for dopant-free Si-based heterojunction solar cells (HSCs) [13–15]. TMOs
have a wide range of work functions, from 3 to 7 eV, which allows for the formation of
both hole- and electron-selective contacts by selecting appropriate materials [16]. TMOs
with high work functions close to 7 eV, such as molybdenum trioxide (MoO3), vanadium
pentoxide (V2O5), and tungsten trioxide (WO3), are particularly suitable for hole-selective
layers [17]. Additionally, the relatively large energy bandgap of TMOs (Eg > 3 eV) also
minimizes parasitic absorption when deposited as front contacts in HSCs [16,18]. More-
over, the presence of TMOs on Si surfaces leads to the formation of a thermodynamically
spontaneous silicon oxide (SiOx, where 0 ≤ x ≤ 2) layer at the TMO/Si interface, which
contributes as a passivation layer for the Si surface [13,19]. TMOs provide two types of pas-
sivation features for the Si surface: (1) chemical passivation, which decreases the density of
Si surface defects through chemical bonding between the oxygen in TMOs and the dangling
bonds on the Si surface; and (2) field-effect passivation, which arises from the high work
function of the TMO and produces an imbalance of electron and hole carrier concentrations
at the TMO/Si interface [20,21]. These properties of TMOs as passivation layers and as
carrier-selective contacts can reduce carrier recombination on the Si surface, increase the
efficiency of charge carrier extraction, and thus enhance the PCE of HSCs [22,23].

Despite the advantages of TMO introduced HSCs, the development of high-efficiency
TMO/Si HSCs faces several critical challenges originated from TMO layers, including the
following: (1) poor passivation effect (i.e., high carrier recombination velocity); (2) limited
long-term stability; and (3) high sheet resistance (Rsheet). First, the low passivation effect
results in a reduced PCE because it decreases the minority carrier lifetime [15]. The
formation of a low-quality SiOx passivation layer during the deposition of TMOs on the Si
surface is the root cause of this low passivation effect [24]. Second, the long-term stability
of the solar cells is limited by the high oxygen vacancy density in TMOs formed during
deposition by thermal evaporation, which reacts with airborne molecules (e.g., water) over
time, degrading the TMO work function and ultimately the stability of the HSC [25]. Lastly,
as a dielectric material, TMO thin film (TF) inherently exhibits a high Rsheet which inevitably
hinders the extraction of photogenerated carriers from inside Si [26]. To achieve high-
efficiency Si-based HSCs, it is crucial to develop methods that improve (1) the passivation
performance for the Si surface; (2) the efficiency of charge carrier extraction; and (3) the
long-term stability of the fabricated HSCs. The aim of this study is to simultaneously
achieve improved efficiency and long-term stability of TMO/Si HSCs after introducing
multilayered TMO with two different TMOs, namely, vanadium pentoxide (V2O5, VO) and
molybdenum trioxide (MoO3, MO). The optimal passivation characteristics of TMOs were
attained through morphological and stoichiometric analysis of the two deposited TMO TFs
(VO and MO), which were produced at low temperatures below 125 ◦C. However, it was
believed that the single-layer TMO structure would limit the PCE of the HSC. Therefore,
a TMO–Metal–TMO (TMT)-structured HSC was fabricated to further improve PCE. The
TMT/Si HSC was fabricated by introducing an asymmetric TMT structure through thermal
deposition. MO was used as the bottom-TMO (BTMO) due to its relatively low Rsheet, while
VO was used as the top-TMO (TTMO) to enhance field-effect passivation. We confirmed
that the VO TF used as a TTMO layer also offered enhanced long-term stability due to its low
oxygen vacancy density. From the report, we successfully demonstrate that the introduction
of an asymmetric TMT structure in a Si-based HSC significantly improves the PCE and long-
term stability of the HSC, even with simple and low-temperature fabrication processes.
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2. Experimental Section
2.1. Material and Sample Preparation

For Si, a double-sided polished n-type CZ Si wafer with a (100) orientation, thickness of
280 µm, and resistivity of 1.7–2.3 Ω·cm was employed. For sample preparation, the Si wafer
was cut to the size of 2× 2 cm for HSC fabrication, and it was cleaned through ultrasonication
for 15 min with acetone, methanol, and distilled water (DI water) in the order. The wafer
then underwent a standard RCA cleaning process (NH4OH : H2O2 : DI water = 1 : 1 : 5) for
15 min to remove organic residues on the wafer, and the wafer was dipped for 1 min in 1%
diluted HF solution to remove the native oxide. After the HF dip process, the VO and MO
(Alfa Aesar, Haverhill, MA, USA, 99.995% powder) TFs were deposited using a molybdenum
(Mo) boat via vacuum thermal evaporation. Each TMO was deposited at a rate of 0.2 Å/s and
a vacuum level of 1× 10−6 mbar at the target heating temperatures (no heating, 75 ◦C, and
125 ◦C). In the case of the metal electrode, Al and Ag were deposited to a thickness of 200 nm.
at a rate of 1.0 Å/s and a vacuum level of 1× 10−6 mbar. To examine the change in passivation
characteristics with Si substrate temperature, HSC with a TMO/Si/TMO sandwich structure
was fabricated by deposition after heating the substrate up to different target temperatures
such as room temperature (RT, i.e., no-heating), 75, and 125 ◦C.

2.2. Characterization

The minority carrier lifetimes (τe f f ) of the Si samples with a single-TMO TF and
a TMT multilayer were measured with a photoconductance decay system (WCT-120,
Sinton Instrument Inc., Boulder, CO, USA). The surface morphology of the TMO TF was
analyzed using atomic force microscopy (AFM, tapping mode, Multi-Mode V, Veeco,
Oyster Bay, NY, USA). Furthermore, the chemical composition and oxygen deficiency of
TMO TFs were analyzed using X-ray photoelectron spectroscopy (XPS, ESCALB-250XI,
Thermo-Fischer Scientific, Waltham, MA, USA). The sheet resistance (Rsheet) of the TMO
TF was measured using the transmission line method (TLM) after setting the voltage scan
range −1.0 to 1.5 V. Finally, the PCE of the fabricated HSCs was investigated using a solar
simulator under an air mass (AM) 1.5 G condition. (Note: to obtain the reliability of data,
3 to 5 identical samples were fabricated for each characterization.)

3. Results and Discussion
3.1. Effect of TMO on the Performance of TMO/Si HSCs

In this study, to evaluatie the Si surface passivation characteristics of two different
TMOs according to the deposition temperatures, sandwich structured samples were fabri-
cated with MO or VO deposited on both sides of the Si substrate at substrate temperatures
of RT, 75, and 125 ◦C. The minority carrier lifetimes (τe f f ) of the samples were measured,
and the results are presented in Figure 1a,b. In Figure 1b, for MO, the highest τe f f (122.3 µs)
was measured at RT, followed by a decrease in τe f f with increasing substrate tempera-
ture. However, for VO, the highest τe f f (590 µs) was measured at 75 ◦C. This substrate
temperature-dependent τe f f behavior is attributed to the change in the initial TMO/Si in-
terface area (i.e., active region) for supplying oxygen atoms to the Si substrate as the aspect
ratio (AR) of the initially deposited TMO nano island changes with increasing substrate
temperature [24]. Figure 1d–i shows the AFM images of the nano islands according to the
substrate temperature. Figure 1c reveals that the AR of the nano island is lowest at 75 ◦C
and RT in the case of VO and MO, respectively, which is consistent with the τe f f result
shown in Figure 1b. Furthermore, in the case of VO, the lowest AR was observed at 75 ◦C,
which confirms that the initially depositing VO can supply oxygen atoms to the Si surface
more efficiently than the equivalent case in MO.
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However, despite the low AR of the VO nano island, the Gibbs formation energy (∆G)
for the formation of SiO2 from MO (∆GMO→SiO2 = −406 kJ/mol) is more negative than
that from VO (∆GVO→SiO2 = −285 kJ/mol) [21]. Therefore, even though the formation of
SiO2 from MO is a thermodynamically more favorable, it is believed that the enhanced
passivation performance of VO is due to factors other than SiOx formation—specifically,
the improved field-effect passivation of VO. The characteristics of the enhanced field-effect
passivation of VO will be further discussed in Section 3.2. The performances of VO/Si and
MO/Si HSCs were evaluated by depositing VO and MO on the Si surface, respectively, to
analyze the relationship between the passivation characteristics of the TMO TFs and the
PCE of the fabricated HSCs. Figure 2 shows the current density-voltage (J–V) curves, while
Table 1 provides details on the solar cell performance parameters of the TMO/Si HSCs
under both dark and illuminated conditions. Despite the exceptional Si surface passivation
performance of VO as demonstrated in Figure 1b, the actual PCE of the MO/Si HSC was
slightly higher than that of the VO/Si HSC, as shown in Table 1.

The performance parameters of the solar cells listed in Table 1 indicate that despite
the better passivation performance of VO, it does not translate into an improvement in
the actual PCE of the VO/Si HSC, which can most probably be attributed to the high
series resistance (Rs) of the VO/Si HSC. This demonstrates that the VO material itself
has a high parasitic resistance in the device compared to MO. The Rsheet of each TMO
TF was determined through transmission line method (TLM) measurements, as shown in
Figure 3 [27]. By comparing the Rsheet of each TMO TF, it was found that VO has a Rsheet
that is 20% higher than that of MO followed by relatively lower charge extraction efficiency
with VO TF. The high Rsheet of the VO TF is caused by its lower density of oxygen vacancies
compared to that of the MO. To further examine these relationships, X-ray photoelectron
spectroscopy (XPS) spectra were analyzed for each TMO TF.
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Figure 2. Current density–voltage (J–V) curves of TMO/Si HSCs under (a) dark and (b) light
(AM1.5) conditions.

Table 1. Solar cell performance parameters of TMO/Si HSCs under light (AM1.5) conditions.

Sample Jsc
(mA/cm2)

Voc
(mV)

FF
(%)

Rsh
(Ω·cm2)

Rs
(Ω·cm2)

PCE
(%)

VO_75 ◦C 14.09 618 37.81 14,102 5.65 3.29 ± 0.09
MO_RT 13.29 603 43.20 13,291 3.54 3.46 ± 0.11
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measurements (inset: structure of the fabricated TLM sample).

The XPS spectra of V 2p and Mo 3d are shown in Figure 4, and the integrated peak
area ratio of the oxidation states of the two TMOs is presented in Table 2. In the case of
VO, the V5+ ratio, which forms complete stoichiometric V2O5 in the deposited VO, was as
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high as 88.3%. However, for MO, the Mo6+ ratio, which forms MoO3, was 80.5%, which
is lower than the oxidation state ratio of VO. The difference in these values indicates that
more metallic TFs were formed with MO compared to VO, which is believed to be the
reason for the higher Rsheet of VO TF. The comparison of the resistance and passivation
characteristics of the respective TMO TF, as well as the PCE of TMO/Si HSCs, confirm that
the implementation of low resistance TMO is critical for high-efficiency TMO/Si HSCs.
However, in terms of the TMO/Si HSC efficiency, considering the low PCE value of 3.46%
despite the comparatively low Rs, further improvement in PCE should be required. In
addition, the high density of oxygen vacancy (i.e., Mo5+) in TMO, which results in low Rsheet
in MO TFs, degrades their long-term stability through a reaction with airborne molecules
such as water when exposed to the ambient environment, thereby lowering the PCE of the
fabricated HSC over time [25]. Figure 5a depicts the change in τe f f over time for Si samples
deposited with VO or MO for both sides, respectively, and as shown in the graph, for MO,
τe f f is measured at 39% of the initial level over the 2000 h measurement. In contrast, in
the case of VO with a relatively low oxygen vacancy density, τe f f is maintained at a higher
level, which is 81% of the initial level, and comparison of these two results clearly indicate
poor stability of MO. The degradation of the TMO over time is more pronounced from
the change in HSC efficiency over time, as shown in Figure 5b. After 2000 h, PCE of the
MO/Si HSC was measured at 27% of the initial level, whereas that of VO/Si HSC was at
72%. This suggests that excessive formation of high oxygen vacancies in MO considerably
degrades the passivation performance and PCE. Thus, for fabrication of high-efficiency
TMO/Si HSCs with long-term stability, techniques to simultaneously achieve (1) low TMO
resistance; (2) improved Si surface passivation; and (3) low oxygen vacancy density must
be developed.
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Table 2. Integrated peak area ratio of vanadium and molybdenum oxidation states of each TMO TF.

Sample
Ratio of V Oxidation State (%)

Sample
Ratio of Mo Oxidation

State (%)

V5+ V4+ V3+ Mo6+ Mo5+

VO
(@ 75 ◦C) 88.3 10.5 1.2 MO

(@ RT) 80.5 19.5
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3.2. Effect of TMO Thickness on TMT/Si HSC Performance

As discussed in Section 3.1, the VO TF offers excellent Si surface passivation charac-
teristics, but a high resistance value; in contrast, the MO TF provides a low resistance, but
exhibits poor Si surface passivation performance. In this study, we endeavored to build an
asymmetric TMT-structured HSC that uses both TMOs (MO and VO) to increase device
performance and long-term stability by exploiting the properties of the two TMOs. In the
design of the HSC structure, we aimed to further improve the charge carrier extraction
efficiency of the fabricated HSC by sandwiching the Ag metal layer as a conductive layer
between the two TMO TFs [28,29]. For the fabrication of the asymmetric TMT/Si HSC,
a low Rsheet MO TF was applied as the BTMO, and a VO TF with a low oxygen vacancy
density was deposited as the TTMO to overcome the insufficient Si surface passivation of
the bottom MO TF through the enhanced field-effect passivation. The thickness of each
TMO TF was optimized to fabricate an asymmetric TMT/Si HSC; to this end, MO/Si HSCs
were first fabricated, and the effect was analyzed according to the thickness of the bottom
MO TF. Figure 6 depicts J–V curves of the MO/Si HSCs with 8-, 15-, and 30-nm-thick MO
TFs under dark and illuminated conditions. The solar cell parameters of the fabricated
HSCs are outlined in Table 3. The highest PCE, 3.81%, was achieved when the 8-nm thick
MO TF was used, and the PCE declined with increasing thickness of the MO TF. The drop
in PCE is primarily attributed to increased Rs with 15- and 30-nm-thick MO TFs, 3.39 and
3.57, respectively, as shown in Table 3.
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Table 3. Solar cell characteristic parameters of the MO/Si HSCs according to the MO layer thickness
under light (AM1.5) conditions.

MO
Thickness

Jsc
(mA/cm2)

Voc
(mV)

FF
(%)

Rsh
(Ω·cm2)

Rs
(Ω·cm2)

PCE
(%)

8 nm 14.07 606 44.73 14,089 2.10 3.81 ± 0.05
15 nm 14.16 605 42.84 14,166 3.39 3.67 ± 0.06
30 nm 12.68 607 45.16 12,666 3.57 3.48 ± 0.09

Furthermore, the effect of the top VO thickness on TMT/Si HSC performance was
investigated. To this end, the TMT/Si HSCs were fabricated with the bottom MO and
middle Ag layer thicknesses fixed at 8 nm and 15 nm, respectively, and the top VO with
varying thicknesses of 15 nm, 35 nm, 55 nm, and 75 nm was deposited. The changes in
solar cell parameters and τe f f according to the top layer thickness were analyzed. Figure 7
and Table 4 show the J–V curves and solar cell parameters under dark and illuminated
conditions as a function of the thickness of the top VO, respectively. The values in Table 4
indicate that as the thickness of the TTMO increased, the PCE of the fabricated device
increased. The highest PCE (7.57%) was achieved when the top VO has a thickness of
55 nm. However, the sample with 75 nm of top VO TF showed a lower PCE (3.33%). This
drop in PCE is mainly attributed to the increased Rs, 12.46 Ωcm2, with 75 nm compared to
2.91 Ωcm2 of 55 nm as shown in Table 4.
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Table 4. Solar cell characteristic parameters of the TMT/Si HSCs according to the top VO layer
thickness under light (AM1.5) conditions.

MO/Ag/VO Jsc
(mA/cm2)

Voc
(mV)

FF
(%)

Rsh
(Ω·cm2)

Rs
(Ω·cm2)

PCE
(%)

8 nm/15 nm/15 nm 17.54 537 48.36 17,566 6.31 4.56 ± 0.17
8 nm/15 nm/35 nm 20.40 552 45.37 20,394 4.19 5.11 ± 0.14
8 nm/15 nm/55 nm 23.24 574 56.78 23,207 2.91 7.57 ± 0.07
8 nm/15 nm/75 nm 21.08 573 27.57 21,051 12.46 3.33 ± 0.06

The improvement in PCE with the thicker top VO TFs is because the work func-
tion of the top VO becomes more dominant at the TMO/Si interface as the thickness
increases [30,31]. However, in this TMT structure, the work function of top VO would be
inevitably pinned at that of inserted metal (i.e., Ag) layer. Therefore, to expect thickness
effect of top VO TF, the deposited Ag layer should not fully cover the MO surface to offer
direct contact between top VO and bottom MO TFs over a certain fraction of the area.
Therefore, before further discussion on the thickness effect of top VO TF, the morphology
of the deposited Ag layer was measured with AFM, and the results are shown in Figure S1.
For AFM, three different Ag thicknesses (i.e., 10, 15, 20 nm) were fabricated to investigate
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Ag thin film growth mechanisms in addition to their morphologies. From the AFM results,
the deposited Ag layer on the MO surface produced discontinuous island-shaped surface
morphologies for all three samples. which indicate that dominant thin-film growth mecha-
nism for Ag layer on the MO surface is the Volmer–Weber growth mechanism. Based on
these AFM results, it is clear that the top VO TF would form direct contact with the bottom
MO TF over a certain area fraction to weaken the fermi-level pinning with Ag. (Note: in
Figure S2 and Table S1, the measured J–V curve and the device parameters of TMT/Si
HSCs are also provided, which showed that a 15 nm Ag layer is the optimal thickness for
HSC fabrication.)

The work function values for MO and VO are known to be similar at 6.9 and 7.0 eV,
respectively [16,32]. However, as shown from the XPS results presented in Table 2, the
stochiometric V2O5 ratio of VO is higher than the ratio of the oxidation state of MO; thus,
its work function value is also predicted to be higher than that of MO. This is because the
reduction of the oxygen vacancy density induces a decrease in the free carrier concentration
inside the TMO, thereby weakening the n-type doping effect [33,34]. Therefore, with the
increasing thickness of the top VO, VO work function value increases; a higher value is
predicted to dominate the behavior at the TMO/Si interface. Consequently, as the thickness
of the top VO increases, the built-in potential (Vbi) of the TMO/Si interface increases, and
this increase may lead to (1) reduced surface recombination loss because of the strengthened
field-effect passivation effect; and (2) higher open circuit voltage (Voc) for the fabricated
HSCs [35,36]. To validate the assumption, the current density–voltage diode equation
(Equation (1)) was applied to the J–V curve (Figure 7a) obtained from the fabricated HSCs
under the dark condition, and the saturation current (J0) was calculated from Equation (2):

J = J0

(
exp

(
eV

nkT

)
− 1
)

; (1)

J0 = A∗AT2 exp
(
−Vbi

kT

)
, (2)

where A is the contact area; A* is the effective Richardson constant (120 Acm−2K−2 for
n-type silicon); T is 25 ◦C (298 K); k is the Boltzmann constant; n is the ideality factor; J0
is the reverse saturation current density; Vbi is the barrier height in Schottky diodes (i.e.,
a built-in-potential); and q is the elementary charge. In this way, Vbi was extracted and
presented in Figure 7c [37]. In Figure 7c, it can be seen that the calculated Vbi increased
with the increasing top VO thickness. The increase in the Voc observed in Figure 7c reflects
and confirms the influence of Vbi on the solar cell parameters. Furthermore, the higher
Vbi induces an imbalance in electron and hole concentrations owing to the strengthened
field-effect at the TMO/Si interface—this is expected to reduce the carrier loss caused by the
Shockley–Read–Hall recombination (RSRH) at the Si surface as expressed in Equation (3);
this, in turn, extends the τe f f of the device [37,38].

RSRH =
(

ns ps − ni
2
)

vth ×
∫ Ec

Ev

D(Et)

(ns + n1)/σp(Et) + (ps + p1)/σn(Et)
dEt, (3)

where n1 and p1 are the densities of the electrons and holes in the bulk, respectively; ns
and ps are the densities of the electrons and holes at the surface, respectively; vth is the
thermal velocity; Ec and Ev are the conduction and valance band energies, respectively; Dit
is the density of the interface states; and σn and σp are the energy-dependent capture cross
sections of the holes and electrons, respectively. Figure 8 shows the measured τe f f values
as a function of the top VO thickness. The τe f f value increased as the top VO thickness
increased, as predicted. The τe f f was recorded its highest value (155.2 µs) at a thickness
of 55 nm, and it decreased somewhat at 75 nm but still remained high. Thus, for the
fabrication of the TMT/Si HSC with different TMOs, increasing the TTMO thickness up to
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a value below the critical thickness (the thickness at which the device resistance increases)
is expected to improve the overall PCE of the HSC.
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Figure 8. (a) Minority carrier lifetimes of the TMT multilayer deposited with various top VO
thicknesses; (b) τe f f values at the carrier injection level of 1.5 × 1015 cm−3.

3.3. Comparison between Asymmetric and Symmetric TMT/Si HSCs

In this section, we compared the solar cell performance and long-term stability of the
asymmetric TMT/Si HSC with the conventional symmetric TMT/Si HSC having one kind
of TMOs for BTMO and TTMO. For the symmetric TMT/Si HSCs, samples for comparison
were fabricated with structures of MO (8 nm)/Ag (15 nm)/MO (55 nm) (MAM) and VO
(8 nm)/Ag (15 nm)/VO (55 nm) (VAV). For the asymmetric TMT/Si HSCs, samples were
fabricated with structures of MO (8 nm)/Ag (15 nm)/VO (55 nm) (MAV) and VO (8 nm)/Ag
(15 nm)/MO (55 nm) (VAM). Figure 9 shows the J–V curves of the fabricated HSCs under
dark and illuminated conditions, and the solar cell parameters of each type of HSCs are
presented in Table 5.
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Table 5. Solar cell characteristic parameters of the fabricated TMT/Si HSCs under light (AM 1.5)
conditions.

Sample
Structures

Jsc
(mA/cm2)

Voc
(mV)

FF
(%)

Rsh
(Ω·cm2)

Rs
(Ω·cm2)

PCE
(%)

VO 8 nm/Ag
15 nm/VO

55 nm (VAV)
11.11 591 37.76 11,146 5.47 2.48 ± 0.05

MO 8 nm/Ag
15 nm/MO

55 nm (MAM)
19.42 547 59.22 19,411 2.54 6.29 ± 0.22

VO 8 nm/Ag
15 nm/MO

55 nm (VAM)
18.20 579 45.90 18,313 7.85 4.84 ± 0.18

MO 8 nm/Ag
15 nm/VO

55 nm (MAV)
23.24 574 56.78 23,207 2.91 7.57 ± 0.07

Among the four different TMT/Si HSCs, the HSCs that applied MO as the BTMO,
MAM and MAV, exhibited higher PCEs compared to those of VAV and VAM. This is
attributed to an increase in the charge extraction efficiency of the photogenerated carrier,
resulting from the low resistance of the MO layer itself. However, in the case of MAM
(where MO was also applied as the TTMO), as shown in Figure 10, due to the formation of
excessive oxygen vacancies in the MO layer, rapid PCE degradation over time was observed
in relation to other HSCs used for comparison; this reveals the undesirable poor long-term
stability of the HSC. However, in the case of the asymmetric TMT/Si HSC with the MAV
structure, with the application of MO as the BTMO and VO as the TTMO, the highest PCE
of 7.57% was achieved; enhanced long-term stability was also observed. From these results,
in the future, a high-efficiency TMT/Si HSC with long-term stability can be developed
through additional stoichiometry control and thickness optimization of the TMOs.
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4. Conclusions

In this study, an asymmetric TMT (TMO–Metal–TMO) structure was introduced to
overcome the limitations of existing TMO/Si HSCs. The asymmetric TMT structure was
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achieved by depositing MO with low resistance as the BTMO and VO with improved
field-effect passivation as the TTMO. The results showed that the oxygen vacancy density
plays a crucial role in determining the electrical properties of TMO TFs, the Si surface
passivation effect, and the long-term stability of the HSC. The VO TF demonstrated better
Si surface passivation and long-term stability, but its high resistance resulted in a low
PCE compared to the MO TF. By combining the advantages of both MO and VO, the
asymmetric TMT/Si HSC showed 20% improved PCE and long-term stability compared
to the conventional symmetric TMT/Si HSC. This is because (1) lower resistance with
bottom MO having higher density of oxygen vacancy; and (2) the enhanced field effect
passivation and long-term stability with top VO TF, revealing lower density of oxygen
vacancy. Therefore, the proposed asymmetric TMT/Si HSC could be a promising solution
for low-cost and high-efficiency c-Si-based solar cells with improved Si surface passivation
and long-term stability.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16165550/s1, Figure S1: AFM images of Ag layers deposited on
MO surface: (a) 10 nm, (b) 15 nm, and (c) 20 nm; Figure S2: J–V curves of the TMT/Si HSCs according
to the middle Ag layer thickness under (a) dark and (b) illumination (AM1.5) conditions; Table S1:
Solar cell characteristic parameters of the TMT/Si HSCs according to the middle Ag layer thickness
under illumination (AM1.5) conditions.
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