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Abstract: Based on the first-order shear deformation theory (FSDT) and Kelvin–Voigt viscoelastic
model, one derives a wave equation of longitudinal guide waves in viscoelastic orthotropic cylindrical
shells, which analytically solves the wave equation and explains the intrinsic meaning of the wave
propagation. In the numerical examples, the velocity curves of the first few modes for the elastic
cylindrical shell are first calculated, and the results of the available literature are compared to
verify the derivation and programming. Furthermore, the phase velocity curves and attenuation
coefficient curves of the guide waves for a functionally graded (FG) shell are calculated, and the
effects of viscoelastic parameters, material gradient patterns, material volume fractions, and size
ratios on the phase velocity curves and attenuation curves are studied. This study can be widely
used to analytically model the wave propagating in inhomogeneous viscoelastic composite structures
and present a theoretical basis for the excellent service performance of composite structures and
ultrasonic devices.

Keywords: Kelvin–Voigt viscoelastic model; first-order shear deformation theory; guide wave;
cylindrical shell; wave attenuation; analytical method

1. Introduction

The basis of guided wave detection technology is to understand the characteristics
of the elastic wave propagating in the waveguide, such as the dispersion curve, energy
velocity, wave structure, Poynting vector, and attenuation properties. By analyzing the
dispersion, multimode, and attenuation characteristics of guided waves under different
factors (the environment, loading, geometric boundary, and physical field), the selection
of modes and central frequencies during the structural inspection and how to excite the
required guided wave modes are guided. Many engineering materials are viscoelastic,
especially polymeric materials. Therefore, an in-depth understanding of the propagation
phenomenon in the viscoelastic structure and an accurate description of the influence
of the viscoelasticity on the relationship between frequency, propagation distance, and
wave attenuation can present a theoretical basis for the excellent service performance of
composite structures and ultrasonic devices.

Due to the superior mechanical, thermal, and electrical characteristics, carbon-based
nanostructures are widely utilized to reinforce the engineering materials [1–3], such as
carbon fibers, carbon nanotubes, and graphene [4,5]. Since the discovery of the excel-
lent materials, the carbon-based material/polymer composites have attracted extensive
research interest and have great application prospects in aerospace, civil, and automobile
engineering [6–8].
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Cylindrical shells are common structures in engineering applications, such as rocket
cylinders, oil, and gas pipelines, etc. Recently, a lot of work has focused on the static
and dynamic mechanics of nano-composite shells, such as Yang, who used finite element
simulation to study the buckling of graphene platelet (GPL) reinforced composite cylin-
drical shells [9–11], and then studied the nonlinear vibration problem in GPL reinforced
cylindrical shells [12] and also investigated the buckling and free vibration of cylindrical
shells under initial stress based on the state space method and 3D elasticity theory [13].
Talebitooti et al. [14,15] analyzed the effect of imperfect bonding/thermal loads on the
acoustic behavior in FG cylindrical shells, from which the shear deformation effects for
FGM were found to be more significant than those for isotropic/laminated materials,
so using FSDT for the vibration analysis of an FGM shell is suitable. Zhou et al. [16]
predicted the transient response and wave behavior for piezoelectric cylindrical shells.
Yu et al. investigated the guided waves in laminated cylindrical shells with sectorial cross-
section subjected to initial stress [17] and thermoelastic waves in hollow cylinders [18],
and both solutions were analytical. Li et al. [19] presented the wave propagation analysis
of graphene-reinforced piezoelectric polymer cylindrical shells based on FSDT. However,
these abovementioned works are limited to elastic/piezoelectric composite cylindrical
shells, and the viscoelastic effect on dynamic analysis is not included.

Many materials are viscoelastic, especially polymer materials. A deep understanding
of the wave characteristics in viscoelastic structures can help to accurately capture the
influence of viscoelasticity on the relationship between the frequency, propagation distance,
and wave attenuation in ultrasonic transducers, pressure vessels, or pipelines, providing
a theoretical basis for better service performance of composite structures and devices.
Reaei et al. [20] used the Zener viscoelastic model for the acoustic transmission problem of
polymeric foam cylindrical shells, and Yu et al. [21] analyzed the two-dimensional guided
waves in viscoelastic FG plates based on the Kelvin–Voigt model, and Zhu et al. [22] also
obtained the semi-analytical finite element solution of anisotropic viscoelastic plates based
on the Kelvin–Voigt model, predicting peculiar wave phenomena in viscoelastic structures,
such as peculiar dispersion curves, attenuation jumps, branch switch, etc. Subsequently,
for cylindrical structures, Zhang et al. analyzed the two-dimensional circumferential wave
problem in anisotropic [23] and orthotropic [24] viscoelastic hollow cylinders based on the
fractional-order viscoelastic model and Legendre polynomial method. Li et al. [25] studied
the longitudinal wave propagating in the viscoelastic anisotropic hollow cylinder based on
3D elastic theory and the Kelvin–Voigt model.

From the above literature, most current research on waveguides is for plate structures,
while research on cylindrical shells, which are more common in rocket cylinders and
pressure vessels, is very limited. In practice, many materials are viscoelastic; however,
there are few studies in the literature considering the longitudinal wave propagation
in viscoelastic cylindrical shells, and most of them are analytical solutions and limited
to the homogeneous anisotropic material problem [25]. Hence, using the Kelvin–Voigt
viscoelastic model, this paper studies wave propagation characteristics in viscoelastic FG
composite cylindrical shells based on FSDT. By analyzing the complex dispersion, phase
velocity, and attenuation characteristics of waves under different factors such as different
viscoelastic coefficients, gradient variation, size ratio, etc., the research findings can be used
to guide the selection of modes, frequencies, and how to excite the desired wave modes in
devices/structures during the ultrasonic testing.

2. Model Description

Consider an orthotropic, viscoelastic FGM laminated cylindrical shell with the mid-
plane radius R and total thickness h, as shown in Figure 1. The external and internal surfaces
are stress-free. The cylindrical coordinate system (x, θ, z) is placed at the mid-surface of the
shell, with x, θ, and z being the axial, circumferential, and radial coordinates, respectively.
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Figure 1. Geometry of a laminated cylindrical shell.

3. Mathematical Formulation

To model the laminated cylindrical shell, one considers the displacements based on
FSDT. Since the effects of the inertia moments and shear stresses are included, it can be
proved that the results by FSDT are more precise than the classical shell theory [26].

Displacement field for an arbitrary point of the laminated cylindrical shell based on
FSDT is written as [19]

u(x, θ, z, t) = u0(x, θ, t) + zu1(x, θ, t)
v(x, θ, z, t) = v0(x, θ, t) + zv1(x, θ, t)

w(x, θ, z, t) = w0(x, θ, t)
(1)

where u, v, and w are the displacements of the shell in the longitudinal, circumferential,
and radial directions at any point; u0, v0, and, w0 are the displacements of the mid-surface
of the shell for three directions; while u1 and v1 are the rotations of normal to the middle
surface about θ and x axes, respectively.

Substituting Equation (1) into the general geometric relationships of cylindrical shell yields,
εx
εθ

εxθ

εθz
εxz

 =



∂u0
∂x

∂v0
R∂θ +

w0
R

∂v0
∂x + ∂u0

R∂θ

v1 +
∂w0
R∂θ −

v0
R

u1 +
∂w0
∂x


+ z



∂u1
∂x
∂v1
R∂θ

∂v1
∂x + ∂u1

R∂θ
0
0


(2)

where εx, εθ , εxθ , εθz, εxz are strains.
Based on the Kelvin–Voigt model, the viscoelastic constitutive relations can be ex-

pressed as
σij = c∗ijklεkl (3)

where σij, εij are the stresses and strains, c∗
ijkl

= cijkl + iωµijkl are the viscoelastic stiffness, ω

is the circular frequency, i =
√
−1 is the imaginary unit, and cijkl , µijkl are the elastic and

viscous coefficients, respectively.
According to FSDT, the normal stress in z direction is negligible, while the shear

stresses σxz, σθz are not zero. Making use of σz ≈ 0 in Equation (3) obtains the expression
of εz. Through eliminating the expression of εz in other constitutive equations, one can
determine the reduced constitutive relations.

σx = c11εx + c12εθ , σθ = c12εx + c11εθ

σθz = c44γθz, σxz = c44γxz, σxθ = c66γxθ
(4)

where c11 = c11 − c2
13/c33, c12 = c12 − c2

13/c33 are the reduced material properties. Hence,
εz is not contained in the right sides of Equation (4), and σz = 0 is automatically satisfied.
The shear correction factor k can be introduced through the following replacement [27]:

γxz → kγxz , γθz → kγθz . (5)
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Based on the FSDT [28,29], the governing equations of motion are

∂Nx
∂x + ∂Nxθ

R∂θ = I0
..
u0 + I1

..
u1

∂Nxθ
∂x + ∂Nθ

R∂θ = I0
..
v0 + I1

..
v1

∂Qx
∂x + ∂Qθ

R∂θ −
Nθ
R = I0

..
w0

∂Mx
∂x + ∂Mxθ

R∂θ −Qx = I1
..
u0 + I2

..
u1

∂Mxθ
∂x + ∂Mθ

R∂θ −Qθ = I1
..
v0 + I2

..
v1

(6)

where the force resultants Nαβ, Qα, moment resultants Mαβ (α, β = x, θ), and mass
moments of inertia I0, I1, I2 are defined as

(Nx, Nθ , Nxθ , Qx, Qθ) =
∫ h/2
−h/2 (σx, σθ , σxθ , τxz, τθz)dz

(Mx, Mθ , Mxθ) =
∫ h/2
−h/2 (σx, σθ , σxθ)zdz

(I0, I1, I2) =
∫ h/2
−h/2 ρ(1, z, z2)dz.

(7)

For the wave propagation in the infinite cylindrical shell, the generalized displace-
ments are furtherly written as

u0
v0
w0
u1
v1

 =
∞

∑
n=0


An cos nθ
Bn sin nθ
Cn cos nθ
Dn cos nθ
En sin nθ

ei(kx x−ωt) (8)

where An, Bn, . . . , En are displacement amplitudes for the n-th mode, kx is the wave number
along x direction, and ω is the frequency.

Substituting the wave solution Equation (8) into the dynamic equations Equation (6),
and using Equations (1)–(4), after a lot of tedious formula derivations, one obtains

Tν=0 (9)

where ν = (An, Bn, Cn, Dn, En)
T is the amplitude vector, and the details for the matrix T is

given in Appendix A. The amplitude vector is nontrivial only when the determinant of the
coefficient matrix is zero, deriving the wave characteristic equation

|T| = 0, (10)

which is the equation of natural frequencies and wave numbers.

4. Results and Discussion

Since the complex material parameters are introduced in Equation (3), a complex root
search algorithm is required. The wave number contains a real part and an imaginary
part, kx = Re(kx) + iIm(kx). The imaginary part defines the attenuation, while the real one
represents the traveling wave. In other words, after finding the roots of the viscoelastic
characteristic equation using numerical programs, for example the bisection method, the
phase velocity and attenuation dispersion curves, hence, can be drawn. Also note that one
has c = ω/kx for the elastic material, while c = ω/Re(kx) for the viscoelastic material.

In this paper, the Voigt-type model is utilized to obtain the effective moduli of
FGM [21], which is

P(z) = P1V1(z) + P2V2(z) = P1V1(z) + (1− P1)V2(z) (11)
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where Pi indicates the material parameter (the elastic, viscous coefficients), and Vi(z)
indicates the corresponding volume fraction of the i-th layer.

For this study, four different carbon fiber distribution patterns, named UD, FG-O,
FG-X, and FG-V [30,31], are considered, in which the carbon fiber volume fraction can be
expressed as

UD : VC(z) = V∗C
FG−O : VC(z) = V∗C(2− 4|z|/h)

FG− X : VC(z) = V∗C4|z|/h

FG−V : VC(z) = V∗C(1 + 2z/h)

(12)

where z ∈ [−0.5h, 0.5h], and V∗C is the total volume fraction of carbon fiber.
For the viscoelastic problem hereafter, the two anisotropic viscoelastic materials,

Prepreg and carbon fiber, are chosen, whose material properties are listed in Table 1. Take
FG-V as an example, where the inner plane of the shell is made of pure Prepreg, while the
outer plane is made of Prepreg with carbon fiber reinforcement. Since part of the material
parameters are not available, one made the assumption in the numerical examples where
P12 = P23 = P13, P22 = P33 and where Pij = cij, µij. For the viscoelastic examples hereafter,
the non-dimensional wavenumber K = kxh, frequency Ω = ωh

√
ρ/c11, and phase velocity

C = c
√

ρ/c11 are adopted, respectively, where c11 and ρ are the elastic constant and density
for Prepreg.

Table 1. The material parameters for Prepreg and carbon fiber [21].

Property c11 c12 c13 c22 c23 c33 c44 c55 c66 ρ

Prepreg 15 7.7 7.7 16 7.7 16 7.8 7.8 3.9 1595
Carbon fiber 12.1 5.5 5.5 12.3 5.5 12.3 6.15 6.15 3.32 1500

µ11 µ12 µ13 µ22 µ23 µ33 µ44 µ55 µ66

Prepreg 0.014 0.0064 0.0064 0.011 0.0064 0.011 0.0042 0.0042 0.0034
Carbon fiber 0.043 0.021 0.021 0.037 0.021 0.037 0.02 0.052 0.009

Units: cij(Gpa), µ(Gpa ·ms), ρ(kg/m3)

4.1. Comparison with Available Data

Since the analytical solution for wave propagation in the viscoelastic FGM cylindrical
shells is not available, we computed the dispersion curves for the pure elastic cylindrical
shells to compare with the existing data. Aluminum was adopted for this example, and
the material parameters are E = 70 Gpa, ν = 0.33, ρ = 2800 kg/m3, h/R = 1/30,
and the non-dimensional wavenumber, phase velocity, and frequency are K = kxh/2π,
C = c

√
2ρ(1 + ν)/E, and Ω = ωh

π

√
ρ(1 + ν)/2E, respectively.

One compares the phase velocity curves for the elastic cylindrical shells with the
existing data to validate this study, as shown in Figure 2a,b. Five modes are seen at the
non-dimensional wave number K = 0–0.7 for both n = 0 and n = 1, where M1 stands for
mode 1. From the figures, our results agree well with the available data [19,32], which
validates our formulation and programming.

4.2. Viscoelastic Wave Characteristic for the Homogeneous Shells

Next, one considers the homogeneous shells which are made of viscoelastic composite
material with a volume fraction V∗C = 0.2 of carbon fiber, when h = 0.005 m and R = 0.1 m.
Since the results for a viscoelastic structure are not available, one makes a comparison with
the Classical Shell Theory (CST) [26] (see Figure 3). As seen from the figure, the results
for two models agree well with each other, which further validate the formulation and
computational process.
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Figure 3. Phase velocity curves in the viscoelastic cylindrical shell: n = 0, h = 0.005 m, R = 0.1 m.

The phase velocity curves for the first three modes are displayed in Figure 4a–c for
n = 0, 1, 2, respectively. The blue, red, and green curves are the results for the composite
shells by multiplying µij with 2, 1, and 0.5, respectively. Due to the difference in the
magnitude of the attenuation Im(k), attenuation expressed in decibels per meter (dB/m) is
often used [33], which is

Attenuation (dB/m) = 20 log10 e−1000Im(k). (13)

Compared with the wave propagating in the pure elastic structures, one introduces
the complex material parameters for the viscoelastic materials, indicating that the materials
are both elastic and viscous. To better understand the influence of the viscous effects (the
imaginary part of the composite material parameters) on the wave propagation characteris-
tics, one keeps the other material parameters unchanged and multiplies nine independent
viscous coefficients of the material by 2, 1, and 0.5 to study the changes of the first few mode
dispersion curves and attenuation curves. Distinctive colors are utilized to distinguish each
mode for Figures 4 and 5, where the blue, red, and green dots describe the results for the
twice, one-time, and half of the viscous coefficients, respectively.

The first three modes for n = 0, 1, 2 are shown against non-dimensional frequency
Ω = 0–5 in Figure 4a–c. When the viscous coefficients increase or decrease, the shape of
the dispersion curve does not change significantly. However, when the viscous coefficients
increase, the phase velocity of each branch decreases at the same frequency; that is, the
viscous dissipation of the material weakens the wave behavior. Moreover, at the higher
frequency for higher-order modes, the slope of phase velocity slows down and tends to
the constants. The phase velocity curve is usually a monotonically decreasing curve [34],
whereas for the first mode of 0.5× µ in Figure 4b, it increases first and then decreases and
forms a peculiar half-ring.

The effect of the viscous coefficients of the material on the attenuation curves is shown
in Figure 5. As seen from Figure 5, the shapes of each mode are quite different, but with the
increase in the viscous coefficients, the corresponding attenuation curve shifts to the left;
that is, the frequency corresponding to the mode is reduced. Both the 1st and 2nd modes
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dissipate fast as the wave propagates. Meanwhile, in Figure 5, it is noted that there is a
peculiar half-ring-shaped region on the right in the current computing section, which is
quite different from the attenuation curve in traditional structures. These characteristics
may be caused by the viscosity of the material [21].
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4.3. Wave Characteristic for Different FG Shells

To check the influence of the FG distribution pattern on the dispersion and attenuation
of the wave, four different carbon fiber distribution patterns, UD, FG-O, FG-X, and FG-V
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are considered. The thickness and radius of the cylindrical shell are h = 0.005 m, R = 0.1 m,
and n = 0, and the volume fraction of carbon fiber is fixed at V∗C = 0.2. Figure 6 shows the
first two modes of the phase velocity curves, and the blue, red, green, and magenta dot
line represent the results of UD, FG-O, FG-X, and FG-V, respectively. Two modes are seen
at non-dimensional wave number 0–10 in Figure 6. As seen from the figure, the gradient
mode of the material has no significant effect on the overall shape of the dispersion curve,
and it can be read from Mode 2 in Figure 6 that the phase velocity of FG-X, UD, FG-V, and
FG-O increases successively at the same frequency for the same mode. So to obtain a lower
frequency, the FG-X pattern is better, and the FG-O pattern is the worst, which should
be avoided.
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Figure 7 shows the attenuation coefficient curve, where the dotted lines of blue, red,
green, and magenta represent UD, FG-O, FG-X, and FG-V gradient patterns, respectively.
Both the 1st and 2nd modes dissipate fast as the wave propagates, suggesting a physical
phenomenon of short-lived wave propagation. In Figure 7, the first two modes are almost
overlapped over the frequency range considered, and the changes in gradient patterns
have a weak effect on the attenuation coefficient. Therefore, by adjusting the dispersion
relationship and attenuation coefficient by changing the material gradient pattern, the
efficiency is not noteworthy.

4.4. Wave Characteristic for Homogeneous Shells with Different Volume Fractions

The influence of different carbon fiber volume fractions on the wave characteristics is
displayed in Figure 8. The uniform material distribution pattern (UD) is concerned, and the
parameters are h = 0.005 m, R = 0.1 m, n = 0, and the viscous coefficient µij is multiplied
by 1. In Figure 8, the blue, red, and green dotted line represent V∗C = 0.2, 0.1, and 0.05,
respectively. Two modes are seen at non-dimensional wave number (0, 10) in Figure 8. As
seen from the phase velocity curve, the overall curve shape has not changed significantly,
but it is slightly numerically different. With the increase in volume fraction, the phase
velocity at the same frequency for each mode decreases. Therefore, by changing the carbon
fiber volume fraction, one can adjust the dispersion relationship to a certain extent.
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4.5. Wave Characteristic for Homogeneous Shells with Different Aspect Ratios

Finally, the influence of the thickness-radius ratio of the structure on the wave charac-
teristics is discussed. In Figure 9, the uniform material distribution pattern is adopted, the
parameters are R = 0.1 m, n = 0, V∗C = 0.2, and the viscous coefficient µij is multiplied by
1, where the blue, red, and green dotted line represent h/R = 0.1, 0.05, 0.02, respectively.
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As can be seen from the results, all three cases have two modes in the computational
domain. The shape of the curve has not changed much, but it is quite numerically different.
Therefore, by changing the size of the structure, one could adjust the dispersion relationship
more directly and significantly.
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5. Conclusions

The following conclusions were drawn from this study.
The increase in the viscous coefficient shifts the dispersion curve downward and to

the left; that is, the phase velocity for the same frequency decreases. It was noted that there
is a peculiar half-ring-shaped region in the phase velocity curve, which is quite different
from the one in traditional structures. These characteristics may be caused by the viscosity
of the material. The increase in the viscous coefficient also shifts the attenuation curve to
the left, so the dissipative effect caused by the viscosity of the material makes the wave
propagation slower and attenuation more obvious.

The effect of FG carbon fiber distribution on the overall dispersion curve and the
attenuation curve is indistinctive, but only slightly numerically different. Adjusting the
dispersion relationship and attenuation coefficient through choosing different FG patterns
is not obvious.

With the increase in the carbon fiber volume fraction, the proportion of Prepreg is
smaller, so the corresponding viscous coefficient of the composite is bigger, and the phase
velocity at the same frequency for each mode in the composite structure decreases; that is,
the decreasing viscosity makes the wave propagate faster.

By changing the size of the structure, we can adjust the dispersion relationship more
directly and significantly.

This current research can be widely used to analytically model the wave propagating in
inhomogeneous viscoelastic composite structures and can provide a reference for analytical
and numerical analysis of the better service performance of viscoelastic composite structures
and ultrasonic devices.
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Appendix A

The elements of matrix T in Equation (9) are:

Tn
11 = ω2 I0 − kx

2 A11 − n2

R2 A66, Tn
12 = ikxn( A12

R + A66
R ), Tn

13 = A12
R ikx,

Tn
14 = ω2 I1 − kx

2B11 − n2

R2 B66, Tn
15 = ikxn( B12

R + B66
R )

Tn
21 = −ikxn( A12

R + A66
R ), Tn

22 = ω2 I0 − kx
2 A66 − n2

R2 A22, Tn
23 = −n A22

R2 ,

Tn
24 = −ikxn( B12

R + B66
R ), Tn

25 = ω2 I1 − kx
2B66 − n2

R2 B22

Tn
31 = − ikx

R A12, Tn
32 = −n( A22

R2 + kA44
R2 ), Tn

33 = ω2 I0 − A22
R2 − kx

2kA55 − n2 kA44
R2 ,

Tn
34 = ikx(kA55 − B12

R ), Tn
35 = n( kA44

R − B22
R2 )

Tn
41 = ω2 I1 − kx

2B11 − n2 B66
R2 , Tn

42 = ikxn( B12
R + B66

R ), Tn
43 = ikx(

B12
R − kA55),

Tn
44 = ω2 I2 − kA55 − kx

2D11 − n2 D66
R2 , Tn

45 = ikxn(D12
R + D66

R )

Tn
51 = −ikxn( B12

R + B66
R ), Tn

52 = ω2 I1 +
kA44

R − kx
2B66 − n2 B22

R2 , Tn
53 = −n( B22

R2 − kA44
R ),

Tn
54 = −ikxn(D12

R + D66
R ), Tn

55 = ω2 I2 − kA44 − kx
2D66 − n2

R2 D22

(A1)

where (I1, I2, I3) =
∫ h/2
−h/2 ρ(1, z, z2)dz, (Aij, Bij, Dij) =

∫ h/2
−h/2 cij(1, z, z2)dz.
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