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Abstract: Here, we present composites and materials that can be prepared starting with boron hydride
cluster compounds (decaborane, decahydro-closo-decaborate and dodecahydro-closo-dodecaborate
anions and carboranes). Recent examples of their utilization as boron protective coatings including
using them to synthesize boron carbide, boron nitride, metal borides, metal-containing composites,
and neutron shielding materials are discussed. The data are generalized demonstrate the versatile
application of materials based on boron cluster anions and carboranes in various fields.
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1. Introduction

The driving force behind the intensive development of the chemistry of boron hydride
cluster compounds in the 1950s was their use as high-energy materials [1–3]. This topic is
still discussed, although it attracts less attention [4–14]. Currently, the most attention is paid
to the use of boron cluster compounds in medicine [15–27]. As for the use of boron clusters
in materials science, complex molecular and supramolecular structures, such as nanocars
and nanotrains [28–31], molecular machines, and switches [32–36], MOFs [37–46], etc.,
attract the most attention. However, there is another less spectacular but no less important
direction of research on the use of boron cluster compounds in the science of materials.
This direction of research consists of the thermal decomposition of various boron clusters
with the formation of boron-containing coatings and ceramic materials, which is somewhat
reminiscent of their use as high-energy materials, since in this case a complex molecular
structure is also converted into simple molecules.

In this contribution to the field, we present an attempt to consider the use of boron
clusters to obtain various boron-containing materials, including boron-containing coat-
ings and films, nanostructured boron carbide and metal borides, and others. The most
readily available decaborane(14) B10H14, ortho- and meta-carboranes 1,2-C2B10H12 and
1,2-C2B10H12, decahydro-closo-decaborate [B10H10]2− and octadecahydro-conjucto-eicosaborate
[trans-B20H18]2− anions (Figure 1) are considered as the boron clusters. Decaborane(14) can
be readily prepared in a two-step procedure from sodium tetrahydroborate NaBH4 [47]. The
well-known ortho-carborane is obtained by introducing the acetylene molecule into the open
boron cage of decaborane(14), and its thermal isomerization leads to meta-carborane [48].
The decahydro-closo-decaborate anion [49–51] is formed by heating decaborane(14) in the
presence of triethylamine, and its mild oxidation results in the octadecahydro-conjucto-
eicosaborate anion [52,53].
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Figure 1. Idealized structures of decaborane(14) B10H14 (a), ortho-carborane 1,2-C2B10H12 (b), meta-
carborane 1,7-C2B10H12 (c), decahydro-closo-decaborate anion [B10H10]2- (d), and octadecahydro-con-
jucto-eicosoborate anion [trans-B20H18]2- (e). 

  

Figure 1. Idealized structures of decaborane(14) B10H14 (a), ortho-carborane 1,2-C2B10H12 (b), meta-
carborane 1,7-C2B10H12 (c), decahydro-closo-decaborate anion [B10H10]2− (d), and octadecahydro-
conjucto-eicosoborate anion [trans-B20H18]2− (e).

2. Decaborane as Boron Source for Boron-Containing Materials

Metal Organic Chemical Vapor Deposition (MOCVD) is widely used for creating
high-purity crystalline semiconducting thin films and micro/nano structures for micro-
electronics [54–57]. Therefore, it is not surprising that volatile boron hydrides such as
decaborane have been proposed for the preparation of various boron-containing coatings.
At first glance, it may seem that for these purposes it is more convenient to use other more
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available and cheap volatile boron compounds, such as BCl3, BF3 or diborane. However,
one drawback of MOCVD is the aggressive, toxic and explosive nature of the precursor
gases, which makes them difficult to use in small research laboratories. This fully applies
to both aggressive and corrosive boron halides and highly toxic and flammable diborane.
Therefore, decaborane B10H14, despite its higher cost and toxicity [58,59], is in many re-
spects a more convenient source of boron for these purposes. Furthermore, decaborane has
advantages as a source material for boron coating because high-purity decaborane is easy
to obtain with a sublimation purification process.

Amorphous boron films of 0.1–1.5 µm thickness have been prepared on sapphire,
silicon, and tantalum as substrates by the pyrolysis of decaborane in the molecular flow
region (≤10−4 torr) and in a temperature range of 350–1200 ◦C. It is found that the depo-
sition rate of the boron films is proportional to the decaborane partial pressure and the
substrate temperature. The electrical conductivities vary from 3 × 10−5 S cm−1 at 77 K to
30 S cm−1 at 1000 K, and the activation energy is 1.07 eV in the intrinsic temperature range
(700–1000 K). The maximum value of thermoelectric power is about 420 µV deg−1 at 700 K,
and its polarity is positive between 500 and 1000 K [60]. The preparation of polycrystalline
α-rhombohedral boron films by pyrolysis of decaborane has also been reported [61].

Boron coating also can be obtained by the plasma-assisted enhanced chemical vapor
deposition (PECVD) of decaborane [62,63]. In particular, decaborane has been proposed as
a boron source for the boronization of JT-60U Tokamak to reduce the influx of impurities
during plasma discharge [64]. The deposition of boron films on polished p-type Si(111) sur-
face by synchrotron-radiation-induced chemical vapor deposition (SR-CVD) of decaborane
was reported [65].

When using ammonia or dinitrogen as additives, the chemical vapor deposition of
decaborane can be used to obtain thin films of boron nitride [66], nanosheets [67], and
nanotubes [68], competing with borazine. In particular, boron nitride nanotubes (BNNTs)
grown at 1200–1300 ◦C from decaborane were double- and multiwalled, with the double-
walled nanotubes having ~2 nm inner diameters and the multiwalled nanotubes (~10 walls)
having ~4–5 nm inner diameters and ~12–14 nm outer diameters. The nanotubes grown
at 1300 ◦C were longer, averaging ~0.6 µm, whereas those grown at 1200 ◦C had average
lengths of ~0.2 µm [68].

The pyrolysis of decaborane can also be used to prepare boron nanoparticles [69]
and microcrystals [70,71]. α-Tetragonal boron crystals were obtained at a pressure of
8–9 GPa and temperatures in the range 1100–1600 ◦C, while β-rhombohedral boron crystals
grow at 3 GPa and 1200 ◦C [70]. The α-tetragonal boron crystals synthesized demonstrate
semiconducting properties of conductivity with the energy gap Eg ≈ 1.5 eV [71].

The chemical vapor deposition of decaborane was also used to prepare various metal
boride thin films, including nickel [72], strontium [73], gadolinium [74], neodymium [75],
and ytterbium [76,77].

A synthetic route to metal borides TiB2, ZrBz2, HfB2, NbB2, and TaB2 by heating the
decaborane-pimelonitrilium polymer [-6-B10H12-(NC(CH2)5CN)]n- and the corresponding
finely dispersed metal oxides above 1400 ◦C was proposed. The metal boride powders were
found to be highly crystalline, with grain sizes dependent on processing temperatures [78].

Various boron-carbide-containing materials were prepared using various decaborane-based
single-molecular precursors, such as [µ-6,6′-(CH2)6-(B10H13)2] [79,80], [µ-6,6′-(1′,5′-cyclooctyl)-
(B10H13)2] [81], [µ-6,6′-(2′,5′-norbornenyl)-(B10H13)2] [81], or polymers, including [-6-B10H12-
Ph2POPPh2]n- [82], [-6-B10H12-(CH2)6]n- [83,84], [-6-B10H12-(2′,5′-norbornenyl)]n- [81,83–89],
[-6-B10H12-(1′,5′-cyclooctenyl)]n- [81,83], and [-6-B10H12-(1′,4′-cyclooctenyl)]n- [81,83].

In particular, [µ-6,6′-(CH2)6-(B10H13)2] (Figure 2) appears to be an ideal precursor for
the synthesis of boron carbide nanofibers (Figure 3) using the templating technique: (i) it is
readily synthesized in large amounts using the Ti-catalyzed reaction [90]; (ii) it contains no
other ceramic-forming elements and has a desirable boron-to-carbon ratio, thus yielding
boron-rich boron carbide compositions upon pyrolysis; (iii) it is stable as a liquid, allowing
it to be absorbed into the membrane without decomposition; and (iv) upon pyrolysis, it
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undergoes a cross-linking reaction at relatively low temperatures (220 ◦C), which slows the
loss of material by volatilization, thereby generating high ceramic and chemical yields [79].
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Figure 3. SEM images of aligned boron carbide nanofibers obtained upon pyrolysis of [µ-6,6′-(CH2)6-
(B10H13)2] at 1025 ◦C. Reprinted with permission from Ref. [79]. Copyright (2000) the American
Chemical Society.

The bis(decaboranyl)-hexane precursor [µ-6,6′-(CH2)6-(B10H13)2] can also be used for
the preparation of ordered mesoporous boron carbide materials with high specific surface
areas up to 778 m2/g and hexagonal pore arrangement symmetries [80].

It should be noted that an alternative possibility of using pentaborane B5H9 instead
of decaborane to obtain boron carbide compositions was previously considered [91–93];
however, after the destruction of pentaborane stocks stored since the 1960s [94], this aim
was abandoned.

The B4C/BN-containing ceramic materials can be prepared using the pyrolysis of
polymeric Lewis base adducts of decaborane [-6-B10H12-(diamine)]n- (diamine is ethylene-
diamine, 1,1-dimethylethylenediamine, 1,1,2,2-tetramethylethylenediamine) [95,96]. In
particular, the [-6-B10H12-(ethylenediamine)]n-polymer fibers upon pyrolysis at 1000 ◦C
in an argon atmosphere retain their shape and give black ceramic fibers with a diame-
ter of 3 to 5 µm, which have a round shape, a smooth surface, and no obvious major
flaws (Figure 4). Other [-6-B10H12-(diamine)]n- polymers were capable of forming fibers.
The polymers derived from 1,1,2,2-tetramethylethylenediamine and from the 85/15 1,1-
dimethylethylenediamine/1,1,2,2-tetramethylethylenediamine mixture melt when heated
(mp 246–250 ◦C and 222–225 ◦C, respectively) and may be suitable for melt-spinning [87].
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Ref. [87]. Copyright (1988) the American Ceramic Society.

Low-crystalline boron nitride was prepared by the reaction of triammoniadecaborane
B10H14·3NH3 and hydrazine or ammonia at 125 MPa and 650–700 ◦C. The prepared low-
crystalline boron nitride passed into cubic boron nitride at 1200–1300 ◦C and 6.5 GPa in the
presence of 20 mol.% AINas a catalyst [97,98].

3. Carborane as a Boron Source for Boron-Containing Materials

Chemical vapor deposition methods are widely used for the manufacture of boron
carbide films due to the better controlled deposition process and the high-quality boron
carbide production. Mixtures of boron trichloride, methane, and hydrogen are usually
used for the CVD of boron carbide films. Since chlorides are highly dangerous and the
synthesis process requires high temperatures, the replacement of BCl3 with organoboranes
has become a trend in recent years. At first it seemed that small organoboron molecules
such as trimethylboron and triethylboron could be a good alternative, but they proved
to be overly reactive. Taking into account that ortho-carborane [H2C2B10H10] provides a
suitable ratio of B and C from a single molecular source, it seems to be an attractive source
for preparing boron carbide materials.

Semiconducting boron carbide represents a new class of materials with potential
applications in neutron detection because 10B has a high cross-section (approximately
3800 barns) for neutrons at lower energies (~25 meV), based on the 10B(n,α)7Li neutron
capture reaction [99–105]. This aroused great interest in the fabrication of boron car-
bide films using the PECVD of ortho-carborane, and the effect of the process parameters,
such as temperature and total pressure, on the composition, microstructure, morphology,
and properties of the boron carbide films obtained were studied [106–114]. In particular,
the boron carbide film prepared at low temperatures and pressures (Tdep = 900 ◦C and
Ptot = 100 Pa) showed a comparatively flat morphology, whereas the boron carbide films
prepared at low temperature and high pressure (Tdep = 900 ◦C and Ptot = 50,000 Pa) ap-
peared as round bulges. The boron carbide films prepared at a high temperature and
relatively low pressure (Tdep = 1100 ◦C and Ptot = 5000 Pa) exhibited a cauliflower-like
surface, while the films prepared at high temperature and high pressure (Tdep = 1200 ◦C
and Ptot = 50,000 Pa) exhibited a uniform granular surface (Figure 5) [112].

Semiconducting boron carbide films can be also prepared through the PECVD of meta-
carborane, which differs from ortho-carborane only in the arrangement of carbon atoms in
the icosahedral cage [115–117]. It was found that meta-carborane and ortho-carborane form
self-doped n-type and p-type boron-carbides, respectively [115,116].
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It was shown that neutron detectors and neutron voltaic devices, based on semi-
conducting boron carbides, contrary to most other electrical devices, may improve with
some radiation exposure and are robust against radiation-induced device degradation and
failure [104]. The main causes for the poor neutron detection device performance are the in-
sufficiently thick depletion region of the device, the need for a thicker device to come closer
to neutron opacity, and the need for better charge collection while maintaining low reverse
bias leakage currents [118]. It was found that the semiconducting boron carbide prepared
by PECVD of composites of ortho- and meta-carboranes and aromatic or heteroaromatic
compounds [119–125] demonstrate improvements in both charge collection and reverse
bias leakage currents, which is attributed to an increase in the hole carrier lifetimes.

The introduction of metallocenes Cp2M (M = Ni, Co, Fe, Mn) together with ortho- or
meta-carboranes during the PECVD process results in the corresponding transition metal
doping of semiconducting boron carbide films [126–131].

Another important area of using ortho- and meta-carboranes to create protective
boron carbide coatings is the boronization of tokamaks. The plasma-chemical deposition
of a protective coating on the first wall of a fusion device using a chemically active gas
(precursor) remains to date one of the primary ways to protect plasma against cooling
impurities. This method has proved effective and does not require the use of addi-
tional and expensive equipment. The use of a low-toxic and nonexplosive carborane for
boronization made this method of obtaining boron-carbon coatings to be a quick, widely
available, and relatively cheap one. The coatings obtained were found to be highly resis-
tant to chemical erosion—the erosion coefficients were (5–6) × 10−4 at/ion regardless
of temperature. The electrical resistance of the coating was high, and, depending on
the deposition conditions, varied in the range of 109–1011 Ω cm. The resistance of the
coatings to the plasma impact was estimated using similar probes, which were examined
after a certain number of working pulses. On all tokamaks, the coatings remained for
several hundred pulses. The degradation of the coating correlates with the degradation
of the plasma parameters [132–136].

The preparation of boron carbide through the pyrolysis of various carborane-containing
polymers has been described [137–140]. The Ni-catalyzed polymerization of 1,2-bis(4-
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chloro-phenyl)-ortho-carborane leads to poly(phenylene-ortho-carborane). It was found that
the heating of the polymer at 1000–1200 ◦C resulted in the crystallization of boron carbide,
according to the X-ray powder diffraction studies [139]. The Ni-catalyzed polymerization of
1,7-bis(4-chlorophenyl)-meta-carborane produces poly(phenylene-meta-carborane), which
can be used as a novel boron carbide precursor [140]. Due to its high ceramic yield, it
can be used to prepare boron carbide ceramics with different shapes [141]. In particular,
poly(phenylene-meta-carborane) was used to prepare the boron carbide hollow microsphere
via slurry-coating and a method derived from a previous study. The poly(phenylene-meta-
carborane)/polyacrylonitrile slurry was prepared and coated on a polyoxymethylene
ball substrate. After air cross-linking, the substrate decomposition and heat-treatment at
1100 ◦C in argon atmosphere, hollow boron carbide microspheres with diameter of approx-
imate 1.34 mm, and average shell thickness of 30 µm were obtained (Figure 6) [141].
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Figure 6. Hollow boron carbide microspheres prepared from poly(phenylene-meta-carbor-
ane)/polyacrylonitrile at different magnitude (a–f). Reprinted with permission from Ref. [141].
Copyright (2022) Elsevier.

The star-shaped pentagonal microcrystals of boron carbide with extremely low carbon
content (~5%) were prepared through the thermobaric treatment of 1,7-bis(hydroxymethyl)-
meta-carborane under high pressure of 7 GPa and temperature of 1370 K. The microcrystals
exhibit a five-fold symmetry and grow in the shape of stars (Figure 7) [142,143]. The
unusual shape of the pentagonal microcrystals makes them unique for developing novel
micro-machines and semiconductor micro-devices [142].

Heating a mixture of ortho-carborane and adamantane (atomic ratio B:C = 5:95) at
8 GPa and 1700 ◦C results in the formation of boron-doped diamond microcrystals
(2–2.5 at.% of boron), whereas only graphite was obtained from a mixture of adaman-
tane and ortho-carborane at pressures lower than 7 GPa [144].
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4. Boron Cluster Anions as Boron Source for Boron-Containing Materials

Coordination chemistry of transition metals with boron cluster anions is one of the
most intensively studied fields of boron chemistry [145–147]. Research in this area is
determined mainly by the fundamental components and concerns metal-boron cluster
binding [148], positional isomerism [149,150], and secondary and interligand/inner-ligand
interactions in complexes [151,152]. A series of new complex compounds that formed
precursors and materials with desired properties were synthesized. Among them are
precursors for the low-temperature synthesis of borides and related compounds [153],
molecular switches based on a dimeric boron cluster [154], catalysts in the synthesis of
organic compounds [155], complexes with luminescent properties [156], copper complexes
as models for studying exchange processes and magnetic materials [157], as well as neutron-
absorbing materials based on salts of boron cluster anions distributed in the silicate matrix.

Metal borides and related compounds provide ample opportunities for multivariate
combination of metal–metal, metal–boron and boron–boron bonds in the resulting phases,
thereby providing the possibility of directed changes in their physical, chemical and
strength properties [157–162]. The most well-known methods of preparing metal borides
include: (i) the reaction of metals and boron; (ii) the reduction of metal and boron from
oxides when allowing to react with carbon or metals; (iii) the electrolytic reduction of metal
and boron from their compounds; and (iv) the thermal dissociation of unstable compounds
containing boron and metals. Actually, the processes used to prepare metal borides are
often energy-consuming and time-consuming.

In the course of research carried out in our team, we have developed a method
for obtaining binary borides during thermal reduction of transition metal compounds
[MLx][An] (M = Co, Ni, An = [B10H10]2–, [B12H12]2– or [B20H18]2–) with ligands L that can
be easily removed at elevated temperature (for example, L = H2O, NH3, DMF). In the
compounds, organic ligands L are considered components, which play the role of organic
fuel. Dimethylformamide is one of the most promising substances that can be used as a
fuel [163]; its specific heat of combustion (29.652 MJ/kg) is much higher than, for example,
that of urea (9.134 MJ/kg), which is often used in SCS processes. The energy capacity
of the boron cluster anions themselves makes it possible to lower the boride synthesis
temperature, which facilitates the process and reduces energy consumption.

First, we synthesized complexes [Co(DMF)6][B10H10] and [Co(DMSO)6][B10H10]
(Figure 8), studied their thermooxidative properties in the temperature range 20–600 ◦C un-
der argon [164], and determined the annealing temperature. When comparing the IR data
of products of thermolysis performed at 600 ◦C, it was concluded that boride phases were



Materials 2023, 16, 6099 9 of 20

prepared only for complex [Co(DMF)6][B10H10]. The final products were X-ray amorphous
that did not allow us to determine the exactly composition of the final products.
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Figure 8. Structures of [Co(DMSO)6][B10H10].

When annealing structurally related compounds [Co(DMF)6][B12H12], [Co(DMF)6][B20H18]
(Figure 9) and [Co(DMF)6][B10Cl10] in argon at 900 ◦C [165,166], we succeeded in detecting the
CoB phase using X-ray powder diffraction [165]. It was found that for [Co(DMF)6][B12H12],
the phases of BN and CoB where prepared in the 1:1 ratio; for [Co(DMF)6][B20H18], a higher
CoB:BN ratio but low crystallinity were found; and for the cobalt(II) complex with the
decachloro-closo-decaborate anion, only CoB was detected. The annealed samples were stud-
ied using IR spectroscopy and X-ray fluorescence (for the chloro-containing sample). The
nanoparticular character of the decomposition products was shown using TEM.
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Figure 9. Structure of [Co(DMF)6][B20H18].

Thermal reduction of complexes [CoLn][B10H10] (L = H2O, n = 6; N2H4, n = 3) with
hydrazine and water molecules in argon at 650 and 900 ◦C [167,168] resulted in preparation
of the dicobalt boride Co2B phase as well as orthorhombic and cubic modifications of
boron nitride BN. For the aquacomplex, oxide-boride phases were detected. The annealed
samples were studied using IR spectroscopy and X-ray powder diffraction. In addition, the
samples show different magnetochemical behavior: the oxide–boride phase demonstrated
a significant ferromagnetic contribution to the total magnetization of the sample, while the
nitride–boride phase had a diamagnetic contribution.

As for structurally related nickel complexes [NiLn][B10H10] (L = DMF, H2O, n = 6;
L = N2H4, n = 3) [169], their thermal reduction was studied in the temperature range
20–800 ◦C in air and in argon. The phases of Ni3C and Ni1 –xCx were detected using X-ray
powder diffraction for annealed complex [Ni(DMF)6][B10H10]; the obtained data indicates
that boride-carbide phases were not detected.

Gadolinium tetraboride GdB4 was found to form as an only-boride phase by heating
a mixture of gadolinium hydride GdH~2 and gadolinium closo-decaborate Gd2[B10H10]3
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as a boron source (the boron:metal ratio = 2) at 1400 ◦C under an argon atmosphere. In
a similar way, cerium tetraboride CeB4 was prepared from CeH~2 and Ce2[B10H10]3 at
1100 ◦C. Using the boron:metal ratio = 6, gadolinium and cerium hexaborides MB6
(M = Gd, Ce) were prepared without the coexisting of the corresponding tetraborides at
1200–1400 ◦C and 1100 ◦C, respectively. A small number of inclusions (oxides, borates, etc.)
can be completely removed using acid treatment with conc. HCI solution [170].

Crystalline ytterbium hexaboride YbB6 along with some amount of amorphous boron
were prepared by heating ytterbium(II) closo-decaborate Yb[B10H10] in a quartz tube main-
tained at 10−5 Torr to a maximum of 1000 ◦C [171].

The thermal decomposition of copper(I) closo-decaborane Cu2[B10H10] at 800 ◦C was
found to produce crystalline copper boride CuB24 and metal copper and amorphous
boron [172].

Recently, the annealing of copper(II) complexes with hydrazine [CuII(N2H4)3][B10H10]·nH2O
or ammonia [CuII(NH3)4][B10H10]·nH2O in argon at 900 ◦C was used to prepare a Cu@BN
boron-containing copper composite [173]. The composition consists of a boron nitride
matrix doped with cubic copper(0) nanoparticles with an average particle size of ~81 nm or
~52 nm, respectively.

Modern technology has a high demand for materials which can operate under extremal
temperatures. Inorganic polymers attract attention because they offer some properties that
are not found in organic materials, such as low-temperature flexibility, electrical conduc-
tivity, and nonflammability. The linear polysilicates obtained by the polycondensation of
sodium metasilicate with silanol groups are the most widely studied among the non-organic
polymers [174].

Prior to studying the distribution of salts of the boron cluster anions in the silicate
matrix, the thermal and thermomechanical properties of starting salts (R3NH)2[B12H12]
(R = Et, Bu) were examined as compared with (Et3NH)2[B10H10] [175]. The TGA and DSC
data for (R3NH)2[B12H12] are similar; thermal destruction is observed at 260–450 ◦C, and
the weakening of intermolecular contacts (softening) is observed before thermooxidative
destruction. As for (Et3NH)2[B10H10], thermooxidative and thermal destructions occur
simultaneously within a narrow temperature range of 260–320 ◦C, and the softening
temperature lies within the range of intensive weight loss.

Furthermore, we studied the thermal behavior of triethylammonium closo-decaborate
in a silicate matrix [176]. The interaction of sodium silicates of liquid glass (LG) with
triethylammonium salts of boron cluster anions was studied in a wide range of component
ratios. The compositions formed by addition of different amounts of (Et3NH)2[B10H10]
(5, 15, 30, 40, 50, 60, and 74 wt%) into sodium liquid glass [176] were studied.

The dissolution of triethylammonium salts of boron cluster anions in sodium LG
at room temperature is accompanied by the release of triethylamine, which completely
stops when the temperature rises to 100 ◦C. The absence of a band of stretching vibrations
of the NH groups of the triethylammonium cation in the region of 3100–3200 cm−1

indicates its complete replacement in the composition by Na+ ions. The retention of the
formed sodium salts in the silicate matrix is carried out due to the formation of specific
cation–anion contacts.

It was found that for compositions with closo-decaborate anion, the anion oxidation
in air begins at 350 ◦C and is accompanied by a significant exothermic effect. IR spectro-
scopic analysis of the thermolysis products obtained in air at 350 and 600 ◦C showed the
presence of the closo-decaborate anion in the samples [176,177]. A branched 3D system of
multicenter bonds between BH-groups of the boron cluster and silanol groups via the water
molecules can be assumed in the resulting inorganic polymer composition (Figure 10).
The participation of the boron cluster in hydride–proton (dihydrogen) bonds is detected
using IR spectroscopy because of the splitting of the band of stretching vibrations of the
BH groups ν(BH) observed near 2500 cm−1, whereas the formation of hydrogen bonds
between sylanol groups and water molecules can be assumed because of the presence of
broadened band ν(OH) in the region 3600–3000 cm−1. This structure prevents the closo-
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decaborate anion from undergoing complete degradation, thus forming a surface protective
layer which consists of borates and silicates, allowing preventing the bulky sample from
oxygen diffusion and its further oxidation at high temperatures. The authors concluded
that samples are stable up to 600 ◦C, which is attractive for fabricating boron-rich thermally
stable coatings.
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In the IR spectra of the compositions, the multiplet splitting of the band of stretching
vibrations of BH bonds, which is characteristic of interactions of this kind, is clearly
manifested. The thermal stability of individual salts of boron cluster anions is determined
by the nature of the anion and cation of the starting compound. The thermal stability of the
compositions also depends on the nature of the boron cluster anion. According to the TG
and DSC data, the protective layer is formed when the temperature rises to 500 ◦C during
the thermogravimetric analysis. It is worth noting that is that the heat treatment of the
sample under these conditions is accompanied by a high exothermic effect, which can lead
to the melting of the borosilicate components.

The possibility of using compositions based on the closo-decaborate anion as highly
heat-resistant boron-enriched materials is evidenced by TMA data [178,179]. The samples
are characterized by high heat resistance compared to the original components; they do
not soften at temperatures ≥ 600 ◦C as high thermal and thermomechanical stability is
probably ensured due to the formation of a “protective structure” on the surface of the
samples during testing, which prevents the diffusion of atmospheric oxygen.

Structural features of boron cluster anions introduced into the compositions have a
significant effect on the processes and thermomechanical properties of the compositions.

The formation of a protective layer in the compositions is also observed for the closo-
dodecaborate anion [180,181]. It was found that heating the composition, in which the
amount of the doped component is 60 wt%, leads to the formation of the composite
and crystallization of sodium salt of the closo-dodecaborate anion on its surface at 200 ◦C,
according to X-ray powder diffraction data [182]. The results of the study of the morphology
of the obtained sample by scanning electron microscopy were compared with the results
of the morphology of the sodium salt obtained from an aqueous solution. On the surface
of the composite, there are needle-shaped nanosized particles with well-formed faces and
sizes of 60–100 nm in width and up to 3 µm in length. In a sample of sodium salt obtained
from an aqueous solution, only large blocks with a size of about 10–30 µm are present. In
addition, when the initial mixture contained 60% of triethylammonium closo-dodecaborate
at 450 ◦C, a high plasticization of the composition was noted, as evidenced by the TMA
data [181]. The obtained properties may be important for the processing of composites and
are probably due to the presence of about 6.6% triethylammonium substituted derivative
of the closo-dodecaborate anion in the reaction, which is formed during the heat treatment
of the composition.

The reaction of LG with the triethylammonium salt of the perchlorinated substituted
derivative of the closo-decaborate anion proceeds similarly [179,180]. For LG/[B10Cl10]2–

compositions containing the perchlorinated closo-decaborate anion up to 20 wt%, their
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plasticizing properties were determined. In the presence of small amounts of additives, asso-
ciations formed between the silicate and polyhedral boron anions, which act as crosslinking
agents. According to the TMA data, triethylammonium salt of the perchlorinated closo-
decaborate anion does not soften up to a degradation temperature of 420 ◦C, whereas in
salt (Et3NH)2[B10H10], this process occurs at 245 ◦C. Differences in the deformation stability
are also retained in compositions containing equimolar amounts of boron cluster anions.
Analyzing the obtained TMA results [179,180], it is obvious that the deformation stability of
the system containing the perchlorinated anion is significantly higher compared to that of
the decahydro-closo-decaborate anion. This fact indicates a more rigid structuring observed
in the presence of the perchlorinated anion.

Compositions with a low content of boron cluster anions are of particular interest
for studying the structural features of the associates formed. We suggested that the asso-
ciates formed in the silicate matrix can be distributed as individual particles. which was
determined using transmission electron microscopy (TEM). For samples containing the
[B10H10]2– anion, the TEM image shows isolated elongated particles 12.5–47.5 nm in size.
In turn, the shape of the particles for the composition with the perchlorinated anion is
not so pronounced [180]. In the latter case, particles 5–40 nm in size form agglomerates
distributed in a silicate matrix. Thus, it is obvious that the shape and nature of the dis-
tribution of associates formed in the silicate matrix directly depends on the nature of the
boron cluster anion. As a result of these studies, we have patented a boron-containing
neutron shielding material [183], which was obtained by the reaction between sodium
silicate Na2O(SiO2)n in an aqueous solution of sodium hydroxide with trimethylammo-
nium decahydro-closo-decaborate (Me3NH)2[B10H10]; the reaction solution was boiled until
the trimethylamine formed as a result of the reaction of the sodium hydroxide solution
with (Me3NH)2[B10H10] is completely removed, then dried by raising the temperature to
300 ◦C. Due to the numerous supramolecular contacts that appear in the glass structure,
the destruction of the [B10H10]2– anion is not observed up to 600 ◦C. In addition, the boron
content in the product is from 15 to 40 wt%, which provides a high ability of the material
to capture thermal neutrons. The obtained neutron-shielding material can be used, in
particular, in the encapsulation of radioactive waste, in the creation of protective shields.

Boron-containing compounds can be used as light components for the creation of
metal matrix composites [184,185]. The metal composites containing copper and aluminum
as matrices and salts Cs2[B10H10], [Me2NH2]2[B10H10], [Ph4P]2[B10H10], [Et3NH]2[B10Cl10],
Cs2[B12H12], [Et3NH]2[B12H12] [149], and [Bu4N]2[B12H12] [150] were prepared and coated
onto a steel surface. It was shown that the developed metal matrix composites with the
boron cluster anion salts can be applied for coatings. A friction cladding method allows
one to prepare high-quality coatings, providing a high adhesion of the coating to the metal
substrate. No defects were found either in the mass of the coating or on the surface.

5. Conclusions

Here, we tried to summarize briefly the synthetic routes and wide application fields
of boron-containing materials prepared from boron cluster anions and carboranes. The
recent renaissance in chemistry of borohydrides and carboranes is associated with ever-new
prospects for their practical use. We hope that the information collected in this article will
significantly expand the understanding of the variability of the practical application of
boron cluster anions and carboranes to obtain composites and materials based on them, and
will provide a novel perspective on the ways to obtain composites with desired properties.
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