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Abstract: Quenching and partitioning (Q&P) steel has garnered attention as a promising third-
generation automotive steel. While the conventional production (CP) method for Q&P steel involves
a significant cumulative cold rolling reduction rate (CRRR) of 60–70%, the thin slab casting and rolling
(TSCR) process has emerged as a potential alternative to reduce or eliminate the need for cold rolling,
characterized with a streamline production chain, high-energy efficiency, mitigated CO2 emission
and economical cost. However, the effect of the CRRR on the microstructure and properties of Q&P
steel with an initial ferrite-pearlite microstructure has been overlooked, preventing the extensive
application of TSCR in producing Q&P steel. In this work, investigations involving different degrees
of CRRRs reveal a direct relationship between increased reduction and decreased yield strength
and plasticity. Notably, changes in the microstructure were observed, including reduced size and
proportion of martensite blocks, increased ferrite proportion and decreased retained austenite content.
The decrease in yield strength was primarily attributed to the increased proportion of the softer
ferrite phase, while the reduction in plasticity was primarily linked to the decrease in retained
austenite content. This study provides valuable insights for optimizing the TSCR process of Q&P
steel, facilitating its wider adoption in the automotive sector.

Keywords: Q&P steel; microstructure and properties; cold rolling reduction rate; TSCR; retained
austenite; phase transition

1. Introduction

The pursuit of lightweight, high-strength and high-toughness steel for automobile
applications has become increasingly crucial in light of the energy crisis and environmental
concerns. Advanced high-strength steel offers the potential to reduce weight, enhance
energy efficiency and maintain safety in automobile bodies [1,2]. Meeting the demands for
lightweight construction and safety requires advanced high-strength steel with a combina-
tion of exceptional strength and ductility. Quenching and partitioning (Q&P) steel [3–6],
as a third-generation advanced high-strength steel, possesses the ability to fulfill both
requirements concurrently [7]. The Q&P process [3,5,8,9] involves either partial or full
austenitization, followed by quenching to a temperature between the martensite start tem-
perature (Ms) and martensite finish temperature (Mf), in order to obtain a specific fraction
of martensite. The subsequent isothermal treatment, known as “partitioning”, occurs either
at the quenching temperature (one-step Q&P) or at a higher temperature (two-step Q&P),
which allows for carbon redistribution from the quenched martensite to untransformed
austenite. The addition of elements, such as Al, Si, or P, prevents the formation of cementite
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during partitioning [10]. Consequently, the carbon-enriched austenite is stabilized at room
temperature after the final cooling. Meanwhile, the stabilized austenite is maintained in
a metastable state, enabling deformation induced phase transformation to be activated
during straining. Therefore, the effect of Q&P treatment on mechanical properties is highly
dependent on the activation of the transformation-induced plasticity (TRIP) effect, which is
determined by the volume fraction and stability of the retained austenite (RA) [11–13].

In the conventional production process of Q&P steel, hot rolling, cold rolling and Q&P
heat treatment are employed [14]. Cold rolling with a reduction rate (ratio of the reduction
in plate thickness to the initial thickness of the plate) of 60–70% is necessary [15], as the
typical required thickness for Q&P steel in service is considerably thinner (0.7~1.2 mm)
than that of conventional hot-rolled plates (2~3 mm). Meanwhile, in order to reduce the
cold rolling force, the hot rolling-coiling temperature must be controlled to adjust the
microstructure of the hot-rolled plate to a softer ferrite-pearlite structure [16]. To address
the global focus on carbon reduction, especially in steel industry, the thin slab casting and
rolling (TSCR) technology is being widely promoted due to its environmentally friendly
and energy-saving characteristics [17]. TSCR technology enables the production of thinner
hot-rolled plates with improved temperature uniformity; thus, reducing or even eliminating
the need for cold rolling [18].

The process of cold rolling significantly affects the microstructure and properties of
Q&P steel. As the CRRR increases, together with the elongation of ferrite and fracture of
pearlite, the density of dislocations and stored deformation energy also increases [19]. The
degree of deformation, defect density and stored strain energy impact the recrystallization
of ferrite, as well as the nucleation and growth kinetics of austenite in accompanying
heating; thus, influencing the distribution and morphology of ferrite and austenite before
quenching [20]. Such an effect on the morphology and distribution of austenite plays a
crucial role in carbon partitioning, affecting the stability of associated retained austenite in
Q&P steel [21,22].

Previous research on Q&P steel has often overlooked the impact of cold rolling due to
the processes’ limitations. The effectiveness of tunning cold rolling parameters in tailoring
the morphology and distribution of austenite further influences the mechanical property
of Q&P steel, and there is a pressing need to systematically investigate the influence of
different CRRRs on the microstructure and properties of Q&P steel with a ferrite-pearlite
microstructure in the hot-rolled state. In this study, we aim to address this research gap
and provide comprehensive insights into the effects of CRRRs on Q&P steel. By elucidating
the relationship between cold rolling, microstructure and properties, we strive to enhance
the understanding of Q&P steel manufacturing processes and optimize its performance for
automotive applications.

2. Materials and Methods

The steel utilized in this study exhibited a chemical composition (wt.%) consisting
of C-0.20, Si-1.75, Mn-2.00, with Fe serving as the balancing component. The thickness of
the hot-rolled plate billet was 55 mm, which was rolled to 1.8 mm through a 5 passes hot
rolling, and then cold rolled through different passes to get the final sample with a different
reduction percentage. Cold rolling was performed at reduction rates of 10%, 40% and
70%; thus, creating varying thickness in the steel plates. To conduct Q&P treatments, the
CCT-AY-II heat treatment system for thin steel sheets was employed with a specimen width
of 70 mm and length of 220 mm. The schematic diagram of Q&P heat treatment is shown in
Figure 1. The samples underwent a specific heating and cooling cycle, starting with heating
to 830 ◦C at a rate of 5 ◦C/s for 100 s to achieve partial austenitization. Subsequently, they
were rapidly cooled to 710 ◦C at a rate of 5 ◦C/s, followed by further cooling at 50 ◦C/s
to 260 ◦C for 6 s. To facilitate partitioning, the samples were re-heated and maintained
isothermally at 420 ◦C (partitioning temperature) for 160 s before undergoing quenching at
a rate of −10 ◦C/s to room temperature.
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Figure 1. The schematic diagram of Q&P heat treatment.

The microstructures of the samples were examined using a GeminiSEM500 field
emission scanning electron microscope (SEM) operating at 15 kV. Prior to analysis, metallo-
graphic samples were wire-cut, ground, polished and etched with 4% nital. To perform
EBSD measurements, a PHI710 auger electron spectrometer with an EBSD detector was
utilized, with an accelerating voltage of 20 kV, a step size of 50 nm, and a tilt angle of
70◦. X-ray diffraction (XRD) experiments were carried out using a Bruker D8 Advance
diffractometer operating at 40 kV and a current of 150 mA, with Cu Kα radiation. The
samples for both EBSD and XRD analyses were taken by wire cutting with a speed of
0.5 mm/min. Then, the samples were ground using a polisher (ground to #400~#2000), and
polished by using 3 µm and 1 µm diamond paste. To achieve the desired surface finish, the
samples were finally polished and etched in an electrolyte of 10% perchloric acid and 90%
ethanol with an applied voltage of 20 V over a duration of 30 s. To calculate the amount of
retained austenite (RA), the (200), (220) and (311) austenite peaks, as well as the (200) and
(211) ferrite peaks were considered. The volume fraction of retained austenite (Vγ) was
determined using the following equation [2,23,24]:

Vγ = 1/(1 + G(Iα/Iγ)), (1)

where Iα and Iγ are the integrated intensity of the bcc and fcc phases, respectively, and
the G value for each combination is referred to Ref. [23]. The volume fraction of austenite
is the average of the six Vγ values. EBSD is limited by the step size and resolution and
is unable to resolve retained austenite at the nanometer scale; thus, the volume fraction
of retained austenite measured will be less than that measured by XRD. Three parallel
specimens of each sample were tested, mechanical properties and the calculated retained
austenite volume fraction were averaged arithmetically. To measure the tensile properties
of the samples with different morphological characteristics of microstructures, uniaxial
tensile tests were conducted using standard specimens (according to the GB/T 228.1-2010
standard, Ref. [25]) with a gauge length of 50 mm. The tensile direction was parallel to
the rolling direction. The mechanical properties were measured at room temperature on
an INSTRON 5581 tensile testing machine with a crosshead displacement of 2 mm/min.
Three parallel specimens of each sample were tested, and the mechanical properties and
the calculated retained austenite volume fractions were averaged arithmetically. Heat
treatments were performed on a DIL-805 A/D type dilatometer to test the phase-transition
temperature and the evolution of microstructures during the Q&P process.

3. Results
3.1. Initial Microstructures before the Q&P Treatment

Figure 2 illustrates the optical microscopy (OM) and scanning electron microscopy
(SEM) micrographs of the hot-rolled plate and the cold-rolled plate at different reduction
rates. The coiling temperature was precisely controlled at 600 ◦C, which falls within the
pearlite transformation range. As depicted in Figure 2a,b, the hot-rolled plate, following
coiling, exhibited a characteristic ferrite-pearlite microstructure. The ferrite grains displayed



Materials 2023, 16, 6102 4 of 12

a polygonal shape, and the volume fraction of pearlite was estimated to be approximately
35%. Upon subjecting the material to cold rolling at varying reduction rates, distinct
changes in the microstructure were observed (Figure 2c–h). These changes included
differing levels of pearlite fragmentation and ferrite elongation. Notably, at a reduction rate
of 70%, a prominent banded structure emerged along the rolling direction (Figure 2g,h).
These findings suggest that the microstructural evolution of the plate is strongly influenced
by the extent of the cold rolling reduction and underscore the importance of careful control
over this process parameter.
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Figure 2. OM and SEM micrographs of initial microstructures before the Q&P treatment. (a,b) The
original microstructure of hot-rolled plate produced by thin slab casting and rolling (TSCR) process.
(c–h) The microstructure morphology of 10%, 40% and 70% cold rolling reduction rates, respectively.

3.2. Final Microstructures after the Q&P Treatment

Figure 3 presents the SEM microstructure morphology of the samples after the Q&P
treatment, with varying degrees of CRRRs. The morphological features enable the distinc-
tion of different phases [26]. Specifically, the ferrite phase is denoted as F; the primary
martensite formed during the first quenching and tempered in the partitioning region is
denoted as M1; and the secondary martensite/carbon-enriched retained austenite (RA)
region is denoted as the M2/A island. The second martensite phase was formed during
the second quenching to room temperature. Due to the carbon depletion and tempering
of the M1, the surface exhibits rough morphology upon etching. Conversely, the M2/A
islands possess smooth surfaces. Therefore, a general distinction can be made according
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to the surface roughness after etching [27,28]. When observing Figure 3, it is evident that,
as the CRRR increases, several changes occur in the microstructure. Firstly, the volume
fraction of the primary martensite phase (M1) decreases and is accompanied by a reduction
in its size. Simultaneously, there is an increase in the volume fraction of the M2/A island
region, indicating an elevated presence of the secondary martensite.
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Figure 3. SEM microstructure morphology after the Q&P treatment. (a–d) Microstructure morphology
of 0%, 10%, 40% and 70% cold rolling reduction rates after the Q&P treatment, respectively.

Figure 4 showcases the X-ray diffraction (XRD) patterns and the calculated volume
fraction of retained austenite (RA) for samples subjected to varying degrees of CRRRs.
The analysis of the data reveals a consistent trend: as the CRRR increases from 0% to 70%,
there is a gradual and continuous decrease in the volume fraction of retained austenite.
Specifically, the volume fraction of retained austenite declines from 15.11% to 9.49% across
the range of the CRRRs investigated. These results demonstrate that increasing the CRRR
correlates with a reduced presence of retained austenite within the material.
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Figure 4. XRD patterns and the corresponding calculated volume fraction of retained austenite for
specimens subjected to different cold rolling reduction rates.

Figure 5 provides the EBSD results, with retained austenite (RA) shown in red; ferrite
with a high IQ in green; tempered martensite (M1) with a poor IQ in grey; and secondary
martensite (M2) in dark. The observations were made on specimens with different CRRRs.
In the 0% reduction rate sample (Figure 5a), both blocky and lath types of retained austenite
were observed. The blocky retained austenite (Figure 5(a2)) is predominantly located
within the ferrite phase, while the lath-type retained austenite is observed within the
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tempered martensite (Figure 5(a1)). The morphology and distribution of retained austenite
and martensite are related to the morphology and distribution of austenite in the two-
phase zone. Cold rolling leads to the refinement of austenite grains in the two-phase zone,
which in turn leads to a reduction in martensite size after cooling so that there is less
lath-type retained austenite and more retained austenite in the blocky form at the ferrite
grain boundaries or inside the ferrite. With an increase in the CRRR, several changes are
noticeable. Firstly, the volume fraction of lath-type retained austenite within the tempered
martensite decreases (Figure 5(a1,d1)). Simultaneously, there is an increase in the volume
fraction of the secondary martensite (Figure 5(a2,d2)). Additionally, it can be observed
that, compared to the 70% reduction rate sample, the ferrite grain size in the 10% and 40%
reduction rate samples appears more uneven. This uneven grain size may be attributed
to insufficient recrystallization. For a comprehensive overview of the phase distribution,
Table 1 provides the exact volume fractions of each phase in the investigated steels.
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Figure 5. EBSD microstructure morphology after the Q&P treatment (IQ + phase maps). (a–d) are the
microstructure morphology of 0%, 10%, 40% and 70% cold rolling reduction after the Q&P treatment,
respectively. Insets denoted with 1 (a1–d1) are highlighted areas with lath-type retained austenite
while insets denoted with 2 (a2–d2) correlate to secondary martensite (M2).

Table 1. Volume fraction of each phase of investigated steels under different cold rolling reduction rates.

Cold Reduction 0% 10% 40% 70%

Ferrite/% 27.60 ± 1.83 34.70 ± 1.99 39.30 ± 2.63 46.10 ± 1.59
Martensite/% 57.29 ± 2.17 53.12 ± 2.44 48.88 ± 3.06 44.41 ± 1.82

Retained austenite/% 15.11 ± 0.34 12.18 ± 0.45 11.82 ± 0.43 9.49 ± 0.23

3.3. Mechanical Properties

Figure 6 presents the mechanical properties of Q&P samples with varying CRRRs. The
effects of cold rolling on the mechanical properties of the samples are evident from the data.
Overall, it is observed that cold rolling has an adverse impact on the mechanical properties
of Q&P samples. As the CRRR increases from 0% to 70%, the ultimate tensile strength
(UTS) remains relatively stable at approximately 1030 MPa. However, the yield strength
(YS) experiences a continuous decrease, declining from 540 MPa to 424 MPa. Furthermore,
the uniform elongation (UEL), total elongation (TEL) and necking-zone elongation (NEL)
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initially decrease as the CRRR increases. However, within a small range, these elongation
parameters exhibit a subsequent increase.
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Figure 7a presents the typical engineering stress-strain curves for different Q&P sam-
ples, while Figure 7b displays the true stress and work-hardening rate for the respective
samples. Additionally, Table 2 provides a comprehensive summary of the mechanical prop-
erties, including tensile strength, yield strength, uniform elongation and total elongation
for each Q&P sample. The stress-strain curves in Figure 7a demonstrate variations in the
mechanical behavior of Q&P samples. It is observed that different samples exhibit distinct
stress-strain responses, indicating differences in their mechanical properties. Notably, there
are significant differences in the initial work-hardening rates among the different samples
in Figure 7b. As the strain increases, the work-hardening rates decrease. These findings
suggest that Q&P samples display diverse mechanical properties, as evident from their
stress-strain curves, true stress and work-hardening rates. The variations in the initial
work-hardening rates indicate different levels of strain hardening behavior among the
samples.
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Table 2. Mechanical properties of investigated steels. YS is the yield strength, UTS is the ultimate
tensile strength, UEL is the uniform elongation, TEL is the total elongation, and NEL is the necking-
zone elongation of each sample.

Cold Reduction 0% 10% 40% 70%

YS/MPa 540 ± 12 505 ± 8 458 ± 10 424 ± 10
UTS/MPa 1028 ± 8 1039 ± 7 1038 ± 22 1028 ± 11

UEL/% 20.0 ± 0.5 19.3 ± 0.2 19.3 ± 0.1 19.7 ± 0.3
TEL/% 24.8 ± 0.5 23.4 ± 0.9 22.6 ± 0.8 23.1 ± 0.4

4. Discussion
4.1. Effect of Cold Rolling on the Microstructures’ Evolution

The organizational evolution process in the Q&P (quenching and partitioning) process,
particularly the changes in ferrite and retained austenite content, can be understood by
studying the thermal expansion behavior of the material. Figure 8 depicts the thermal
expansion curve, which provides insights into the phase transition process occurring during
Q&P. As the CRRR increases, the temperature of Ac1, representing the start of ferrite-to-
austenite transformation, decreases continuously. This phenomenon can be attributed to
the increased driving force for phase transformation due to the introduction of deformation
energy storage through cold rolling [29]. The reduction in Ac1 temperature indicates
a higher tendency for austenite formation with increasing CRRRs. During the uniform
cooling process from 830 ◦C to 710 ◦C, a change in the slope of the expansion curve is
observed, indicating the formation of ferrite. This transition is likely associated with the
thermal expansion behavior of the material. The Ms point temperature also decreases
with the increase of CRRR which is related to the austenite grain size in the intercritical
two-phase region [20,30]. At 420 ◦C, a significant change in the slope of the expansion
curve is observed, indicating the occurrence of bainite transformation in addition to carbon
partitioning from martensite to austenite [31]. The bainite phase transition becomes more
prominent as the CRRR increases, as evidenced by the increased amount of expansion.
Overall, the thermal expansion experiments provide valuable insights into the phase
transition processes occurring during the Q&P process. The observed changes in the
expansion curve, such as the shift in Ac1 temperature and the distinct slopes, indicate
variations in the formation of ferrite and bainite, which correlate with the CRRRs. The
increased expansion suggests a higher amount of bainite formation with increasing CRRRs.
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Figure 9 depicts the microstructure at 830 ◦C/100 s, revealing a decrease in the size of
austenite grains with increasing CRRRs. This observation can be attributed to the higher
number of nucleation points present in the cold-rolled samples during the austenite trans-
formation process [29,32]. As a result, the size of the austenite grains at high temperatures
is reduced. The reduction in austenite grain size at high temperatures has implications for
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the hardenability of austenite. A smaller grain size decreases the hardenability, resulting
in a higher transformation to ferrite during the cooling process [14]. This is the primary
reason for the increase in ferrite content with increasing CRRRs. Another contributing
factor to the increase in ferrite content is the increased bainitic transformation, which leads
to the formation of a bainite-ferrite phase. The decrease in high-temperature austenite
grain size results in a decrease in Ms [20,30]. When quenched to the same temperature,
the reduction in martensite content leaves insufficient carbon to partition into the retained
austenite. As a result, bainitic phase transformation or the formation of martensite occurs
during quenching. This reduction in retained austenite content is primarily attributed to
these factors.
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4.2. The Relationship between Microstructure and Mechanical Properties

The mechanical properties of Q&P steel are influenced by various factors, including
the volume fraction, morphology, distribution and grain size of each phase. Among
these factors, the presence of retained austenite plays a particularly important role [33,34].
During plastic deformation, retained austenite undergoes a strain-induced martensite,
known as the transformation-induced plasticity (TRIP) effect. This transformation reduces
local stress concentration and delays microcrack formation [35–37]; thus, improving the
material’s elongation [34–39]. In addition, soft-phase ferrite bears more strain leading to
yielding of the material, while hard-phase martensite bears more stress. In the investigated
Q&P steels, the CRRR affects the volume fraction of retained austenite. As the reduction
rate increases from 0% to 70%, the volume fraction of retained austenite decreases from
15.11% to 9.49%, leading to a decrease in elongation. However, it is noteworthy that at a
reduction rate of 70%, a slight increase in elongation is observed. This can be attributed
to a higher proportion of the soft phase ferrite, which contributes more to the plasticity of
the material [40,41]. Furthermore, the distribution of retained austenite within the matrix
is also influenced by the CRRR. As the reduction rate decreases, the amount of retained
austenite located inside the martensite increases. These retained austenite regions exhibit
high stability and effectively inhibit crack propagation at the crack tip after necking; thus,
improving elongation during non-uniform deformation stages.

Q&P steels investigated in this study consist of martensite, ferrite, retained austenite
and a small amount of bainite. The yield strength of multiphase materials is primarily
determined by the soft phase [40,41]. In this case, as the CRRR increases from 0% to 70%,
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the volume fraction of the soft phase ferrite increases from 27% to 46%, leading to a decrease
in yield strength. In summary, the mechanical properties of Q&P steel are influenced by
various factors, including the volume fraction and distribution of retained austenite, as well
as the presence of the soft phase ferrite. The decrease in elongation with increasing CRRRs
is mainly attributed to the decrease in the volume fraction of retained austenite. However,
the presence of ferrite in higher proportions at a reduction rate of 70% contributes to a
slight increase in elongation. The yield strength is primarily determined by the soft phase,
with the increase in ferrite volume fraction leading to a decrease in yield strength as the
CRRR increases.

The TSCR process holds significant promise for Q&P steel production due to its
distinct advantages over conventional hot-rolling methods. Specifically, the shorter line
lengths and smaller investments of TSCR, in comparison to the traditional hot rolling
processes, makes it an attractive choice for industrial applications. These factors contribute
to enhanced operational efficiency and reduced production costs. Moreover, in terms
of environmental sustainability and carbon neutrality, the TSCR process exhibits lower
carbon emissions throughout the production chain; thus, resonating with the automotive
industry’s emphasis on “green” and low-carbon materials throughout their life cycle. As the
automotive industry increasingly places value on sustainable practices, the TSCR process
stands out as a desirable solution that can address these environmental priorities.

5. Conclusions

This study examined the influence of the cold rolling reduction rate on the microstruc-
ture and properties of Q&P steel with a ferrite-pearlite initial structure. Based on the
findings, the following conclusions can be drawn:

(1) The mechanical properties of Q&P steel are adversely affected by cold rolling, resulting
in a reduction in both yield strength and plasticity;

(2) The decrease in yield strength is primarily attributed to the increase in ferrite content,
which serves as the soft phase in the multiphase material. As the cold rolling reduc-
tion rate increases, the volume fraction of ferrite increases, leading to a decrease in
yield strength;

(3) The decrease in plasticity is mainly influenced by the reduction in retained austenite
content. As the cold rolling reduction rate increases, the volume fraction of retained
austenite decreases, which results in a decrease in plasticity;

(4) It is recommended that, when employing the TSCR process for the production of Q&P
steels, the necessary thickness required for the application should be directly achieved
through hot rolling.
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