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Abstract: Open-cell AMMCs are high-strength and lightweight materials with applications in dif-
ferent types of industries. However, one of the main goals in using these materials is to enhance
their tribological behavior, which improves their durability and performance under frictional condi-
tions. This study presents an approach for fabricating and predicting the wear behavior of open-cell
AlSn6Cu-SiC composites, which are a type of porous AMMCs with improved tribological properties.
The composites were fabricated using liquid-state processing, and their tribological properties are
investigated by the pin-on-disk method under different loads (50 N and 100 N) and with dry-sliding
friction. The microstructure and phase composition of the composites were investigated by scan-
ning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The mass
wear and coefficient of friction (COF) of the materials were measured as quantitative indicators of
their tribological behavior. The results showed that the open-cell AlSn6Cu-SiC composite had an
enhanced tribological behavior compared to the open-cell AlSn6Cu material in terms of mass wear
(38% decrease at 50 N and 31% decrease at 100 N) while maintaining the COF at the same level.
The COF of the composites was predicted by six different machine learning methods based on the
experimental data. The performance of these models was evaluated by various metrics (R2, MSE,
RMSE, and MAE) on the validation and test sets. Based on the results, the open-cell AlSn6Cu-SiC
composite outperformed the open-cell AlSn6Cu material in terms of mass loss under different loads
with similar COF values. The ML models that were used can predict the COF accurately and reliably
based on features, but they are affected by data quality and quantity, overfitting or underfitting, and
load change.

Keywords: AlSn6Cu-SiC; coefficient of friction; liquid-state processing; wear prediction; machine learning

1. Introduction

The wear behavior of Al-based metal matrix composites (AMMCs) is essential for the
performance and longevity of these materials, especially in applications where they are
subjected to high loads, speeds, and temperatures, such as in the aerospace, automotive,
and biomedical industries [1–3]. AMMCs are a type of composites that have a metal matrix
reinforced with continuous/discontinuous fibers, particulates, and whiskers [4]. AMMCs
have some advantages over conventional metals, such as higher strength, stiffness, wear
resistance, and thermal conductivity [5,6]. However, AMMCs also face some challenges
in terms of their sliding contact performance. The presence of reinforcement particles
can have different effects on the wear mechanisms of composites, depending on the type,
size, shape, distribution, and orientation of the particles [7]. Moreover, the reinforcing
particles can cause abrasive or adhesive wear to the composite and the counterface [8,9].
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Therefore, AMMCs need to be carefully designed and optimized to achieve a balance
between their mechanical and wear properties [1]. It is important to understand how
AMMCs perform under sliding contact, which is one of the main sources of wear in these
applications. Several studies have investigated the effects of different types of reinforcement
particles on the tribological properties of AMMCs. For instance, B4C particles were used as
reinforcements in AA6061 by [10] and Gr was used by [11], and the authors found that the
reinforcement improved the hardness and wear resistance of the AA6061-B4C composite
and the AA6061-Gr composite, respectively. Al2O3 particles were used as a reinforcement
in AA7075 by [12], and the authors reported an improved volume loss and compared to the
base alloy. SiC particles were used to reinforce AA6061 by [13], and the results indicated an
improved wear rate of the composite compared with the base alloy. The wear behavior is
influenced by different factors such as the microstructure, composition, porosity, pore size,
reinforcement type and content, sliding speed, temperature, load, and environment [14,15].
Therefore, it is important to study how these factors affect the wear behavior of AMMCs
and to find reliable methods for estimating and optimizing their wear behavior.

The manuscript in [13] describes the fabrication and characterization of SiC/Al 6061
composites with high SiC contents using pressure-assisted infiltration. It also investigates
the wear behavior of the composites under different SiC contents and shows that a higher
SiC content (75 wt.%) leads to a lower wear rate and coefficient of friction (COF). Hassan
Sharifi et al. [7] fabricated Al-Mg/SiC-Al2O3 and Al-Mg/Al2O3 by pressureless infiltra-
tion and conducted dry sliding pin-on-disk method tests. The results indicated that the
test specimens with higher densities and smaller cell sizes had lower wear rates. The
authors in the study in [16] fabricated Al-Cu composites with different contents of TiC-SiC
(2–8 wt.%), which served as a reinforcement, by employing stir casting and studied their
wear properties. The wear behavior of the AMMC indicated that the optimal wear resis-
tance of the material was obtained by the addition of 10 wt.% of reinforcement. The authors
in [17] used a combination of the stir-casting and squeeze-casting methods to produce
Al-based composites with SiCp (20–30 wt.%) and to study their microstructural, mechanical,
and wear properties. The results showed that the dual casting processes improve the SiCp
distribution, reduced the porosity, and enhanced the mechanical and wear performance
compared to using only the stir-casting technique. The composites with 30 wt.% of SiCp
had the highest hardness, lowest wear rate, and lowest COF. Shaikh et al. [18] used powder
processing to fabricate Al-Si composites with SiC (1, 3, and 5 wt.%), and after obtaining
the results of dry-friction tests, they conclude that the composites with 5 wt.% showed the
lowest COF and a significantly decreased mass wear compared to the rest of the composites.

Predicting the wear behavior of open-cell AMMCs accurately is important because
it can help to improve their performance, reliability, and durability in industrial applica-
tions. Inaccurate predictions can lead to costly failures and reduced efficiency in these
applications. For instance, excessive wear can cause dimensional changes, surface damage,
material loss, and increased friction in these composites. This may lead to higher energy
consumption, lower functionality, more maintenance costs, and a reduced service life for
these composites [19,20]. Therefore, providing some context on the importance of the
tribological behavior and wear prediction of open-cell AMMCs can help to motivate further
research on these composites and their potential applications.

The study in [19] relates the use of machine learning (ML) algorithms to optimizing
the wear behavior of ball bearings by reducing the severe vibrations caused by defects.
Fatih Aydin et al. [21] fabricated ZK60/CeO2 with different contents of reinforcement
materials (0–1 wt.%) and tested their wear behaviors under different loads (5–30 N). The
study also used five ML algorithms to predict the wear behavior based on a limited dataset
and compared their performance using statistical measures. The study relates the use of ML
algorithms to optimizing the wear behavior of the composites by identifying the best model
and the optimal parameters for reducing the wear rate and COF. The authors of [22] used a
neural network model modified with a particle swarm optimizer to predict the tribological
properties of an Al-TiO2 nanocomposite based on its experimental data and features. The
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model showed a high accuracy for different wear loads and composite compositions
for the coefficient of friction and wear rate. The authors of the article [12] obtained an
Al-based composite reinforced with Al2O3 by hot pressing and studied the effect of the
ceramic size in relation to the wear behavior. Using four machine learning methods to
predict and compare the volume loss of the composites based on the experimental data,
the study found the best model (extreme learning machine) and the optimal parameters
(particle size, load, and speed) for optimizing the wear behavior of the composites by
minimizing the volume loss and improving the wear resistance. Hasan et al. [20] employed
ML algorithms to understand and predict the wear and COF of Al-based alloys based on
their processing procedure, material properties, heat treatment, and wear test variables.
The study applied five different ML algorithms to experimental tribological data and
compared their performance and feature importance. The study relates the use of ML
algorithms to optimizing the wear behavior of Al alloys by finding the best models (random
forest for wear rate and k-nearest neighbors for COF) and the most influential parameters
(hardness, normal load, and sliding speed for wear rate; sliding distance and hardness
for COF) for minimizing the wear and friction of the Al alloys. The COF of open-cell
composites with AlSi10Mg serving as a matrix with different reinforcements was predicted
in previous studies. The random forest (RF) model [23] and the support vector regression
(SVR) model [24] were used for composites reinforced with SiC, and the extreme gradient
boosting (XGBoost) model [25] was used for composites reinforced with Al2O3.

This study aims to fabricate open-cell AlSn6Cu-SiC composites using the liquid-state
processing and replication methods. This study also aims to investigate the wear behavior
of these composites under different loads using the pin-on-disk method and to measure
their mass wear and COF as quantitative indicators of their tribological behavior; to
characterize the microstructure and phase composition of the composites using scanning
electron microscopy (SEM) images, energy-dispersive X-ray spectroscopy (EDS) analysis,
and X-ray diffraction (XRD) patterns; to predict the COF of the composites using six
different ML methods; and to analyze the feature importance for predicting the mass wear
and COF of the composites and unreinforced materials using random forest (RF) regressors.

This research expands upon previous studies on open-cell AMMCs with different
reinforcements and pore sizes, which were fabricated and tested using similar methods. For
example, open-cell AlSi10Mg-Al2O3 (with pore sizes of 800–1000 µm and 1000–1200 µm)
were produced by employing the replication method and using liquid-state processing,
and their wear behavior was tested by the pin-on-disk method at a sliding velocity of
1.0 m·s−1 and an applied load of 50 N [26]. Similarly, open-cell AlSi10Mg-SiC (with pore
sizes of 800–1000 µm) was tested at a load of 50N, and its COF was predicted by three
ML methods [27]. Moreover, infiltrated open-cell AMMCs with a tin-based Babbitt alloy
were also investigated for their tribological properties [28,29]. Therefore, this study aims
to explore the effects of using a different alloy (AlSn6Cu) as a matrix, incorporating SiC
particles as a reinforcement, and applying six ML methods for predicting the COF of open-
cell AlSn6Cu-SiC composites as well as analysing the feature importance for predicting the
mass wear and COF of the composites and unreinforced materials.

2. Materials and Methods
2.1. Production Method and Materials

The open-cell AlSn6Cu-SiC composites were fabricated by squeeze casting. The mate-
rials used for the fabrication of the open-cell AlSn6Cu-SiC composites were an aluminum
alloy (AlSn6Cu), which was used as the matrix (see its composition in Table 1), silicon car-
bide particles ranging from 300 to 400 µm serving as the reinforcement, and NaCl particles
ranging from 1000 to 1200 µm, which were used for the salt preform preparation by the
replication method [30]. AlSn6Cu is an alloy intended for the production of solid bearings.
Al compositions for bearing applications have Sn as the main element that is added to
them, along with other elements such as Cu, Ni, and Si, to improve their mechanical and
tribological properties. The soft Sn phase can help to create a protective layer on the contact
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surface, which extends the bearing life [31–33]. This was the reason for choosing AlSn6Cu
as the matrix of the composite, as it can provide good friction and wear performance under
dry-sliding conditions. The SiC particles were chosen for their high hardness, strength,
and wear resistance. The content of the reinforcement (5 wt.%) was based on preliminary
studies related to dry-friction wear behavior [18,27].

Table 1. AlSn6Cu alloy composition.

Element Sn Cu Ni Si Fe Mn Zn Mg Ti Al

Concentration, wt.% 5.5–6.5 1.3–1.7 0.2 0.3 0.4 0.2 0.2 0.1 0.05–0.2 remainder

The fabrication process involved three steps. First, NaCl preforms were prepared by
using the replication method. A 3D powder blender was used to homogenize a mixture of
NaCl particles as soluble space holder, 5 wt.% SiC particles, and 6 wt.% water. The mixture
was then pressed into a steel cylinder with a 1.5 MPa pressure to obtain the preliminary
preform. The obtained green compacts were dried in a 200 ◦C furnace for 2 h to eliminate
moisture. The salt-leachable preform was obtained by sintering the green dried compacts
at 800 ◦C ± 1 ◦C for 1 h and then cooling them at room temperature. Second, the NaCl
preforms were preheated and placed in a die at 680 ◦C ± 2 ◦C. Then, they were infiltrated
by the squeeze-casting method with molten AlSn6Cu alloy. The process used a pressure
of 80 MPa for 60 s. The molten alloy occupied the spaces in the salt preform, forming the
AlSn6Cu-SiC skeleton. Cooling down was conducted at room temperature. Third, the
removal of the salt space holder was conducted by using an ultrasonic cleaner (model
UST28-200 B, Sofia, Bulgaria) filled with 79 ◦C distilled water.

2.2. Characterization Methods

In this study, two types of specimens were tested: E and SE. E was the open-cell
AlSn6Cu material (pore size 1000–1200 µm); SE was the open-cell AlSn6Cu-SiC composite
(pore size 1000–1200 µm). A pin-on-disk system was used to perform dry-wear tests on
all the test specimens with a Ducom Rotary tribometer, TR-20 Ducom model (Bangalore,
India). The specimens had a spherical tip and were 20 mm high and 10 mm in diameter.
They were formed by a lathe and underwent testing at a linear velocity of 1.0 m·s−1 with
two loads of 50 N and 100 N and a sliding distance of 420 m [27,34]. A disk of 140 mm
diameter with a surface roughness of 1.6 Ra and a 62 HRC hardness, which was made from
EN-31 steel, was the counter disk used for the wear experiments. The counterbody had
the following concentrations, in wt.%: C 0.90–1.20; Si 0.10–0.35; Mn 0.30–0.75; Cr 1.00–1.60;
Si 0.20; and Fe–rest.

The cross-sections of the materials were tested for their average Vickers hardness
(HV) using a light microscope (Polyvar Met, Reichert Jung, Wien, Austria). The light
microscope was equipped with a semi-automatic micro-Vickers hardness tester (Micro-
Duromat 5000 computer control, Reichert Jung, Wien, Austria). The test involved applying
a force of 0.05 kg·f for 10 s and holding it for another 10 s.

The microstructure and phase composition of the open-cell AlSn6Cu-SiC composites
were characterized by SEM, EDS, and XRD. The samples were prepared for characterization
by polishing with different grades of emery paper and diamond paste, etching with Keller’s
reagent, and coating with a thin layer of gold.

The SEM images were taken by a HIROX SH-5500 scanning electron microscope (SEM,
Hirox Japan Co Ltd., Tokyo, Japan) with a QUANTAX 100 Advanced EDS system (EDS,
BRUCKER Co., Frankfurt, Germany). The composite matrix and the SiC particles were
analyzed by EDS to find out their elemental composition.

The phases in the composite matrix and the SiC particles were identified by XRD
analysis. A powder X-ray diffractometer (BRUCKER Co., Karlsruhe, Germany) with a
LynxEye solid-state position-sensitive detector and Ni-filtered Cu Kα radiation was used
for this purpose. The XRD patterns were recorded in the 2θ range of 20◦ to 80◦ with
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a step size of 0.02◦ and a scan speed of 0.5◦/min. The phase analysis was conducted
using the 2021 release of the PDF-2 ICDD database and the DiffracPlusEVA software
package (https://www.bruker.com/en/products-and-solutions/diffractometers-and-x-
ray-microscopes/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.html).

2.3. Machine Learning Models

The dataset used for this study consisted of open-cell AlSn6Cu-SiC composites sub-
jected to pin-on-disk experiments. Six different ML models were trained and tested on
this dataset to predict their COF based on their independent parameters (load, hardness
of reinforcement, reinforcement, linear velocity, and hardness of matrix). Using a 60:20:20
ratio and a random seed of 42 for reproducibility, the dataset was divided into three sets:
training, validation, and test. RF regressors were used as feature importance plots of pre-
dicting the COF and mass wear of the test materials under different loads. The performance
metrics (R2 score, RMSE, MSE, and MAE) of the test and validation sets of each model
were calculated. Each ML model was visualized by a scatter plot that showed the variation
in the COF as a function of the sliding distance for both the actual and predicted values.
The plot used four different colors and labels to distinguish between the test and validation
sets and between the actual and predicted values. The models were:

• Extreme gradient boosting (XGBoost): A scalable and efficient implementation of
gradient boosting trees that uses a regularized objective function to prevent overfitting
and improve generalization [35]. The XGBoost library was used for this model [36].
The model was previously used for the COF prediction of open-cell AlSi10Mg-Al2O3
composite materials [23].

• Support vector regression (SVR): A type of support vector machine (SVM) that per-
forms regression by finding a linear function that fits the data with a maximum margin
while allowing some errors. The SVR class from the scikit-learn library was used
for this model [37,38]. The model was previously used to predict the COF of an
open-cell AlSi10Mg-SiC composite [24] and an Al-based composite reinforced with
graphene [14] and for the prediction of the volume loss of AA7075/Al2O3 [12].

• Random forest (RF): An ensemble method that builds multiple decision trees and
averages their predictions and outputs the average prediction of the individual trees.
It introduces randomness in the tree construction and feature selection, which reduces
the variance and improves the accuracy of decision trees [39]. This is because random-
ness helps to avoid overfitting and creates more diverse and uncorrelated trees, which
can produce more robust and stable predictions. The RandomForestRegressor class
from the scikit-learn library was used for this model. It was previously used for the
prediction of the wear rate and COF of graphene-reinforced AMMCs [14] and for the
prediction of the volume loss of ZK60/CeO2 composites [21].

• k-nearest neighbors (KNN): A non-parametric method that predicts the output of a
new instance based on the k-nearest neighbors in the training set [40]. It is simple and
effective for classification and regression problems, but it requires a distance metric to
measure the similarity between instances. The KNeighborsRegressor class from the
scikit-learn library was used for this model. The model was previously used to predict
the COF and wear rate of an Al-based composite reinforced with graphene [14].

• Decision tree (DT): A simple and interpretable method that splits the data into ho-
mogeneous regions based on a series of rules [41]. It works with both numerical and
categorical variables, but it tends to overfit and be unstable. The DecisionTreeRegres-
sor class from the scikit-learn library was used for this model. DT was previously
employed for the prediction of the volume loss of ZK60-CeO2 composites [21].

• Adaptive boosting (Adaboost): A boosting method that combines multiple weak
learners (such as decision trees) into a strong learner by iteratively adjusting the
weights of the training instances according to the errors of the previous learners [42].
It can enhance the precision and reliability of simple models, but it is affected by noise
and outliers. The AdaBoostRegressor class from the scikit-learn library was used for

https://www.bruker.com/en/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.html
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this model. Adaboost was previously used for the prediction of the microhardness of
different alloys and metal-based composite materials fabricated by laser powder bed
fusion [43].

Section 2 described how the open-cell AlSn6Cu-SiC composites were fabricated in this
study using liquid-state processing and subjected to dry-friction wear tests under different
loads. The purpose of this study was to investigate the tribological behavior of open-cell
composites with AlSn6Cu as a matrix material and compare it with previous studies of
open-cell AlSi10Mg-Al2O3 and AlSi10Mg-SiC composites [26,27]. It was assumed that
the fabricated AlSn6Cu-SiC composite would have a similar or better wear performance
than the other composites. Section 3 presents the data obtained from the microstructural
characterization and the wear tests and analyzes them using six ML models. The results
show whether the assumption was valid and how the open-cell AlSn6Cu-SiC composite
performed under the different loads.

3. Results and Discussion
3.1. Microstructure

To confirm the open-cell structure of the composites, we performed SEM analysis, as
presented in Figure 1a. The SEM images showed that the composites had a porous structure
and that the pores were mainly distributed between the size of the NaCl particles, i.e.,
1000–1200 µm. Based on the SEM image of the contact surface shown in Figure 1b of the
open-cell AlSn6Cu-SiC composite subjected to wear at a load of 50 N, the wear mechanism
was mainly abrasive wear. It occurs when hard particles or asperities on sliding surfaces
cause material removal by ploughing or cutting. Therefore, the steel counterbody acted
as an abrasive agent and caused damage to the softer composite. Its surface roughness of
1.6 Ra could have also contributed to the abrasive wear by creating more contact points
and friction between the sliding surfaces. The EDS analysis shown in Table 2 shows that
zone 1 (Figure 2a) had a high concentration of Si and C, which indicates that it was a SiC
particle. Zone 2 (Figure 2b) had a high concentration of Al and a low concentration of
Sn, which indicates that it was part of the AlSn6Cu matrix. The SiC particles located in
zone 1 presented in Figure 1a could reduce the mass loss of the composite by acting as a
barrier to prevent the penetration and ploughing of the steel disk in addition to being a
reinforcement to support the cell walls of the matrix and reduce its deformation. Based
on the SEM image of the contact surface shown in Figure 1c of the open-cell AlSn6Cu-SiC
composite subjected to wear at a load of 100 N, the wear mechanism was mainly abrasive
wear. The EDS analysis shown in Table 3 shows that zone 1 (Figure 2c) had a moderate
concentration of Si and C, which indicates that it was a SiC particle. Zone 2 (Figure 2d)
had a low concentration of Si and C and high concentrations of Fe from the counterbody
and Al from the matrix of the composite, which indicates that it was part of the AlSn6Cu
matrix. The SEM images show that the composite had more scratches, grooves, and debris
on its surface at higher loads, as shown in Figure 1c, which indicate that there was more
material removal by abrasive wear. A pore could be seen on the surface of the AlSn6Cu-SiC
composite after conducting the pin-on-disk test at a load of 50 N (Figure 1b) but not after
conducting the test at a load of 100 N (Figure 1c). This was because the load affected the
wear behavior of the composite, which influenced its surface morphology. As the load
increased, the wear depth increased, which resulted in more material removal and more
wear debris formation. The wear debris could accumulate on the surface and form a layer
of compacted material, which could cover or fill the pores. The wear debris could also act
as a third-body abrasive and cause more damage to the surface. The increased load also
caused more contact pressure and friction between the sliding surfaces, which resulted in a
higher temperature and wear rate. The higher temperature and wear rate could degrade
the lubricating effect of the Sn phase and expose the harder SiC particles, which could
increase the COF of the composite.
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Figure 2. EDS spectra of open-cell AlSn6Cu-SiC composite after conducting tribological tests at
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contact zone shown in Table 2, analysis 2, at load of 50 N; (c) related to contact zone shown in Table 3,
analysis 1, at load of 100 N; and (d) related to contact zone shown in Table 3, analysis 2, at load of
100 N.
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Table 2. EDS analysis of the contact surface of open-cell AlSn6Cu-SiC composite after conducting
tribological tests at load of 50 N in selected zones from Figure 1b.

Analysis No. Si C Fe Al Sn

1 61.91 35.13 1.50 1.46 -
2 0.77 - 0.58 97.88 0.76

Table 3. EDS analysis of the contact surface of open-cell AlSn6Cu-SiC composite after conducting
tribological tests at load of 100 N in selected zones from Figure 1c.

Analysis No. Si C Fe Al Sn

1 9.85 9.30 47.91 30.62 2.32
2 0.42 - 63.914 33.33 2.34

The XRD patterns of the open-cell AlSn6Cu-SiC composite are shown in Figure 3.
The phases in the composite matrix and the SiC particles were recorded in the 2θ range of
20◦ to 80◦ with a step size of 0.02◦ and a scan speed of 0.5◦/min. The phase analysis was
conducted using the 2021 release of the PDF-2 ICDD database. The main phases detected
in the composite were Al, Sn, and SiC. Al1−x(Cu,Sn)x was the main phase of the matrix and
corresponded to the peaks at 2θ = 38.5◦, 44.7◦, 65.1◦, and 78.2◦. The Sn phase corresponded
to the peaks at 2θ = 30.5◦, 32.1◦, 35.5◦, 43.8◦, 44.7◦, 55.3◦, 62.5◦, 63.7◦, 72.4◦, 73.2◦, and 79.4◦.
SiC–6H was the reinforcement phase and corresponded to the peaks at 2θ = 33.6◦, 35.5◦,
38.0◦, and 75.3◦.
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Figure 3. XRD patterns of open-cell AlSn6Cu-SiC composite. The peaks marked with + indicate the
presence of Al1−x(Cu,Sn)x. The peaks marked with • indicate the presence of SiC-6H. The peaks
marked with × indicate the presence of Sn.

3.2. Wear and Micro-Hardness Behavior

The cross-sections of the materials were tested for their average Vickers hardness
(HV) using a force of 0.05 kg·f for 10 s and holding it for another 10 s, as shown in
Figure 4. The results showed that the matrix of the open-cell AlSn6Cu had a microhardness
value of 62.92 HV, while the reinforcement of the open-cell AlSn6Cu-SiC composite had a
microhardness value of 2418.74 HV.

The pin-on-disk method was used to perform the wear tests under dry-sliding condi-
tions at room temperature with a sliding speed of 1.0 m·s−1 and a sliding distance of 420 m.
The materials tested were the open-cell AlSn6Cu material and the open-cell AlSn6Cu-SiC
composite. The wear parameters measured were the mass loss and COF, which provided
quantitative measures of the tribological behavior of the materials. Figure 5 displays the
outcomes of the wear tests.
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It was evident that the open-cell AlSn6Cu-SiC composite had an enhanced tribological
behavior when compared with the open-cell AlSn6Cu material in terms of the mass wear,
as presented in Figure 5a. At a load of 50 N, the mass wear of the composite decreased
by 38% compared to the material. At a load of 100 N, the mass wear of the composite
decreased by 31% compared to the material. The load increase had an effect on the mass
wear of the composite, and a 7% percentage difference was observed (from 38% to 31%).
The AlSn6Cu-SiC composite also had less variation in its mass loss values than the AlSn6Cu
material, which means that it had a more stable and consistent behavior under the different
load levels. The AlSn6Cu-SiC composite may be a more suitable material for applications
that require a high resistance to friction and wear under varying load conditions. For the
COF results, both materials had similar COF values, as can be seen in Figure 5b. At a
load of 50 N, both materials had identical COF values. At a load of 100 N, the COF of the
composite increased by 6% compared to the material, as can be seen in Figure 5b. The
load increase had an effect on the COF of the composite, and a 6% percentage difference
was observed. The COF of the composite increased with the increase in the load because
the higher load caused more contact pressure and friction between the sliding surfaces,
which resulted in a higher temperature and wear loss. The composite had an enhanced
tribological behavior when compared with the material in terms of mass wear because the
addition of the SiC particles could improve the wear resistance and reduce the mass loss
of the composite. The SiC particles could act as a barrier to prevent the penetration and
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ploughing of the counterface in addition to acting as a reinforcement to support the cell
walls of the matrix and reduce its deformation.

3.3. COF Prediction and Model Performance Evaluation

The ML models were evaluated using four performance metrics: R2 score, RMSE, MSE,
and MAE. These metrics measured how well the ML models could predict the COF of the
material based on the features [21]. The test and validation sets were different subsets of the
data that were used to measure the performance of the ML models. The test set measured
the final performance of the models, while the validation set adjusted the hyperparameters
and chose the best model. The test set should reflect the real-world data distribution and
should not be used for training or validation.

Based on the results of the test and validation sets shown in Table 4 and the plots
shown in Figure 6, the best ML model for predicting the COF of the composite material
under both loads was the DT model, as it had the highest R2 score (0.9965) and the lowest
RMSE, MSE, and MAE scores for both sets. The DT model could explain more than 99%
of the variance in the COF data and had very low errors in its predictions. The worst ML
model for predicting the COF of the composite material under both loads was the RF model
(0.8592), as it had the lowest R2 score and the highest RMSE and MSE scores for both sets.
The RF model could only explain about 86% to 90% of the variance in the COF data and
had relatively high errors in its predictions. The other ML models, such as XGBoost, SVR,
KNN, and Adaboost, had intermediate performance metrics for predicting the COF of the
composite material under both loads. They had R2 scores ranging from 0.9076 to 0.9883,
RMSE scores ranging from 0.0072 to 0.0162, MSE scores ranging from 0.0001 to 0.0003, and
MAE scores ranging from 0.0026 to 0.0090 for both sets.

Table 4. Performance metrics of all ML methods.

ML Method Load (N) Set R2 Score RMSE MSE MAE

XGBoost 50 Test 0.9678 0.0119 0.0001 0.0040
XGBoost 50 Val 0.9877 0.0072 0.0001 0.0030
XGBoost 100 Test 0.9696 0.0132 0.0002 0.0051
XGBoost 100 Val 0.9769 0.0095 0.0001 0.0042

SVR 50 Test 0.9803 0.0093 0.0001 0.0063
SVR 50 Val 0.9468 0.0131 0.0002 0.0067
SVR 100 Test 0.9814 0.0088 0.0001 0.0071
SVR 100 Val 0.9195 0.0151 0.0002 0.0077
RF 50 Test 0.8592 0.0250 0.0006 0.0052
RF 50 Val 0.8880 0.0190 0.0004 0.0050
RF 100 Test 0.8969 0.0208 0.0004 0.0054
RF 100 Val 0.8712 0.0191 0.0004 0.0065

KNN 50 Test 0.9804 0.0093 0.0001 0.0026
KNN 50 Val 0.9775 0.0085 0.0001 0.0031
KNN 100 Test 0.9819 0.0087 0.0001 0.0033
KNN 100 Val 0.9200 0.0150 0.0002 0.0046

DT 50 Test 0.9965 0.0039 0.0000 0.0026
DT 50 Val 0.9518 0.0125 0.0002 0.0037
DT 100 Test 0.9939 0.0051 0.0000 0.0033
DT 100 Val 0.9065 0.0163 0.0003 0.0053

Adaboost 50 Test 0.9883 0.0072 0.0001 0.0056
Adaboost 50 Val 0.9376 0.0142 0.0002 0.0070
Adaboost 100 Test 0.9798 0.0092 0.0001 0.0068
Adaboost 100 Val 0.9076 0.0162 0.0003 0.0090
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Figure 6. ML models used for prediction of the COF of open-cell AlSn6Cu-SiC composite at different
loads: (a) XGBoost at 50 N; (b) XGBoost at 100 N; (c) SVR at 50 N; (d) SVR at 100 N; (e) RF at 50 N;
(f) RF at 100 N; (g) KNN at 50 N; (h) KNN at 100 N; (i) DT at 50 N; (j) DT at 100 N; (k) Adaboost at
50 N; and (l) Adaboost at 100 N.

The load variation had a substantial effect on the performance of some of the ML
models. At a load of 50 N, the best ML model on both the test and validation sets was
DT, with R2 scores of 0.9965 and 0.9518, respectively. DT had the highest accuracy and the
lowest error among all the models at this load level. However, DT may also be prone to
overfitting, which means that it may perform poorly on new or unseen data. At a load of
100 N, the best ML model on both the test and validation sets was XGBoost, with R2 scores
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of 0.9696 and 0.9769, respectively. XGBoost had a slightly lower accuracy but still a lower
error than DT at this load level. XGBoost is an effective ensemble method that uses many
decision trees to enhance its performance and lower its variance. XGBoost may be more
robust and stable than DT in handling complex data and noise.

The ML model that had the least load variation effect on its performance was KNN,
with R2 score differences of 0.0029 and 0.0619, RMSE differences of 0.0008 and 0.0065, MSE
differences of 0 and 0.0001, and MAE differences of 0.0005 and 0.0015 between the two
load levels on both the test and validation sets, respectively. This means that KNN had
a consistent accuracy and error across the different load levels, which may indicate that
it was not sensitive to the load variation in the data. The ML model that had the most
load variation effect on its performance was DT, with R2 score differences of −0.0426 and
−0.0453, RMSE differences of −0.0012 and −0.0038, MSE differences of 0 and −0.0001, and
MAE differences of −0.0007 and −0.0016 between the two load levels on both the test and
validation sets, respectively. This means that DT had a lower accuracy and higher error at a
higher load level than at a lower load level, which may indicate that it was overfitting the
data at the lower load level and not generalizing well at the higher load level.

These ML models could estimate the COF of the composites accurately and ef-
ficiently without expensive and time-consuming wear tests. They could also predict
the COF of the composites under the different conditions or scenarios without physi-
cal models or assumptions, which could reduce the error and increase the scope of the
tribological analysis.

3.4. Feature Importance Analysis for Mass Wear and COF Prediction

To investigate the importance of different independent variables for predicting the
mass wear and COF of the open-cell AlSn6Cu-SiC composites and the open-cell AlSn6Cu
materials under different loads, RF regressors were used as a feature selection method. The
feature importance attribute of RF regressors assigns values that are proportional to the
average reduction in variance that each feature brings to the decision trees in the ensemble.
The values are then normalized by dividing by the sum of all the values so that they add
up to 1. A high value indicates a high importance of a feature in the output prediction,
but it does not necessarily mean a high correlation or causation between the feature and
the output. The entire dataset of all the specimens was used, and their parameters (load,
hardness of reinforcement, reinforcement, linear velocity, and hardness of matrix) were
used to fit two RF regressors: one for mass wear and one for COF. The feature importance
values were then obtained from both regressors and sorted in descending order for both
targets. The results are shown in Figure 7. The most important feature for both the mass
wear and COF prediction was the load, as it had the highest importance value of 63%
for the COF plot and 66% for the mass wear plot. This means that the load had a strong
influence on the wear behavior of the materials. The hardness of reinforcement was the
second-best feature for the COF prediction, as it had a high importance value of 19% for
both loads. This means that the hardness of reinforcement had a significant impact on the
friction behavior of the material, as it affected the resistance to abrasion, ploughing, and
grooving by the harder particles. The reinforcement was the second-best feature for the
mass wear prediction, as it had a high importance value of 19% for both loads. This means
that the reinforcement had a significant impact on the wear behavior of the tested material,
as it affected the removal and transfer of material from the sliding surfaces. The presence
of reinforcement reduced the mass wear, as the particles reinforced the cell walls, protected
the matrix from severe wear, and acted as a self-lubricating layer.
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In this study, open-cell AlSn6Cu-SiC composites were fabricated using liquid-state
processing, and they were subjected to dry-friction wear tests. To the best of our knowledge,
this is the first study that has investigated the tribological behavior of open-cell compos-
ites (pore size 1000–1200 µm) with AlSn6Cu as a matrix material. Based on previous
studies of open-cell AlSi10Mg-SiC [27] and AlSi10Mg-Al2O3 [26] composites produced by
squeeze-casting and subjected to dry-friction wear tests, which have reported significant im-
provements in mass wear (53.5–65.7%) and insignificant improvements in COF (3.2–4.8%),
it was assumed that the reported composites were in the same range of wear improvement.
This study demonstrated that the open-cell AlSn6Cu-SiC composite had a superior wear
behavior and a reduced mass loss compared to the open-cell AlSn6Cu material under
different loads while maintaining similar COF values. The results also suggested that the
ML models used in this study could provide accurate and reliable predictions of the COF
of the materials based on their features, but they could also be sensitive to data quality and
quantity, overfitting or underfitting, and load variation.

4. Conclusions

This paper investigated the tribological behavior of open-cell AlSn6Cu-SiC composites
under different loads (50 N and 100 N) using the pin-on-disk method. The composites
were fabricated by squeeze-casting. This study is the first to investigate the tribological
behavior of open-cell AlSn6Cu-SiC composites under different loads using the pin-on-
disk method and ML models. This study provides new insights into the effects of load,
hardness of reinforcement, reinforcement, linear velocity, and hardness of matrix on the
mass wear and COF of these composites. Thid study also demonstrates the potential of
ML models to accurately and reliably predict the COF of these composites based on their
features. The results showed that the open-cell AlSn6Cu-SiC composite had an enhanced
tribological behavior compared to the open-cell AlSn6Cu material in terms of mass wear
while maintaining the COF at the same level. The mass wear of the composite decreased by
38% at a load of 50 N and by 31% at a load of 100 N compared to the unreinforced material.
The COF of the composite increased by 6% at a load of 100 N compared to the unreinforced
material, while it was identical to the material at a load of 50 N.

ML models, such as DT, RF, XGBoost, SVR, KNN, and Adaboost, were used to predict
the COF vs. the sliding distance of the composite materials. The best ML model for both
load levels was DT, which had the highest R2 score and the lowest RMSE, MSE, and MAE
scores. The worst ML model for both load levels was RF, which had the lowest R2 score
and the highest RMSE and MSE scores. The other ML models, such as XGBoost, SVR, KNN,
and Adaboost, had intermediate performance metrics. The load variation had a significant
effect on some ML models, such as DT, which had a lower accuracy and a higher error at
the higher load level than at the lower load level. The ML model that had the least load
variation effect was KNN, which had a consistent accuracy and error across the different
load levels. These results suggest that some ML models are more robust and stable than
others in handling complex data and noise at different load levels.
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To investigate the importance of different independent variables for predicting the
mass wear and COF of open-cell AlSn6Cu-SiC composites and open-cell AlSn6Cu materials
under different loads, RF regressors were used as a feature selection method. Based on the
results of the method, the most important feature for both the mass wear and COF pre-
dictions was the load, as it had the highest importance value for both plots. The hardness
of reinforcement was the second-best feature for the COF prediction, while reinforcement
was the second-best feature for the mass wear prediction. This study has some limitations
that should be addressed in future research. This study only used two load levels (50 N
and 100 N) and one sliding velocity (1.0 m·s−1) for the tribological tests. Future studies
could use more load levels and sliding velocities to explore the tribological behavior of the
composites under different conditions. The current study only used one type of reinforce-
ment (SiC) and one type of matrix (AlSn6Cu) for the composites. Future studies could use
different types of reinforcements and matrices to investigate their effects on the tribological
behavior of the composites. Future studies could employ deep learning methods to in-
crease the data size and dimensionality and enhance the performance and robustness of the
COF prediction.
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