
Citation: Gui, L.; Wang, B.; Cai, R.;

Yu, Z.; Liu, M.; Zhu, Q.; Xie, Y.; Liu,

S.; Killinger, A. Prediction of In-Flight

Particle Properties and Mechanical

Performances of HVOF-Sprayed

NiCr–Cr3C2 Coatings Based on a

Hierarchical Neural Network.

Materials 2023, 16, 6279.

https://doi.org/10.3390/

ma16186279

Academic Editor: Young Gun Ko

Received: 28 August 2023

Revised: 14 September 2023

Accepted: 14 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Prediction of In-Flight Particle Properties and Mechanical
Performances of HVOF-Sprayed NiCr–Cr3C2 Coatings Based
on a Hierarchical Neural Network
Longen Gui 1,4, Botong Wang 1,4, Renye Cai 3, Zexin Yu 1,2,*, Meimei Liu 5,* , Qixin Zhu 5, Yingchun Xie 4,
Shaowu Liu 6 and Andreas Killinger 2

1 School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China
2 Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC),

University of Stuttgart, Allmandring 7b, 70569 Stuttgart, Germany
3 School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University,

Guangzhou 510665, China
4 National Engineering Laboratory for Modern Materials Surface Engineering Technology,

Institute of New Materials, Guangdong Academy of Science, Guangzhou 510650, China
5 School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
6 CNRS, INRAE, Centrale Lille, UMR 8207—UMET—Unité Matériaux et Transformations, Université de Lille,

59000 Lille, France; shaowuliu93@163.com
* Correspondence: zxyu@suda.edu.cn (Z.Y.); lmm89zx@163.com (M.L.)

Abstract: High-velocity oxygen fuel (HVOF) spraying is a promising technique for depositing protec-
tive coatings. The performances of HVOF-sprayed coatings are affected by in-flight particle properties,
such as temperature and velocity, that are controlled by the spraying parameters. However, obtaining
the desired coatings through experimental methods alone is challenging, owing to the complex physi-
cal and chemical processes involved in the HVOF approach. Compared with traditional experimental
methods, a novel method for optimizing and predicting coating performance is presented herein; this
method involves combining machine learning techniques with thermal spray technology. Herein,
we firstly introduce physics-informed neural networks (PINNs) and convolutional neural networks
(CNNs) to address the overfitting problem in small-sample algorithms and then apply the algorithms
to HVOF processes and HVOF-sprayed coatings. We proposed the PINN and CNN hierarchical
neural network to establish prediction models for the in-flight particle properties and performances
of NiCr–Cr3C2 coatings (e.g., porosity, microhardness, and wear rate). Additionally, a random forest
model is used to evaluate the relative importance of the effect of the spraying parameters on the
properties of in-flight particles and coating performance. We find that the particle temperature
and velocity as well as the coating performances (porosity, wear resistance, and microhardness)
can be predicted with up to 99% accuracy and that the spraying distance and velocity of in-flight
particles exert the most substantial effects on the in-flight particle properties and coating performance,
respectively. This study can serve as a theoretical reference for the development of intelligent HVOF
systems in the future.

Keywords: high-velocity oxygen fuel spray; NiCr–Cr3C2 coatings; machine learning; physical
information neural network; convolutional neural network

1. Introduction

High-velocity oxygen fuel (HVOF) spraying is a high-energy thermal spraying pro-
cess for depositing protective coatings with anticorrosion, anti-erosion, and anti-wear
properties [1–3]. In the HVOF technique, a mixture of fluid/gaseous fuel and oxygen
is ejected through a Laval nozzle at supersonic speeds into a combustion chamber [4].
At extremely high temperatures and pressures, the resultant gas heats and accelerates
the feeding powder to form the final coating on the substrate [5]. The in-flight particle
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properties (temperature and velocity) critically affect the performances of HVOF-sprayed
coatings [6,7] and depend on the parameters of the HVOF process, including the standoff
distance, oxygen flow, and fuel flow [8]. However, owing to the complex physical and
chemical phenomena involved in the HVOF technique, designing spraying parameters that
optimize the coating performances is challenging. HVOF-sprayed coatings have been pre-
dicted and optimized through various approaches, such as experimental design, numerical
simulation, and machine learning (ML) [9–13].

Recently, statistical optimization methods, including the Taguchi method and numeri-
cal simulations, have been widely employed to establish polynomial regression equations
and clarify the influence of the process parameters on the coating properties. For example,
Nguyen et al. [14] used the Taguchi method to investigate the optimal process parameters
of HVOF-sprayed WC-16Co coatings. However, as the performance of coatings is affected
by multiple sets of HVOF process parameters, these methods do not make accurate pre-
dictions of the coating performance based on experimental designs, thereby substantially
limiting their applicability. Nevertheless, the entire HVOF process, including the variation
patterns of flame pressure, temperature, velocity, Mach number, combustion composition,
temperature, velocity, and motion trajectory of WC-12Co particles, has been analyzed using
numerical models [15]. However, it should be mentioned that in metal–ceramic composites,
as one of the most studied HVOF-sprayed coatings, such as NiCr–Cr3C2 and WC-Co,
carbide (WC and Cr3C2) powders are susceptible to different degrees of decomposition
reaction under various HVOF spraying parameters [16]. There is no doubt that the change
in composition of in-flight particles will significantly affect the deposition behavior of
each particles, influencing the temperature and velocity of in-flight particles. As such, the
complex evolution procedures (e.g., phase transformation, dissolution, and evaporation
of some elements or compositions) make it very difficult to model the real behaviors of
the particles via numerical simulations. Consequently, neither the Taguchi method nor
the numerical simulation-based modeling technique can accurately predict the spraying
parameters and coating performance.

Machine learning (ML) techniques can overcome the abovementioned technical diffi-
culties of the Taguchi and numerical modeling methods [17]. Artificial neural networks
(ANNs) with flexible structures and powerful learning ability are most commonly proposed
for the prediction and optimization of thermal spraying processes. In 2004, ANN implemen-
tation in the thermal spray process was pioneered by the LERMPS laboratory [18]. They
modeled the plasma spraying technique using an ANN and then analyzed and predicted
the coating characteristics, including the percentage of unmelted particles, porosity, and
phase composition [18–21]. Choudhury also trained an ANN model for predicting the in-
flight particle characteristics of an atmospheric plasma spraying process [22]. Moreover, he
investigated the relation between these characteristics and the properties of plasma-sprayed
8YSZ electrolyte coatings [23]. Recently, researchers have explored ML algorithms and neu-
ral networks that predict the performance of TiO2 coatings deposited using a novel plasma
spraying technique called suspension plasma spraying [24]. However, research on neural
network-based predictions of the HVOF spraying process and HVOF-sprayed coatings is
limited compared to that on neural network-based predictions of plasma spraying [13,25].

As mentioned earlier, researchers have predicted the particle or coating properties in
case of the plasma spraying process, but studies on the relationships among the HVOF
process parameters, intermediate variables (i.e., temperature and velocity of the in-flight
particles), and coating properties are limited. Moreover, most prediction models for both
HVOF and plasma spraying in-flight particle characteristics are based on ANNs [13,18–21],
which tend to be overfitted when the input data are limited.

Convolutional neural networks (CNNs) can automatically mine the potential pattern
features, which is potentially less time consuming than accumulating experience and
professional knowledge [17]. Unlike ANNs, CNNs employ a weight-sharing feature that
reduces the number of trainable network parameters, enhancing the generalization of the
model and avoiding or weakening overfitting [26]. Moreover, a CNN model is a powerful
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tool for pattern recognition in various computational materials problems characterized
by local interactions [27]. Using a CNN-based approach, Zhang et al. [28] attempted
to improve predictions of the material removal rate in chemical mechanical polishing.
Lu et al. [29] developed a CNN model that rapidly and accurately predicts the amorphous
formation ability of various amorphous alloys; they reported a prediction accuracy of
0.71693, more than 19% higher than those of 13 standards. CNN-based studies are currently
few and limited to air-plasma spraying and air plasma-sprayed coatings. The relation
between in-flight particles and the spraying parameters has been implicitly established and
analyzed in a previous study [17]. Thus, developing CNN models of the HVOF process
and HVOF-sprayed coatings is desired and should be attempted.

However, the ANN and CNN models are based on blackbox algorithms which ob-
scure their interpretability [30], i.e., ANNs and CNNs generate their prediction and relation
results without considering the basic physical models of the HVOF process. The physics-
informed neural network (PINN) is a hybrid physical–statistical ML method that embeds
automatic differentiation and partial differential equations into the loss function of neural
networks [31]. Moreover, the PINN combines physical models with neural network regres-
sion to compensate for the poor transferability of traditional ML techniques, such as ANN
and CNN, to unknown structures. In thermal fluid studies, the PINN has been used to solve
momentum and energy transport governing equations [32] and to accurately predict the
velocity and temperature of particles [33,34]. In addition to thermal fluid problems, PINNs
have been applied to various material applications. Zhang [35] found that among various
deep neural networks and traditional ML models, the PINN most accurately predicts the
creep–fatigue life of 316L stainless steel. To the best of our knowledge, a PINN model has
never been applied to thermal spraying, which is characterized by complex flow fields and
thermal fields during deposition.

This study attempts to optimize HVOF-sprayed NiCr–Cr3C2 coatings and predict their
in-flight particle properties based on the HVOF process parameters and the properties of the
NiCr–Cr3C2 coatings. The HVOF process and HVOF-sprayed coatings are analyzed using
a PINN–CNN hierarchical neural network that synergistically combines the advantages
of the PINN and CNN. The primary objective is to propose a layered learning model that
utilizes the PINN to construct the first layer for predicting the HVOF in-flight particle
properties, which is followed by that of a second layer using a CNN for prediction of
coating properties. The framework is illustrated in Figure 1. The relative importance of
the spraying parameters with respect to the properties of in-flight particles and coating
performance are then evaluated using a random forest (RF) model. Results indicated
that spraying distance and in-flight particle velocity most considerably affect the in-flight
particle properties and coating performance, respectively. Furthermore, compared with
experimental data, the temperature and velocity of in-flight particles as well as the coating
properties (cross-sectional porosity, wear resistance, and microhardness) are predicted with
up to 99% accuracy.
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2. Experimental Procedures
2.1. HVOF Spray Process Parameters

The raw material used herein is a commercially available NiCr–Cr3C2 powder (METCO
81 VF-NS: Oerlikon Metco AG, Wohlen, Switzerland) with particle size ranging from
5 µm to 45 µm. HVOF spraying experiments were conducted using an in-house fab-
ricated Diamond Jet spraying system. The gun was guided by a six-axis industrial
robot (IRB2600-20: ABB, VÄSTERÅS, Sweden); a sandblasted 316L stainless steel plate
(Ø 25 mm × 10 mm) was used as the substrate. During the experiments, three process
parameters, namely the oxygen flow rate (Q(O2)), fuel flow rate (Q(CH4)), and standoff
distance (SOD), were varied. In addition, in-flight particles were characterized during
HVOF spraying using a commercial diagnostic system, AccuraSpray G3 (Tecnar, St-Bruno,
PQ, Canada). The specific spraying process parameters are listed in Table 1.

Table 1. Spraying parameters for NiCr-Cr3C2 coatings in the HVOF process.

Parameters Scope

O2 flow (slpm) 200–240
CH4 flow (slpm) 120–200
Air flow (slpm) 300

Carrier gas flow (slpm) 40
stand-off distance (mm) 200–320

Spray gun speed (mm/s) 400
Powder feeding speed (g/min) 30

2.2. Coating Microstructure Characterization

The porosity of the coating was determined through analyzing its cross-sectional
microstructure via optical microscope (Nikon, Japan). Over 10 consecutive images were
captured, and the average value was calculated using ImageJ imaging software (version:
1.8.0_112). The microhardness of the coatings was evaluated using a Vickers microhardness
tester (Leiz—Wetzlar, Germany) with a load of 300 gf and a dwell time of 25 s on a
cross-section of the coating. Twenty random indentations were made, and an average
microhardness value was obtained for each coating. Wear rates were determined through
performing dry sliding wear tests using a CSEM tribometer (Neuchatel, Switzerland) at an
atmospheric temperature of 15–20 ◦C and a humidity of 40–50%. The paired material used
comprised Al2O3 balls (diameter = 6 mm) with a load of 5 N, a rotation radius of 7 mm,
a linear rotation speed of 10 mm/s, and a sliding distance of 500 m. The cross-sectional
profile of the wear track was measured using a profilometer (Altisurf 500, Thonon-les-Bains,
France), and 10 contour measurements were performed to obtain the average wear rate.
The wear rate is denoted by K as expressed in Equation (1).

K =
∆V
SFN

(1)

Here, ∆V denotes the volume loss of the material, S denotes the sliding distance, and
FN denotes the applied normal load.

For the above characterization and performance tests, all specimens were prepared
via grinding using P220 SiC paper (Struers, Champigny-sur-Marne, France) and MD-Largo
disks (Struers, Champigny-sur-Marne, France), followed by polishing with a 3-µm diamond
suspension and a 0.04-µm nondrying colloidal silica suspension.

3. Hierarchical PINN-CNN Models and Their Implementations
3.1. Feature Selection Based on the Random Forest (RF) Model

The HVOF spraying process involves numerous feature variables. To avoid com-
promising prediction accuracy, we applied the RF feature selection algorithm to identify
essential features for prediction. The final classification outcome was determined through
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a voting process among the base classifiers. Integrating multiple decision trees in the
RF model renders it more stable than a standalone decision tree model, particularly in
classifying complex feature variables and unbalanced categories. This property results in
more accurate predictions and reduces the likelihood of overfitting (Figure 2).
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In the RF model, noisy but important features can substantially affect classification
accuracy. Therefore, we used feature importance as a criterion for selecting the features of
the RF algorithm. The feature importance metric Dj for feature Xj is given by Equation (2):

Dj =
1
B

B

∑
t=1

(Roob
b − Roob

bj ) (2)

where B denotes the number of training samples, Roob
b denotes the number of correct

classifications counted by the decision tree for the out-of-bag data, and Roob
bj denotes the

number of correct classifications counted when the decision tree classifies the out-of-bag
data after perturbation.

3.2. Data Collection and Preprocessing

The dataset utilized in the experiments comprise 320 data points from 40 sets of spray-
ing experiments and corresponding characterizations and performance tests on HVOF-
sprayed NiCr–Cr3C2 coatings. The experiments include monitoring in-flight particles
(temperature and velocity) and coating characterization tests (e.g., porosity, wear resistance,
and microhardness). The spraying parameters, characteristics of the in-flight particles,
and coating performances are summarized in Table 2. Additionally, all these HVOF-
sprayed NiCr–Cr3C2 coatings exhibited typical lamellar structure. Taking the No. 5 and
No. 35 samples as examples, different NiCr/Cr3C2 ratio and lamellar structures with
porosity were observed in Figure 3, where the NiCr matrix is light gray and Cr3C2 is in
dark gray. The PINN considers the standoff distance (SOD), oxygen flow rate (Q(O2)),
and fuel flow rate (Q(CH4)) as inputs and particle in-flight velocity and temperature as
outputs. The PINN outperforms current ML approaches used in thermal spraying through
incorporating physical information regarding the system. In addition, it reduces the dataset
required to uncover complex prediction–response relations, shortens training time, and
rationalizes the mechanism of the spraying process. Therefore, we used the PINN as the
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first layer of the layered neural network model to predict particle in-flight velocity and
temperature through inputting standoff distance (SOD), oxygen flow rate (Q(O2)), and fuel
flow rate (Q(CH4)).

Table 2. Spraying parameters, characteristics of in-flight particles, and coating performances.

No. Q(CH4)
(slpm) SOD (mm) Q(O2)

(slpm)
V

(m/s)
T

(K)
MH

(HV0.3)
WR × 10−5

(mm3/N/m)
PO

(% Area)

1 120 200 200 467 2223 664 6.039 1.08
2 120 200 240 508 2239 721 2.962 0.206
3 120 240 200 389 2234 598 10.587 0.731
4 120 240 240 423 2256 637 6.585 1.597
5 120 280 200 292 2455 565 15.589 1.473
6 120 280 240 301 2457 543 10.249 1.558
7 120 320 200 269 2395 469 5.061 1.113
8 120 320 240 274 2405 483 15.732 0.883
9 140 200 200 476 2186 661 5.175 1.159

10 140 200 240 509 2204 843 1.624 0.151
11 140 240 200 409 2201 707 7.142 0.863
12 140 240 240 450 2233 738 2.802 1.274
13 140 280 200 298 2432 592 7.122 1.372
14 140 280 240 312 2460 659 4.203 0.871
15 140 320 200 270 2388 502 9.154 0.915
16 140 320 240 281 2432 598 9.927 0.721
17 160 200 200 468 2139 727 1.516 0.204
18 160 200 240 531 2170 958 1.197 0.361
19 160 240 200 404 2151 625 10.144 1.134
20 160 240 240 462 2204 832 2.926 0.444
21 160 280 200 300 2390 706 6.122 1.777
22 160 280 240 328 2453 759 4.467 0.996
23 160 320 200 265 2350 544 9.698 0.671
24 160 320 240 278 2423 596 5.54 0.803
25 180 200 200 461 2099 699 2.217 0.182
26 180 200 240 518 2120 893 0.926 0.655
27 180 240 200 400 2127 628 9.235 0.237
28 180 240 240 463 2167 833 2.221 0.299
29 180 280 200 314 2400 624 10.172 1.697
30 180 280 230 317 2433 618 4.997 1.03
31 180 320 200 263 2341 541 7.693 0.856
32 180 320 233 273 2406 597 6.941 0.995
33 186 200 240 515 2096 781 1.764 0.144
34 188 240 240 468 2145 802 1.59 0.576
35 200 200 200 455 2064 678 1.944 0.799
36 200 240 200 399 2097 650 6.955 0.266
37 200 280 200 297 2354 604 11.741 1.231
38 200 280 225 306 2406 678 4.001 0.83
39 200 320 200 254 2269 538 8.92 0.977
40 200 320 230 269 2368 578 6.881 0.87
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In the second layer of the neural network model, we used a CNN with in-flight particle
velocity (V) and temperature (T) as inputs and microhardness, porosity, and wear rate of
coatings as final outputs. Before training the model, we normalized it according to Equation
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(3) through setting the variable input range between one and two to prevent computational
errors resulting from different parameter magnitudes. To prevent overfitting, we randomly
divided the data into the training and validation sets, with proportions of 80% and 20%,
respectively.

XNORM =
X− XMIN

XMAX − XMIN
(3)

Here, XNORM denotes the normalized value, X denotes the experimental value, XMAX
denotes the maximum experimental value, and XMIN denotes the minimum experimental
value. Specific representation of the data in the model is shown in Figure 4.
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3.3. PINN Model: First-Layer Building, Training, and Validation

The layered machine model was implemented in PyTorch, a deep learning framework
based on Torch, and developed using Python. The first layer of the model employs a
PINN with transfer functions, including functions from the input layer to the first hidden
layer, between hidden layers, and from the second hidden layer to the output layer set
to tansig, logsig, and purelin, respectively. In addition, proportional conjugate gradient
backpropagation (trainscg) was selected as the training function.

As there were three input variables and two target variables in the dataset, the number
of neurons in the input layer was set to three and the number of neurons in the output
layer was set to two. However, no general rule exists for determining the exact number of
neurons in the hidden layer. Typically, the fewer the hidden layers and number of neurons
in the hidden layers, the more lightweight the model. Therefore, in this study, a neural
network model with two hidden layers was selected and the number of neurons in each
hidden layer was set to 10 after simulation and comparison based on the prediction results.
Figure 5 depicts the PINN model architecture diagram.
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Herein, the neural network model is trained using the backpropagation method, a
commonly used algorithm for learning multilayer networks. The training is supervised,
and the inputs are forwarded through a transfer function to calculate the error between
the model output and actual experimental data. This error, denoted as mse_1, is optimized
during training to improve network performance. Additionally, physical formulas are
embedded, such as those for particle velocity and temperature, using Lagrangian methods.
The loss functions for vp and Tp in Equations (4) and (5) are associated with an error of
mse_2. To minimize the errors, mse_1 and mse_2 are backpropagated to adjust the network
weights and bias values. Two metrics were used to evaluate the CNN results in this
study: the mean absolute error (MAE) of Equation (6) and the decidability factor (R2) of
Equation (7). Smaller MAE values and a larger R2 indicate a better model fit and higher
prediction accuracy, respectively.

mpvp
dvp

dx
=

CDρg Ap
(
vg − vp

)∣∣vg − vp
∣∣

2
(4)

mpCPp

dTp

dt
= hA′p

(
Tg − Tp

)
(5)

In Equation (4), vp denotes the velocity of the particle flight, mp denotes the mass of
the particle, vg denotes the gas velocity, CD denotes the drag coefficient, Ap denotes the
particle cross-sectional area, ρg denotes the gas density, and x denotes the axial position. In
Equation (5), Tp denotes the particle temperature, A′p denotes the particle surface area, CPp

denotes the particle heat capacity, Tg denotes the gas temperature, and h denotes the heat
transfer coefficient.

MAE =
1
n

n

∑
i=1

|yi − ŷi|
yi

(6)

Here, yi denotes the true value, ŷi denotes the predicted value (i = 1, 2, . . ., n), and n
denotes the number of samples.

R2 = 1− ∑N
i=1(ti − ai)

2

∑N
i=1

(
ti −

=
t i

)2 (7)

Here, ti denotes the experimental results, ai denotes the predicted result,
=
t i denotes

the mean of the experimental results, and N denotes the number of datasets.

3.4. CNN Model: Building, Training, and Validation of the Second Layer

In this work, we use a CNN to construct the second layer of our model. We evaluate
and compare the predictive performance of the CNN model using the same evaluation
metrics as the PINN. The CNN mainly comprises a convolutional layer, pooling layer, and
fully connected layer (Figure 6).
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Herein, we propose a novel architecture wherein the input layer is the predicted
particle flight speed and temperature obtained from the PINN model. The convolutional
layer performs layer-by-layer feature extraction of the input signal, and the obtained
features are then mapped to the output layer using the fully connected layer. The output
layer predicts the microhardness, porosity, and wear rate of the coating. The convolutional
layer is the central component of the CNN and calculates feature values from the input
data. The specific calculation is expressed in Equation (8).

c(t) = f ∗ω = ∑
p=1

f (p)×ω(p− q), 0 ≤ m < M, 0 ≤ n < N (8)

Here, f denotes the input signal guide, ω denotes the convolution kernel, n denotes
the total number of signals, and q denotes the size of the convolution kernel.

The primary function of the pooling layer is to decrease the dimensionality of the data,
reduce computation, and prevent overfitting while enhancing the robustness of the system.
Because the dataset is small, the network comprises only two convolutional layers and
lacks a pooling layer.

The fully connected layer is a shallow perceptron that establishes complete connections
between the output layer and the data acquired after multiple convolution and pooling
operations. Finally, the Softmax activation function classifies the results obtained in the
output layer, computed as shown in Equation (9):

f
(

x(i)
∣∣∣θ) =


p
(

y(i) = 1
∣∣∣x(i), θ

)
...

p
(

y(i) = k
∣∣∣x(i), θ

)
 =

1

∑k
j=1 eθT

j x(i)


eθT

1 x(i)

...
eθT

k x(i)

 (9)

where k denotes a particular classification, θT
1 x(i) denotes the value of that classification,

p
(

y(i) = k
∣∣∣x(i), θ

)
denotes the probability of the kth category, and θ denotes the weight.

The CNN model is optimized using Adam’s optimizer, with a learning rate set at
0.00001. The ReLU function is selected as the activation function for both convolutional
layers, while the categorical cross-entropy function is selected as the loss function. The
training process for the CNN is illustrated in Figure 7. To meet the accuracy requirements,
the training process is divided into two parts: forward and backward propagation. During
forward propagation, the network is constructed and the weights and errors are initialized.
Subsequently, the input data are convolved into the fully connected layer and classified.
The gradient descent method is applied in backward propagation, and the error is fed
back to the convolutional layer based on the loss function through adjusting the network
parameters and repeating the aforementioned steps.
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4. Results and Discussion
4.1. Analysis of RF Feature Selection Results

To select key features for accurate prediction results in further steps, we constructed an
RF model herein. This model was used to compute the percentages of feature importance
for velocity and temperature in the PINN model and for porosity, microhardness, and
wear rate in the CNN model. The RF evaluation determined the contribution of each
input variable to each output variable of the PINN and CNN models in further steps. As
shown in Figure 8, the feature names were displayed on the horizontal axis, while their
corresponding importance was marked on the vertical axis.
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(b) The contribution rate of input variables on the coating porosity, microhardness, and wear rate.

Figure 8a illustrates the RF analysis of the PINN model layer, revealing that SOD,
Q(O2), and Q(CH4) are important features affecting the velocity of in-flight particles, while
SOD, Q(CH4), and Q(O2) are features that affect the temperature of these particles. The
results demonstrate that SOD exerts the greatest effect on the characteristics of in-flight
particles, making 95% and 87% contribution to the velocity and temperature, respectively.
However, the effects of Q(O2) and Q(CH4) on temperature and velocity are limited, which
is consistent with the Irregular trend of velocity variation with CH4 flow. Figure 8b displays
the results of the RF evaluation of the CNN model, indicating that the velocity of in-flight
particles exerts a greater effect on the microhardness and wear rate of the coating, making
72% and 69% contributions to these parameters, respectively; the velocity is more important
than the temperature characteristics. However, with regard to the coating porosity, the
temperature of in-flight particles (55%) is more important than their velocity (45%). It
indicated that the porosity of HVOF-sprayed coatings is relatively more sensitive to the
melting degree of in-flight particles. Additionally, as shown in Figure 8a, since both
the velocity and temperature of in-flight particles are obviously determined by spraying
distances, the optimization of spraying distance is an efficient way for controlling the
porosities of coatings. Therefore, based on the RF model calculation results, adjusting the
velocity range is an effective measure for adjusting the microhardness and wear rate of
HVOF-sprayed NiCr–Cr3C2 coatings. Furthermore, tuning the temperature of impinging
particles is more useful to control the porosity of the NiCr–Cr3C2 coatings.

4.2. Analysis of the PINN Training Results

After training the PINN model, we plotted loss function values for the training set as a
function of the epochs (Figure 9). After several rounds of trial and error and parameter adjust-
ments, the training loss values of the PINN network model remained consistently at <0.01 and
attained a steady state. Figure 10 displays the fit of the PINN model. Horizontal coordinates,
vertical coordinates, and the solid line represent the experimental values, predicted values,
and ideal fit results, respectively. The closer the dispersion points are to the solid line, the
more accurate is the prediction. As shown in Figure 10a,b, the predicted values of the PINN
model training for the temperature and velocity of the in-flight particles are highly similar
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to the actual values, and the R2 values of the model reach 0.99473 and 0.96888, respectively.
These results indicate that the PINN model satisfies the training requirements and can be used
to predict the velocity and temperature of the in-flight particles.
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The mean absolute error (MAE) distribution between the experimental values and
the predicted values of the PINN model is shown in Figure 11. It was calculated using
Equation (6). Figure 11a,b display the MAE distribution of in-flight particle velocity for the
training and validation sets, which were distributed from 0.00033 to 0.05190 with an MAE
of 0.01346. Figure 11c,d show the MAE distribution of the in-flight particle temperature,
which ranged from 0.00026 to 0.02241 with an MAE of 0.00966. The velocity distribution
of in-flight particles was larger and more dispersed than the temperature distribution,
indicating that the PINN model was more accurate in predicting temperature owing to the
uniform preheating of in-flight particles during the testing process, which led to a more
accurate temperature estimation. For in-flight particle velocity values, the model predicted
instantaneous velocity during a short period before the in-flight and the MAE was normal
(i.e., within the range of acceptability).



Materials 2023, 16, 6279 12 of 17Materials 2023, 16, x FOR PEER REVIEW 13 of 18 
 

 

  

  

Figure 11. Mean absolute error distribution of the velocity (a,b) and temperature (c,d) experimental 
values and the predicted values from the PINN model. 

To verify the reliability of the PINN model, a randomly selected test set, unrelated to 
the training and optimization of the PINN model, was used to validate the predicted ve-
locity and temperature performance. Figure 11 shows that the maximum MAEs of the 
velocity and temperature of in-flight particles in the test set were 0.03962 and 0.01824, 
respectively, while the minimum MAEs of the velocity and temperature of in-flight parti-
cles in the test set were 0.00142 and 0.00026, respectively. In other words, it reveals that 
the prediction accuracy of temperature and velocity of in-flight particles are 96.89% and 
99.47%, respectively. Comparing with in-flight particle predictions based on traditional 
machine learning models from different thermal spraying routes, including plasma spray-
ing (with 82% and 97% prediction accuracies for mean particle temperature and velocity) 
[36], cold spraying (with 96.45% predication accuracy for particle velocity) [37], and 
HVOF (with 99.24% and 99.57% prediction accuracies for mean particle temperature and 
velocity) [13], the novel hybrid PINN-CNN model exhibited generally more accurate pre-
dictions. In addition, results indicated that the predicted and actual values of the model 
were consistent, which demonstrates that the PINN model was trained and met the pre-
diction requirements for the temperature and velocity of in-flight particles in the HVOF 
spray process. The model establishes a physical relation to describe the association be-
tween HVOF spray process parameters and particle flight characteristics. 

4.3. Analysis of the CNN Training Results 
After training the CNN network (Figure 12a–c), we plotted the loss function values 

of the training set for each training cycle. The results indicated a gradual decrease in the 
training error with increasing training times; the average training error stabilized at ap-
proximately 0.05 after 20,000 training cycles. 

Figure 11. Mean absolute error distribution of the velocity (a,b) and temperature (c,d) experimental
values and the predicted values from the PINN model.

To verify the reliability of the PINN model, a randomly selected test set, unrelated
to the training and optimization of the PINN model, was used to validate the predicted
velocity and temperature performance. Figure 11 shows that the maximum MAEs of
the velocity and temperature of in-flight particles in the test set were 0.03962 and 0.01824,
respectively, while the minimum MAEs of the velocity and temperature of in-flight particles
in the test set were 0.00142 and 0.00026, respectively. In other words, it reveals that the
prediction accuracy of temperature and velocity of in-flight particles are 96.89% and 99.47%,
respectively. Comparing with in-flight particle predictions based on traditional machine
learning models from different thermal spraying routes, including plasma spraying (with
82% and 97% prediction accuracies for mean particle temperature and velocity) [36], cold
spraying (with 96.45% predication accuracy for particle velocity) [37], and HVOF (with
99.24% and 99.57% prediction accuracies for mean particle temperature and velocity) [13],
the novel hybrid PINN-CNN model exhibited generally more accurate predictions. In
addition, results indicated that the predicted and actual values of the model were consistent,
which demonstrates that the PINN model was trained and met the prediction requirements
for the temperature and velocity of in-flight particles in the HVOF spray process. The
model establishes a physical relation to describe the association between HVOF spray
process parameters and particle flight characteristics.

4.3. Analysis of the CNN Training Results

After training the CNN network (Figure 12a–c), we plotted the loss function values
of the training set for each training cycle. The results indicated a gradual decrease in
the training error with increasing training times; the average training error stabilized at
approximately 0.05 after 20,000 training cycles.
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To evaluate the effectiveness of the CNN model, we randomly split the dataset into
training and validation sets. The experimental results show that the R2 values of the
model reached 0.99971, 0.99741, and 0.99968 for the porosity, microhardness, and wear
rate, respectively (as shown in Figure 13a–c). These results confirm that the fitting of the
model is good. However, the R2 values of the CNN model were smaller than those of the
PINN model. This difference can be attributed to the ability of the PINN to embed the
physical relation equation, which enhances the prediction accuracy and fit of the model. The
accuracy of the CNN model was evaluated using MAE (Figure 14a–f). After model training,
we reversely normalized the true and predicted values in the training and validation sets.
Figure 14 compares the MAEs between experimental values and the predicted values of
the CNN model. As shown in Figure 14a,b, the MAEs for the porosity of the coating
in the training and validation sets ranged from 0.000002 to 0.03877, with an average of
0.00218. The coating microhardness exhibited maximum and minimum MAEs of 0.04864
and 0.00043, respectively, between true and predicted values, with an average of 0.00513
(Figure 14c,d). Furthermore, the MAEs of the coating wear rate were mostly distributed
between 0.000004 and 0.03318, with an average of 0.01078 (Figure 14e,f). The MAE results
indicate that the error distribution of the coating wear rate is wider and more dispersed than
the distribution of coating microhardness or porosity. This implies that the CNN model
accurately predicts the porosity and microhardness of the coating. This is because porosity
is a parameter directly obtained after spraying and less influenced by other parameters.
Therefore, direct prediction based on particle velocity and temperature provides high
accuracy of up to 99%. Furthermore, in case of coating microhardness, the error bars are
larger, the CNN data exhibit fluctuations, and the test data are affected by specimen size,
the degree of particle flattening, and residual stress. The accuracy of data predicted directly
on the basis of particle velocity and temperature is lower than that predicted on the basis of
porosity. The coating wear rate is influenced by the porosity, microhardness, and roughness
of the sample and exhibits a substantial relation with the surface condition of the specimen
post treatment. Therefore, it is understandably influenced by the crossover of parameters,
and the prediction accuracy of the model is low.
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Figure 14 demonstrates the reliability of the CNN model through evaluating its prediction
performance on the test set. The porosity, microhardness, and wear rate have maximum MAEs
of 0.00063, 0.01009, and 0.03318, respectively. The minimum MAEs for porosity, microhardness,
and wear rate are 0.00029, 0.00146, and 0.00052, respectively. These results indicated that
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the predication accuracy for coatings’ porosity, microhardness and wear rate are 99.97%,
99.74%, and 99.97%, respectively. As a comparison, based on the Generative Adversarial
Network (GAN) model, the prediction accuracy for coating characteristics via suspension
plasma spraying is only 80% [24]. Consequently, the hybrid PINN-CNN model also possess
advantages with excellent prediction accuracy for coating performances.

5. Conclusions

Herein, a new hierarchical neural network model based on the PINN and CNN has
been proposed to simulate the relation between HVOF spray process parameters, in-flight
particle characteristics, and NiCr–Cr3C2 coating properties. It should be mentioned that
the development of the novel hybrid PINN-CNN model could be beneficial for reducing
the overfitting problem from the conventional ANN model, as well as compensating for
the poor transferability of traditional machine learning techniques due to the usage of
PINN model. The main contributions of the proposed approach can be summarized as
follows: First, an RF model was developed for feature selection to assess the importance
of each feature. Results demonstrate that SOD exerts the greatest effect on the velocity
and temperature of in-flight particles and that the velocity of in-flight particles affects the
microhardness and wear rate of the coating; the temperature of in-flight particles is more
important for the porosity of the coating than their velocity. Second, this study proposes a
novel approach: the prediction of HVOF-sprayed coatings based on the hybrid PINN-CNN
model. The PINN model can predict the velocity and temperature of in-flight particles via
training and optimization, with MAEs of 0.01346 and 0.00966, respectively. Third, the CNN
model considers the velocity and temperature of in-flight particles predicted by the PINN
as the input and predicts the porosity, microhardness, and wear rate. The MAEs of the
CNN model are 0.00218, 0.00513, and 0.01078 for the porosity, microhardness, and wear
rate, respectively, which achieve good prediction accuracy and less overfitting. The hybrid
PINN-CINN model prediction errors are 1% overall, and the R2 is >96%, which possessed
comparable or even better prediction accuracies for both in-flight particle characteristics
and coating performances compared to traditional ML models. Moreover, the development
of the novel hybrid PINN-CNN model is beneficial for reducing the overfitting problem
from the conventional ANN model, as well as compensating for the poor transferability of
traditional machine learning techniques due to the usage of the PINN model. All in all, the
hierarchical neural network model is not only capable of effectively realizing the prediction
of in-flight particle behavior and coating performances as well as its influencing factors,
but also providing a theoretical basis for preparing and optimizing high-performance
HVOF-sprayed coatings.
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