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Abstract: In this paper, a series of experimental and numerical studies were carried out to investigate
the effect of multiple cracks on concrete fracture behavior. Seven groups of double-crack concrete
three-point bending (TPB) experiments with different crack lengths and different crack distances were
carried out. The experimental results showed that the bearing capacity of double-crack specimens was
slightly larger than the standard specimen with one central crack. Additionally, with an increase in
the second crack length or with a crack distance reduction, the concrete’s bearing capacity increased
correspondingly. Based on the experiments, a numerical meso-model was developed based on
applying cohesive elements. The aggregate, mortar, interface transition zone (ITZ), and potential
fracture surfaces were explicitly considered in the model. In particular, cohesive elements were
used to characterize the mechanical behavior of the ITZ and potential fracture surfaces. A modified
constitutive concrete model was developed by considering the potential fracture surfaces’ damage
relation and friction effect. The accuracy of the developed meso-model was validated through a
comparison between simulation and experiments. Based on meso-models, the influence of multiple
cracks on the concrete bearing capacity was investigated by analyzing the energy evolution. The
analysis results showed that the bearing capacity has a linear relation with the proportion of mode
II energy consumption during the fracture process, which explains why specimens with multiple
cracks have a slightly larger bearing capacity than the standard specimens. In summary, this study
has found that in three-point bending fracture tests primarily characterized by mode I fractures, the
presence of multiple cracks near the main crack slightly enhances the load-bearing capacity of the
specimens. This is attributed to a slight increase in internal energy dissipation associated with the
presence of these multiple cracks.

Keywords: concrete; double cracks; meso-model; cohesive element

1. Introduction

Concrete’s fracture performance has a significant impact on the safety of bridges or
other structures. When concrete cracks, it can affect the corrosion resistance of the bridge
and its corresponding load-bearing capacity [1–4]. Therefore, it is essential to conduct
detailed research on the fracture performance of concrete.

Since the theory of fracture mechanics was first used to analyze the failure behavior
of concrete, a series of research works on concrete fracture mechanics have been carried
out. Researchers studied the influence of the size effect [1–7], the loading rate [8,9], cyclic
loading [10], and corrosion [11] (and so on) on concrete fracture behavior. The fracture
mechanics approach can also be used to analyze complex and composite concrete structures,
such as geopolymer concrete [12], reinforced concrete [13], fiber-reinforced concrete [14],
and recycled concrete [15].

In practical engineering, concrete may have multiple cracks due to the construction
technology and natural factors, and these cracks often affect each other. However, there
are only a few papers about the fracture behavior of concrete with multiple cracks [16].
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Evaluating or analyzing the bearing capacity of concrete structures with multiple cracks is
still complex.

Due to the complexity of the multiple crack problem, it is hard to analyze the fracture
behavior of concrete with multiple cracks using the mathematical analysis method. Thus,
the mesoscopic numerical method is more suitable for studying this problem. Up to now,
many mesoscopic methods have been proposed, such as the traditional finite element
method [17–19], the lattice model [20–22], the extended finite element method [23–25],
the particle flow method [26,27], the rigid body spring method [28], and the cohesive
zone model (CZM) [29–34]. In particular, based on the application of cohesive elements,
the CZM model is among the most advantageous numerical methods for characterizing
interfacial mechanical behavior. For this reason, this kind of model can be used to simulate
the fracture behavior of concrete fracture surfaces since it can accurately characterize cracks
along non-prescribed trajectories.

This study conducted a series of TPB experiments to investigate the effect of multiple
cracks on the mode I fracture behavior. Double-crack TPB beams with different second
crack lengths and different crack distances were designed and tested. In addition, a meso-
model was developed based on the CZM and the corresponding constitutive model. Finally,
based on the experimental results and the developed meso-model, the fracture process and
the inner energy consumption were analyzed.

2. Three-Point Bending (TPB) Experiments of a Double-Crack Concrete Beam
2.1. Geometry and Loading Scheme

To compare with the standard mode I fracture behavior of concrete, double-crack TPB
concrete beams were designed based on previous works [35]. The standard TPB beams
with an initial crack length of 80 mm were chosen as the reference group, and the size of
this kind of beam is length (l) × height (h) × thickness (t) = 1000 mm × 200 mm × 120
mm, as shown in Figure 1a. Based on the standard specimen, two series of experiments
were designed to study the effect of second crack length (40 mm, 60 mm, 80 mm) and the
crack distance (80 mm, 120 mm, 160 mm) on the fracture behavior of concrete beams; the
corresponding sizes of the specimens are shown in Figure 1b,c. The design information
of the experiments is listed in Table 1. In particular, TPBSTD represents the standard TPB
beam, TPBSC represents the double-crack beams with different second crack lengths, and
TPBCD represents the double-crack beams with different crack distances.
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Table 1. The geometry information of double-crack concrete TPB beams.

Specimens Main Crack Length
a0/mm

Second Crack Length
a1/mm

Cracks Distance
d/mm

TPBSTD-1~4 80 —
TPBSC40-1~4 80 40 80
TPBSC60-1~4 80 60 80
TPBSC80-1~4

(TPBCD80-1~4) 80 80 80

TPBCD120-1~4 80 80 120
TPBCD160-1~4 80 80 160

In every experimental group, four specimens were cast to eliminate random errors,
and all beams were cast at once. A steel plate with a thickness of 3 mm was used to make
the initial cracks. The particle size of aggregates was distributed in the range of 5~20 mm
continually. P.O 42.5 cement, sand, and water were chosen to cast the mortar matrix of the
concrete. The mix proportion is cement:aggregate:sand:water = 1:1.225:2.458:0.44. Through
the material property tests, the standard compressive strength, tensile strength, and elastic
modulus were determined to be about 49 MPa, 3.5 MPa, and 45 GPa, respectively.

The loading scheme of the beams is shown in Figure 2. The distance between the two
supports is 800 mm, and two clip-on extensometers with a 2 mm range were used to record
the crack mouth opening displacement (CMOD) of the two cracks. Additionally, a force
sensor with a 50 kN range was used to record the loading value. The experiments were
carried out on a 500 t hydraulic testing machine through the displacement control method,
and the loading rate was set to about 1.5 × 10−3 mm/s. All measured parameters were
recorded through a DH-5902 testing system (sampling frequency: 10 to 100 k Hz).
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situation.

2.2. Experimental Results

The typical fracture pattern of the TPB beams is shown in Figure 3. All the crack
propagation paths of the double-crack TPB beams were almost the same as the standard
TPB beams, and the second crack was not observed to propagate at the macro-scale. This
result indicated that in the failure process, which is dominated by mode I fracture, the
second crack hardly affected the crack propagation path of the main crack (middle crack)
when the length of the second crack was less than the main crack.
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Figure 3. Typical fracture behavior of a concrete specimen: (a) the typical fracture behavior of a
standard specimen; (b) the typical fracture behavior of a double-crack specimen.

In this study, the CMOD of the main crack was called δ1, and that of the second crack
was called δ2. In addition, the load value obtained from the force sensor was represented
by P. The typical P− δ1 curves of standard TPB beams are shown in Figure 4. The curves
both showed an ascending branch and a softening branch. The average peak force of these
cures is 7.38 kN, and the corresponding CMOD is 0.0462 mm.
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Figure 4. P ∼ δ1 curve of standard specimens.

Figure 5 shows the P− δ1 curves and δ2− δ1 curves of the corresponding double-crack
TPB beams with different second crack lengths. Compared to standard beam results, the
double-crack beam peak loads were slightly larger. In addition, with the increase in the
second crack length, the bearing capacity of the beams increased somewhat. As for the
CMOD of the second crack, δ2 increased with the increase in the loading force at first. After
the loading force reached peak value, δ2 gradually decreased while the CMOD of the main
crack δ1 continually increased. This result indicates that the second crack only propagated
in the stable fracture stage (before the load reached peak value). Additionally, with the
increase in second crack length, the value of the corresponding CMOD δ2 became larger. It
should be noted that during the test, the increase in the CMOD δ2 may be smaller than the
sensitivity of the extensometer; the δ2 − δ1 curves may appear not as smooth as others, as
shown in Figure 5b,d.
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Figure 5. Experimental curves of double-crack beams with different second crack lengths:
(a,c,e) P − δ1 curve with second crack lengths of 40 mm, 60 mm, and 80 mm; (b,d,f) δ2 ∼ δ1

curves with second crack lengths of 40 mm, 60 mm, and 80 mm.
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Figure 6. Experimental curves of the double-crack beams with different crack distances: (a,c,e)
P ∼ δ1 curves with crack distances of 80 mm, 120 mm, and 160 mm; (b,d,f) δ2 ∼ δ1 curves with
crack distances of 80 mm, 120 mm, and 160 mm.

To conveniently compare the influence of the second crack length and crack dis-
tance on the bearing capacity of the beams, the peak load and the corresponding CMODs
were extracted and shown in Table 2. It should be noted that the group TPBSC80 is also
called TPBCD80.



Materials 2023, 16, 6311 7 of 21

Table 2. Summary of experimental results.

Specimens Peak Load (kN)
Corresponding

CMOD
δ1 (mm)

Corresponding
CMOD
δ2 (mm)

TPBSTD-1 7.02 0.0388 —
TPBSTD-2 7.04 0.0387 —
TPBSTD-4 8.07 0.0613 —
Average 7.38 0.0462

TPBSC40-1 7.37 0.0387 0.0016
TPBSC40-2 8.48 0.0463 0.0061
TPBSC40-3 8.26 0.0500 0.0031
TPBSC40-4 7.07 0.0375 0.0017

Average 7.80 0.0431 0.0031

TPBSC60-1 8.82 0.0463 0.0057
TPBSC60-2 7.78 0.0525 0.0031
TPBSC60-3 7.91 0.0400 0.0076

Average 8.17 0.0463 0.0055

TPBSC80-1 8.39 0.0363 0.0213
TPBSC80-2 8.48 0.0450 0.0221
TPBSC80-3 8.49 0.0337 0.0324

Average 8.45 0.0383 0.0253

TPBCD120-1 8.21 0.0413 0.0208
TPBCD120-2 8.03 0.0450 0.0221
TPBCD120-3 8.20 0.0537 0.0147

Average 8.15 0.0467 0.0192

TPBCD160-2 7.09 0.0450 0.0106
TPBCD160-4 7.83 0.0350 0.0319

Average 7.46 0.0400 0.0213

3. Establishment of a Numerical Model Based on the Cohesive Zone Model
3.1. Meso-Modeling Method

The meso-modeling method proposed earlier [32,33] was adopted to analyze the
fracture behavior of concrete with double parallel cracks. This method characterized the
potential fracture surfaces and ITZ via zero-thickness cohesive elements. These cohesive
elements were inserted into all the interfaces of solid elements, as shown in Figure 7a.
There are three kinds of cohesive elements in the numerical method: (1) CE_AGG for the
potential fracture surfaces of aggregate; (2) CE_MOR for the potential fracture surfaces of
mortar; and (3) CE_ITZ for the ITZ of concrete. The flowchart of meso-modeling [31,32]
is shown in Figure 7b; the modeling method can be divided into two steps, which are the
modeling of aggregates and modeling of the cohesive zone.

3.2. Constitutive Model of Concrete Potential Fracture Surfaces

(1) Single-mode damage relation

The modified constitutive model [32,33] based on the bilinear damage relation was
adopted to characterize the mechanical behavior of the concrete’s potential fracture surfaces.
The developed constitutive model especially considered the friction effect inside the crack.
Figure 8 shows the damage relations of the concrete potential fracture surfaces in the
normal and tangential directions. The expression of the stresses in the normal direction can
be given as follows:

tn =


knδn δn ≤ δn0
(1− D)knδn δn0 < δn < δn f
0 δn > δn f

(1)
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where tn is the normal stress; kn is the stiffness in the normal direction; δn is the normal
displacement; δn0 is the normal damage initiation displacement; δn f is the normal failure

displacement; and D is the damage factor, which can be calculated through D =
(δn−δn0)δn f
(δn f−δn0)δn

.

Materials 2023, 16, x FOR PEER REVIEW 7 of 22 
 

 

TPBSC40-3 8.26 0.0500 0.0031 

TPBSC40-4 7.07 0.0375 0.0017 

Average 7.80 0.0431 0.0031 

TPBSC60-1 8.82 0.0463 0.0057 

TPBSC60-2 7.78 0.0525 0.0031 

TPBSC60-3 7.91 0.0400 0.0076 

Average 8.17 0.0463 0.0055 

TPBSC80-1 8.39 0.0363 0.0213 

TPBSC80-2 8.48 0.0450 0.0221 

TPBSC80-3 8.49 0.0337 0.0324 

Average 8.45 0.0383 0.0253 

TPBCD120-1 8.21 0.0413 0.0208 

TPBCD120-2 8.03 0.0450 0.0221 

TPBCD120-3 8.20 0.0537 0.0147 

Average 8.15 0.0467 0.0192 

TPBCD160-2 7.09 0.0450 0.0106 

TPBCD160-4 7.83 0.0350 0.0319 

Average 7.46 0.0400 0.0213 

3. Establishment of a Numerical Model Based on the Cohesive Zone Model 

3.1. Meso-Modeling Method 

The meso-modeling method proposed earlier [32,33] was adopted to analyze the 

fracture behavior of concrete with double parallel cracks. This method characterized the 

potential fracture surfaces and ITZ via zero-thickness cohesive elements. These cohesive 

elements were inserted into all the interfaces of solid elements, as shown in Figure 7a. 

There are three kinds of cohesive elements in the numerical method: (1) CE_AGG for the 

potential fracture surfaces of aggregate; (2) CE_MOR for the potential fracture surfaces of 

mortar; and (3) CE_ITZ for the ITZ of concrete. The flowchart of meso-modeling [31,32] is 

shown in Figure 7b; the modeling method can be divided into two steps, which are the 

modeling of aggregates and modeling of the cohesive zone. 

 
(a) 

Materials 2023, 16, x FOR PEER REVIEW 8 of 22 
 

 

 
(b) 

Figure 7. Meso-modeling of the concrete: (a) elements of the meso-model; (b) flowchart of model-

ing. 

3.2. Constitutive Model of Concrete Potential Fracture Surfaces 

(1) Single-mode damage relation 

The modified constitutive model [32,33] based on the bilinear damage relation was 

adopted to characterize the mechanical behavior of the concrete’s potential fracture sur-

faces. The developed constitutive model especially considered the friction effect inside 

the crack. Figure 8 shows the damage relations of the concrete potential fracture surfaces 

in the normal and tangential directions. The expression of the stresses in the normal di-

rection can be given as follows: 

  

  

 

 


 = −
 


0

0

                  

(1 )

    0

n n n n

n n nfn n n

n nf

k

t D k  (1) 

where n
t  is the normal stress; 

n
k  is the stiffness in the normal direction; 

n
 is the 

normal displacement; 
0n

 is the normal damage initiation displacement; 
nf  is the 

normal failure displacement; and D  is the damage factor, which can be calculated 

through 
  

  

−
=

−

0

0

( )
 

( )

n n nf

nf n n

D . 

The damage relation in the tangential direction can also be similarly given as fol-

lows: 

  

  

 

 


 = −




0

0

                  

(1 )

0     

s s s s

s s sfs s s

s sf

k

t D k  (2) 

where s
t  is the shear stress; 

s
k  is the stiffness in the tangential direction; 

s
 is the tan-

gential displacement; 
0s

 is the shear damage initiation displacement; 
sf  is the shear 

Figure 7. Meso-modeling of the concrete: (a) elements of the meso-model; (b) flowchart of modeling.

Materials 2023, 16, x FOR PEER REVIEW 9 of 22 
 

 

failure displacement; and D  is the damage factor, which can be calculated through 

  

  

−
=

−

0

0

( )

( )

s s sf

sf s s

D . 

  
(a) (b) 

Figure 8. Bilinear relation of the concrete in pure normal or shear damage conditions: (a) in the 

normal direction; (b) in the tangential direction. 

(2) Mixed-mode damage relation 

The quadric criterion [31–33] was adopted to define the initiation of the damage 

process in the mixed-mode condition, and its expression can be expressed as follows: 

+ =2 2

0 0

( ) ( ) 1n s

n s

t t

t t
 (3) 

where 0n
t  is the normal strength and 0s

t  is the shear strength. 

The PL criterion defined the evolution of the damage, and it can be given as fol-

lows: 

+ = 1
r r

n s

n s

G G

G G
 (4) 

where n
G  is the normal fracture energy and s

G  is the shear fracture energy; these two 

fracture energies can be calculated through the geometry relation in Figure 8. 
r

nG  is the 

normal energy release rate in the mixed-mode condition and 
r

sG  is the shear energy 

release rate in the mixed-mode condition. These four parameters can be expressed as 

follows: 

   

   


= =

 
 
 

= =  

0 0

0 0

2 2       ,       

2 2

r r

n n nf n n nfr

n n

r r
s s sf s s sfr

s s

k k
G G

k k
G G

 (5) 

where 
0

r

n
 is the normal relative damage initial displacement in the mixed-mode condi-

tion;  r

nf  is the normal relative failure displacement in the mixed-mode state; 
0

r

s
 is the 

shear relative damage initial displacement in the mixed-mode condition; and  r

sf  is the 

shear relative failure displacement in the mixed-mode condition. 

Assuming that the loading path is monotonous, by substituting
 

 
=

0 0

n s

r r

n s

 (  are 

the Macaulay brackets, and this equation is suitable for the condition when   0
n

), the 

Figure 8. Bilinear relation of the concrete in pure normal or shear damage conditions: (a) in the
normal direction; (b) in the tangential direction.



Materials 2023, 16, 6311 9 of 21

The damage relation in the tangential direction can also be similarly given as follows:

ts =


ksδs |δs| ≤ δs0
(1− D)ksδs δs0 < |δs| < δs f
0 |δs| > δs f

(2)

where ts is the shear stress; ks is the stiffness in the tangential direction; δs is the tangential
displacement; δs0 is the shear damage initiation displacement; δs f is the shear failure

displacement; and D is the damage factor, which can be calculated through D =
(|δs |−δs0)δs f
(δs f−δs0)|δs | .

(2) Mixed-mode damage relation

The quadric criterion [31–33] was adopted to define the initiation of the damage
process in the mixed-mode condition, and its expression can be expressed as follows:

(
tn

tn0
)

2
+ (

ts

ts0
)

2
= 1 (3)

where tn0 is the normal strength and ts0 is the shear strength.
The PL criterion defined the evolution of the damage, and it can be given as follows:

Gr
n

Gn
+

Gr
s

Gs
= 1 (4)

where Gn is the normal fracture energy and Gs is the shear fracture energy; these two
fracture energies can be calculated through the geometry relation in Figure 8. Gr

n is the
normal energy release rate in the mixed-mode condition and Gr

s is the shear energy release
rate in the mixed-mode condition. These four parameters can be expressed as follows:

Gn =
knδn0δn f

2

Gs =
ksδs0δs f

2

,


Gr

n =
knδr

n0δr
n f

2

Gr
s =

ksδr
s0δr

s f

2

(5)

where δr
n0 is the normal relative damage initial displacement in the mixed-mode condition;

δr
n f is the normal relative failure displacement in the mixed-mode state; δr

s0 is the shear
relative damage initial displacement in the mixed-mode condition; and δr

s f is the shear
relative failure displacement in the mixed-mode condition.

Assuming that the loading path is monotonous, by substituting 〈δn〉
δr

n0
= |δs |

δr
s0

(<> are
the Macaulay brackets, and this equation is suitable for the condition when δn > 0), the
geometry relation in Figure 8, tn = knδr

n0, and ts = ksδr
s0 into Equation (3), the relative

damage initial displacements can be given as follows:
δr

n0 =
〈δn〉δn0δs0√

δn02δs2 + δn2δs02

δr
s0 =

|δs|δn0δs0√
δn02δs2 + δn2δs02

(6)

Additionally, by substituting δr
n0

δr
n f

=
δr

s0
δr

s f
(monotonous loading path) and Equation (5)

into Equation (4), the failure displacements can also be given as follows:
δr

n f =
2δr

n0GnGs

knδr
n0

2Gs + ksδr
s0

2Gn

δr
s f =

2δr
s0GnGs

knδr
n0

2Gs + ksδr
s0

2Gn

(7)
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Based on these calculated parameters, the total displacement δ, total initial damage
displacement δ0, and total failure displacement δ f can be calculated as follows:

δ =
√
〈δn〉2 + δ2

s

δ0 =
√

δr
n0

2 + δr
s0

2

δ f =
√

δr
n f

2 + δr
s f

2

(8)

Hence, the damage factor in the mixed-mode condition can be finally given as follows:

D =
(δ− δ0)δ f

(δ f − δ0)δ
(9)

(3) Friction effect

When the interface is damaged, friction occurs at the interface when the interface is
closed. For this reason, the friction effect should be considered precisely. In this constitutive
model, the fiction stress is calculated according to the interfacial sliding condition.

(a) Interfacial not sliding
In this condition, the friction stress Tf can be calculated as follows:

Tf = ks(δs − δslide
s ) (ks(δs − δslide

s ) ≤ Tf max) (10)

where δslide
s is the sliding displacement which has been generated and Tf max is the maxi-

mum static friction stress, which can be given according to the friction law:

Tf max = f 〈−knδn〉 (11)

where f is the friction coefficient.
(b) Interfacial sliding
In this condition, the friction stress equals the maximum static friction stress. In

addition, the corresponding interfacial sliding displacement should be updated: Tf = f 〈−knδn〉 δs−δslide
s

|δs−δslide
s |

δslide∗
s = δs −

Tf
ks

(ks

∣∣∣δs − δslide
s

∣∣∣ > Tf max) (12)

where δslide∗
s is the updated interfacial sliding displacement.

(4) Stresses in the mixed model

Finally, combining the damage relation and friction effect, the stresses can be given
as follows:

tn =


knδn δ ≤ δ0 or δn ≤ 0
(1− D)knδn δ0 < δ < δ f
0 δ > δ f

(13)

ts =


ksδs |δs| ≤ δs0
(1− D)ksδs + D · Tf δs0 < |δs| < δs f
D · Tf |δs| ≥ δs f

(14)

(5) Internal energy calculation

According to the stresses defined above, three corresponding kinds of energy can be
extracted to analyze the internal fracture behavior, which are: (1) the normal stress work
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En; (2) the shear stress work Es; and (3) the friction stress work E f . These energies can be
calculated by:

En = ∑
Cohesive elements

t
∫
l
(
∫ δn

0 tndδ)dl ,

Es = ∑
Cohesive elements

t
∫
l
(
∫ δs

0 (ts − D · Tf )dδ)dl ,

E f = ∑
Cohesive elements

t
∫
l
(
∫ δs

0 D · Tf · dδ)dl

(15)

where l is the length of the zero-thickness cohesive element and t is the calculation thickness.

4. Numerical Analysis and Discussion of the TPB Experiments
4.1. Input Data of the Finite Element Model

The meso-model was used to analyze the concrete double-crack problem, as shown
in Figure 9. In the fracture process zone, the meso-model was used to characterize the
fracture behavior of concrete, while in the non-fracture zone, the macro-model was used to
reflect the elastic behavior of concrete. The meso-modeling zone and the macro-modeling
zone were tied together on their boundary. Through repeated trials, the length of the
meso-modeling zone was set to 400 mm, and this area can completely characterize the
fracture behavior of the specimen.
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Figure 9. Numerical model of the TPB specimens.

The mesh of the numerical model is shown in Figure 10. Through the mesh inde-
pendence test, the element size was set to 3 mm. One typical model (meso-modeling
zone) contains about 50,000 nodes, 17,000 solid elements, and 25,000 zero-thickness
cohesive elements.

According to the experimental results, repeat trial computations, and the previous
works on cohesive elements [29–34], the material parameters (meso-modeling zone) of
cohesive elements were determined and are listed in Table 3, assuming the aggregate will
not crack. In addition, for the meso-modeling zone, the elastic moduli of the mortar and
aggregate were 40 GPa and 60 GPa, respectively, and the corresponding Poisson ratios were
set to 0.22. For the macro-modeling zone, the elastic modulus and Poisson’s ratio were
45 GPa and 0.22, respectively. All specimens are subjected to a concentrated displacement
load at the top of the midspan, and the final displacement value was 0.5 mm.

Table 3. Material parameters applied to the concrete.

Element
Type

kn,ks
(GPa/m)

tn0
(MPa)

ts0
(MPa)

Gn0
(N/m)

Gs0
(N/m) f

CE_MOR 106 4.2 14.7 70 700 0.35
CE_ITZ 106 2.1 7.35 35 350 0.35

CE_AGG 106 - - - - -
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Figure 10. Mesh of the meso-modeling zone: (a) general view; (b) the zero-thickness elements of
aggregates CE_AGG; (c) the zero-thickness elements of mortar CE_MOR; (d) the zero-thickness
elements of ITZ CE_ITZ.

The numerical models were solved in the ABAQUS/EXPLICIT solver [36], with the
user subroutine VUMAT in which the proposed constitutive model was implemented.
The loading time was set to 1 s to ensure a quasi-static loading condition. Three random
numerical specimens were calculated in each experiment group to eliminate accidental
error. Through computation, all numerical models in the same group showed a very similar
result. For this reason, in each group, only one typical numerical specimen was chosen to
discuss in this study.

4.2. Fracture Behavior of the Standard and Double-Crack Beams

The standard group’s numerical and experimental P-δ1 curves are shown in Figure 11.
The numerical results fit well with the experimental ones in terms of the curve shape and
amplitude. To further investigate the fracture process and corresponding stress distribution,
four typical states (pre-peak state, peak state, post-peak state, and failure state) were chosen
in Figure 9, and the four states were marked by A to D.

The distribution of maximum stress during the fracture process is shown in Figure 12,
and the cracks are represented by deleting the cohesive elements whose damage factor is
equal to 1. The stress distribution regular pattern can be summarized as follows: (1) In the
early stage of the fracture process, a stress concentration zone exists in the crack tip. (2) In
the crack-propagation stage, the damaged area extends upward. Although the damaged
area does not turn into a macro-crack, the stress concentration zone moves to the tip of the
damaged area, which means the stress concentration zone moves further than the crack.
(3) In the final stage, the damaged area extends to the top of the specimen, and the bearing
capacity of the specimen is almost lost.
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It should be noted that the crack does not extend along an ideal straight line due to
the random distribution of aggregate. As a result, some fracture surfaces may not separate
completely. Thus, a large stress still exists in some areas without complete damage, as
shown in Figure 12c,d.

The final fracture pattern of the standard beam is shown in Figure 13, and the defor-
mation shape has been magnified 15 times. Due to the low strength of the ITZ, the crack
will preferentially pass through a nearby ITZ in the fracture process. This regular pattern
leads to the randomness of the fracture propagation path, which makes the simulation
results closer to the experimental ones compared to the idealized numerical macro-model.
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The typical (the group TPBSC80 or TPBCD80) numerical and experimental P − δ1
and δ2 − δ1 curves of a double-crack beam are shown in Figure 14. It can be seen that the
numerical results still show an agreement with the experimental ones. As was the case
with the standard group, four typical states were chosen to investigate the fracture process
of the specimen. The four states are marked by A to D, as shown in Figure 14a.
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Figure 14. Typical simulation P − δ1 and δ2 − δ1 curves of the double-crack beam (TPBSC80 or
TPBCD80): (a) P− δ1 curve; (b) δ2 − δ1 curve.

The maximum stress distribution of the double-crack beam (the group TPBSC80 or
TPBCD80) during the fracture process is shown in Figure 15. The corresponding regular
evolution of the stress distribution can be summarized as follows: (1) In the early stage
of the fracture process, there is a two-stress concentration zone at both crack tips, and the
stress value of the main crack is larger than the other one. (2) In the stable crack propagation
stage, both stress concentration zones extend upward, and the stress concentration zone
extending from the main crack moves further than one extending from the second crack.
(3) In the unstable crack propagation stage (post-peak stage), the stress concentration zone
of the second crack gradually vanishes, which means the second crack stops propagating
and gradually closes. Meanwhile, the main crack keeps propagating. (4) In the final stage,
the damaged area originating from the main crack extends to the top of the specimen, and
the bearing capacity of the specimen is almost lost.

To obtain more details of the fracture process of the double-crack specimen (the group
TPBSC80 or TPBCD80), the deformation of the beam at the pre-peak stage (Figure 16a)
and the post-peak stage (Figure 16b) was extracted, and the damaged areas were marked
in red. It can be seen that at the pre-peak stage, both CMODs open and both the initial
cracks extend. In the post-peak stage, the second crack closes and the main crack continues
to open.
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Figure 15. Maximum principal stress nephogram of the different stages in Figure 14: (a) stage A;
(b) stage B; (c) stage C; (d) stage D.
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Figure 16. Fracture pattern of a double-crack specimen (the group TPBSC80 or TPBCD80): (a) pre-
peak stage; (b) post-peak stage; (c) the final fracture pattern.

The simulation and experiment comparisons of the other groups (the P− δ1 curves
and the δ2 − δ1 curves) are shown in Figure 17. The comparison results indicate that the
numerical meso-model adopted in this study can appropriately characterize the fracture
behavior of concrete with multiple cracks.
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Figure 17. Comparison of experiments and simulation results: (a,b) P− δ1 and δ2 − δ1 curves of the
TPBSC40 group; (c,d) P− δ1 and δ2 − δ1 curves of the TPBSC6 group 0; (e,f) P− δ1 and δ2 − δ1 curves
of the TPBCD120 group; (g,h) P− δ1 and δ2 − δ1 curves of the TPBCD160 group.

4.3. Bearing Capacity Analysis

To investigate the impact of the two cracks on the specimen’s bearing capacity, first,
the relation between peak force and different experiment groups was analyzed, as shown
in Figure 18. The figure indicates that the peak force of the double-crack specimens is a bit
larger than that of the standard specimens. Similar to the experimental results, with the
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increase in the second crack’s length or with the decrease in the crack distance, the peak
force of the beam increases correspondingly, although the increase is minimal. To reveal
why multiple cracks can slightly enhance the bearing capacity of the concrete specimen, an
energy analysis was carried out based on the meso-model.
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Figure 18. Comparison of the peak force between different experiment groups: (a) different second
crack lengths; (b) different crack distances.

4.4. Energy Analysis

Through the analysis, the energy consumption in the double-crack beams was very
similar to the standard beam. The typical energy evolution of a standard beam is shown in
Figure 19. During the fracture process, the normal stress work (mode I fracture) dominates
the energy consumption, and a small amount of shear stress work (mode II fracture) also
exists. In addition, friction has little effect in this study. Thus, the whole fracture process is
a composite fracture process dominated by mode I fractures. To investigate the relation
between the peak force and the proportion of the energy increase at the pre-peak stage, the
energy increases of different groups were extracted and are listed in Table 4.
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Figure 19. Typical evolution of the internal energy (TPBSTD) in (a) the whole fracture process; (b) the
pre-peak stage.

Through a comparison, it can be found that as the proportion of shear stress work
(mode II fractures) increases, the peak force increases correspondingly. The peak force is
highly relevant to the shear stress work proportion, and a linear relationship exists between
these two parameters, as shown in Figure 20. Thus, it can be inferred that due to the
existence of multiple cracks, more shear stress work will be consumed during the fracture
process. For concrete material, the shear strength and corresponding fracture energy are
much larger than the tensile ones. For this reason, in this study, the bearing capacity of the
double-crack beams was slightly higher than the standard beams.
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Table 4. Energy increments of different double cracks specimens.

Experiment
Group

Peak Force
(kN)

∆En
(N·m)

∆Es
(N·m)

Total Energy
Increment (N·m)

∆En Proportion
(%)

∆Es Proportion
(%)

Standard
TPBSTD 7.84 0.156 0.012 0.167 93.0 7.0

TPBSC40 7.92 0.163 0.013 0.176 92.9 7.1
TPBSC60 8.08 0.144 0.013 0.157 91.7 8.3
TPBSC80

(TPBCD80) 8.34 0.151 0.014 0.165 91.5 8.5

TPBSC120 8.15 0.145 0.013 0.158 92.0 8.0
TPBSC160 7.98 0.141 0.012 0.153 92.5 7.5
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To validate the statement above, a group of numerical tests with three parallel cracks
(symmetrical and asymmetrical distributions of cracks) were also carried out, and the
fracture paths are shown in Figure 21. The bearing capacity of three-crack specimens
(8.03 kN, 8.04 kN, respectively) is still higher than the standard one (7.84 kN), regardless of
whether the distribution of the crack is symmetrical or asymmetrical.
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5. Conclusions

In this paper, a series of TPB experiments were carried out to investigate the influence
of multiple cracks on concrete fracture behavior. Six groups of double-crack TPB beams
were designed and tested. A numerical meso-model was developed to analyze the fracture
behavior of double-crack concrete specimens. In this meso-model, cohesive elements were
adopted to characterize the potential fracture surfaces, and the corresponding constitutive
model combining the damage relation and friction effect was developed. Through com-
parison, all the numerical results agreed with the experimental ones. Based on this model,
the influence of multiple parallel cracks on the bearing capacity of concrete was studied by
analyzing the energy consumption. The conclusions can be summarized as follows:

1. In the mode I fracture (or composite fracture dominated by mode I fracture) condition,
multiple cracks in a small zone will slightly increase the bearing capacity of the
concrete. With an increase in the other crack’s lengths or with a decrease in the
distance between cracks, the bearing capacity increases.

2. In terms of energy consumption, the proportion of shear stress work (mode II) is
highly relevant to the bearing capacity of multiple-parallel-crack concrete. Multiple
parallel cracks change the proportion of mode II fractures and finally cause an increase
in the concrete bearing capacity.

Based on the conclusions above, in the mode I fracture (or composite fracture dom-
inated by mode I fracture) condition, multiple cracks in a small zone can be equally
considered as one crack from the perspective of safety design.

It should be noted that in this study, only the concrete fracture behavior with multiple
parallel cracks was investigated. However, in practical engineering applications, the
distribution of cracks is more random and the fracture mode is more complex. Therefore, in
subsequent studies, it is necessary to further analyze the mechanical behavior of multiple
cracks under a mixed-mode (mode I and mode II) fracture process.
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Abbreviations

D Damage factor in the mode-I, mode-II, and mixed-mode conditions
Ft Tensile strength of the interface
Fr

t Relative tensile strength of the interface
f Friction coefficient
GI Fracture energy in the mode-I condition
GI I Fracture energy in the mode-II condition
Gr

I Energy release rate in the normal direction
Gr

I I Energy release rate in the tangential direction
kn Interface stiffness in the normal direction
Tf Friction stresses in the tangential direction
Tf max Maximum friction stress
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σ Normal stress
τ Shear stress
τ0 Shear strength
τr

0 Relative shear strength
δn Displacement in the normal direction
δn0 Normal displacement at the onset of interfacial softening in the mode-I condition

δr
n0

Relative normal displacement at the onset of interfacial softening in the
mixed-mode condition

δn f Normal displacement at the onset of interfacial failure in the mode-I condition

δr
n f

Relative normal displacement at the onset of interfacial failure in the mixed-mode
condition

δs Total displacement in the tangential direction

δs0
Tangential displacement at the onset of interfacial softening in the
mode-II/III condition

δr
s0

Relative tangential displacement at the onset of interfacial softening in the
mixed-mode condition

δs f
Tangential displacement at the onset of interfacial failure in the
mode-II/III condition

δr
s f

Relative tangential displacement at the onset of interfacial failure in the
mixed-mode condition

δslide
s Tangential sliding displacement that has been generated during the loading process

δ Total relative displacement

δ0
Total relative displacement at the onset of interfacial softening in the mixed-
mode condition

δ f
Total relative displacement at the onset of interfacial failure in the mixed-
mode condition

TPB Three-point bending
CMOD Crack mouth opening displacement
CZM Cohesive zone model
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