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Abstract: The peak dilation angle is an important mechanical feature of rock discontinuities, which is
significant in assessing the mechanical behaviour of rock masses. Previous studies have shown that
the efficiency and accuracy of traditional experimental methods and analytical models in determining
the shear dilation angle are not completely satisfactory. Machine learning methods are popular due
to their efficient prediction of outcomes for multiple influencing factors. In this paper, a novel hybrid
machine learning model is proposed for predicting the peak dilation angle. The model incorporates
support vector regression (SVR) techniques as the primary prediction tools, augmented with the grid
search optimization algorithm to enhance prediction performance and optimize hyperparameters.
The proposed model was employed on eighty-nine datasets with six input variables encompassing
morphology and mechanical property parameters. Comparative analysis is conducted between the
proposed model, the original SVR model, and existing analytical models. The results show that the
proposed model surpasses both the original SVR model and analytical models, with a coefficient of
determination (R2) of 0.917 and a mean absolute percentage error (MAPE) of 4.5%. Additionally, the
study also reveals that normal stress is the most influential mechanical property parameter affecting
the peak dilation angle. Consequently, the proposed model was shown to be effective in predicting
the peak dilation angle of rock discontinuities.

Keywords: rock; peak dilation angle; machine learning; support vector regression; mechanical properties

1. Introduction

The forecasting and control of the mechanical behaviour of rock masses is an important
factor regarding the safety of engineering structures [1–5]. The design of structures such as
tunnels, embankments, mine openings, and underground chambers relies on accurate and
reliable estimates of compressive strength, tensile strength, hydraulic mechanics, internal
damage characteristics, and shear strength of rock masses [6–11]. It is generally accepted
that rock masses are often cut into intact rock pieces by rock discontinuities at different
scales, as shown in Figure 1. These rock discontinuities include fractures, joints, bedding
planes, weak intercalations, shear planes, etc. [12,13]. Due to the shear strength of rock
discontinuities closely related to rock engineering disasters, such as rock slope failure,
fault-slip burst, and collapse accidents in tunnels [14–16], it has attracted the attention of
researchers [17–21].

The Mohr–Coulomb law is widely used to characterise shear behaviours of rock
discontinuities in the existing shear strength models, which incorporates the internal
friction angle comprising the basic friction angle and the peak dilation angle [22,23]. At
the same time, there is an excellent modern-day geotechnical software, FLAC3D5.0, in
which this law is taken as a basis and allows for predicting the behaviour of rock masses in
different conditions [24,25]. The peak dilation angle reflects the comprehensive effect of
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the joint morphology on the shear strength [26,27]. Generally speaking, the peak dilation
angle is defined as the instantaneous inclination of the shear path at the shear strength
with respect to the mean plane [28]. In addition, the peak dilation angle is also the most
commonly used parameter in numerical calculations to study the nonlinear shear dilation
behaviour of rock materials and to simulate surrounding rock deformation [29–33].
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based on the shear test results of granite joints and sandstone joints. Ban et al. [40] also 
took into account the real contact asperity distribution and proposed a semi-empirical 
model. Additionally, there are many empirical models for predicting the peak dilation 
angle and shear strength of rock discontinuities, as listed in Table 1. These models provide 
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generality of these models has not been well-addressed and some model parameters lack 
clear physical meaning. From an engineering practicality point of view, an ideal model 
should be able to accurately assess the peak dilation angle in a time-saving, labour-saving, 
and cost-effective way. 
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The dilation is also inherent to failure in specimens starting from intact material, and
it is a fundamental parameter for models with softening or hardening behaviour, also
modified by the average stress level acting along the stress path. Currently, numerous
experimental studies [34,35] on the peak dilation angle have been carried out. Moreover,
theoretical analysis and many empirical models [36,37] were established based on the
concept of maximum dilation angle at zero normal stress. These models have some
shortcomings. For example, Xia et al. [38] proposed a new empirical model by tensile
joint replicas satisfying new peak dilation angle boundary conditions under zero and
critical state normal stresses. However, as the normal stress increases, the peak dilation
angle predicted by the Xia et al. [38] model is half of the initial dilatation angle, which
is inconsistent with the actual behaviour [39]. For this, Yang et al. [39] established a new
empirical model based on the shear test results of granite joints and sandstone joints. Ban
et al. [40] also took into account the real contact asperity distribution and proposed a
semi-empirical model. Additionally, there are many empirical models for predicting the
peak dilation angle and shear strength of rock discontinuities, as listed in Table 1. These
models provide a valuable basis for understanding and predicting the peak dilation angle.
However, the generality of these models has not been well-addressed and some model
parameters lack clear physical meaning. From an engineering practicality point of view, an
ideal model should be able to accurately assess the peak dilation angle in a time-saving,
labour-saving, and cost-effective way.
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Table 1. An overview of existing shear strength models.

References Shear Strength Model Peak Dilation Angle
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)]
ip = JRC · log10

(
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σn

)
[37] τp = σntan
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[
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(
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[40] /
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[
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log( σn
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C

]
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θ∗max
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(
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log( σn
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C

)
[22] / ip = θ∗max
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θ∗cr1C
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C+1
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Rock materials exhibit complex behaviours and a high level of uncertainty under
laboratory testing [49–54]. Machine learning (ML) techniques have been developed and
used by an increasing number of researchers in the last several decades [55–62]. Compared
with traditional test methods and empirical models, ML can effectively find implicit re-
lationships between variables and well handle nonlinear problems [63,64]. The support
vector regression (SVR) algorithm presents high accuracy and efficiency in modelling the
nonlinear association between input variables and outputs, and it has been widely used
in rock mechanics modelling in recent years [65]. For example, Huang et al. [66] used the
joint roughness coefficient (JRC), uniaxial compressive strength, normal stress, and basic
friction angle as the input variables of the SVR model to intelligently predict the shear
strength. Under the framework of SVR, Babanouri and Fattahi [67] proposed a new shear
constitutive model of rock discontinuity. Ceryan et al. [68] developed an SVR model to
predict the elastic modulus of rock materials with different degrees of weathering. Recently,
Xu et al. [69] used SVR to study multiple geomechanical properties of rock materials. In
conclusion, SVR exhibits several distinct advantages when tackling challenges involving
high-dimensional and nonlinear recognition problems.

It can be noted that the peak dilation angle model of rock discontinuities is a very
topical issue. Therefore, the purpose of this study is to provide an efficient method for
predicting the peak dilation angle of rock discontinuities and to achieve this. The grid
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search optimization algorithm (GS) is introduced to improve the effect of the SVR, and a
hybrid machine learning model, the GS-SVR model, is proposed. In addition, to show the
development process of the proposed model, detailed analysis and model performance are
also presented. Finally, the limitations and future development progress of the proposed
model are outlined.

2. Methodological Background
2.1. SVR

As a typical kernel-based ML algorithm, SVR is a promotion of support vector ma-
chine (SVM). It also follows the function approximation algorithm of SVM and solves the
multivariate nonlinear regression estimation problem by introducing an alternative loss
function [70]. As a supervised learning method based on the principle of structural risk
minimization, SVR has good generalization ability in solving small-sample, nonlinear, and
high-dimensional problems [71]. Because it is a convex quadratic optimization technique, it
can always achieve the global optimal solution [72]. Figure 2 displays a schematic diagram
of the SVR employed in this paper. SVR uses nonlinear mapping to translate the input
vector X into a space with higher dimensions. More details about SVR and its application
can be found in other milestone papers [73–75]. In this work, SVR is chosen as the regres-
sion tool to predict the peak dilation angle because of its high generalization performance.
It is worth mentioning that the relationship between peak dilation angle and underlying
variables is nonlinear, high-dimensional, and the training data are generally not large. That
circumstance is particularly suitable for SVR.
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For a certain set of training data {(x1, y1), (x2, y2), . . .(xn, yn)}, the aim is to seek an
optimal function f (x) that has at most ε deviation from the target values ytar for all the
training data. The optimal function f (x) that has the most ε deviation from the target value
in ε-SVR can be written as Equation (1):

f (x) =
N

∑
n=1

ωϕn(x) + b (1)

where ω is the weight vector, b is the model error, N represents the total number of training
data, ϕn(x) denotes a nonlinear mapping function.

Subsequently, the overall optimization is optimally transformed into Equation (2).

Minimize
1
2
‖ω‖2 (2)

where the Euclidean norm 1
2‖ω‖

2 is 1
2 ωTω.

The constraints of Equation (2) are shown below:{
yi −ωxi − b ≤ ε

ωTxi + b− yi ≤ ε
(3)
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By introducing two slack variables ξi and ξi
∗ (i = 1, 2. . ., n) into Equation (3) rep-

resenting the separation between the actual values and corresponding boundary values
of ε-deviation. Further, the w and b can be determined by minimizing the following
optimization function

Minimize 1
2‖ω‖

2 + c
n
∑
i

(
ξi + ξ∗i

)

Subject to


yi −ωT ϕ(xi)− b ≤ ε + ξi
ωT ϕ(xi) + b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0

(4)

where c is the regularization or penalty parameter that is greater than zero.

The 1
2‖ω‖

2 term denotes the structure risk and the c
n
∑
i

(
ξi + ξ∗i

)
second term represents

the empirical risk. Equation (4) is a constrained optimization problem that can be trans-
formed in the form of a Lagrange function L(α, α*) by sequential minimal optimization
algorithm in a dual form:

Maximize L(α, α∗) = − 1
2

n
∑

i=1

n
∑

j=1
(αi − αi

∗)
(
αj − αj

∗)K(xi, xj
)
+

n
∑

i=1
yi(αi − αi

∗)− ε
n
∑

i=1
yi(αi + αi

∗)

Subject to


n
∑

i=1
(αi − αi

∗) = 0

0 ≤ αi ≤ c
0 ≤ αi

∗ ≤ c

(5)

where αi and αi
* are the Lagrangian multipliers, K(xi,xj) = ϕ(xi)ϕ(xj) is the kernel function

that yields the inner product in a higher-dimensional feature space.
By using K(xi,xj), one can directly transform the data into a higher-dimensional feature

without calculating the explicit map ϕ(x). In this paper, the radial basis function kernel
function (RBF) is employed because of its high generalization performance.

K
(
xi, xj

)
= e(−g‖xi−xj‖)2

(6)

where g denotes the kernel parameter, ‖xi − xj‖ is the Euclidean distance.
The nonlinear regression function can be expressed as follows after taking the La-

grangian and optimum conditions into account:

f (x) =
N

∑
n=1

(αi − αi
∗)K

(
xi, xj

)
+ b (7)

2.2. GS Optimization

In order to achieve accurate prediction, an important issue to be concerned with in
implementing the SVR model is the tuning of hyperparameters (e.g., penalty parameter
c and width parameter g). The trade-off between model complexity and training error is
controlled by c, while the complexity of the solution is determined by g. The tuning process
is generally completed through optimization algorithms.

As a classical parameter optimization method, the grid search (GS) method is proved
to be an efficient optimization method with ideal convergence speed and success rate [76]. It
is a method of optimizing the performance of a model by traversing a given combination of
parameters, by testing all combinations of a given parameter and finding the most suitable
combination. The specific optimization process is shown in Figure 3. The evaluation metrics,
such as root mean square error (RMSE), coefficient of determination (R2), and mean squared
error (MSE), are obtained using K-fold cross-validation for all hyperparameter combinations
of the selected grid nodes. The best combination of c and g, which resulted in the best
performance of the evaluation metrics, was selected for subsequent model validation.
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3. Data Pre-Processing

A dataset with reliable experimental results and wide distribution is a prerequisite
for the successful application of ML modelling [77,78]. Based on the literature review of
the existing research method [39,40], six parameters, including normal stress, basic friction
angle, three-dimensional roughness parameters, and uniaxial compressive strength, were
selected as the input variables of the proposed model.

The results of joint shear tests available in the literature are compiled. The dataset
consists of 89 shear test results from various experimental results collected by the authors.
These test results cover common joint types, such as cement mortar [40], granite [39,79],
sandstone [38,39,80], marble [79], and limestone [79], and the projected lengths of these
rock discontinuities ranged from 140 to 300 mm. More information on sample preparation
procedures can be found in the corresponding literature. Detailed information on rock type,
sample size, normal stress (σn), mechanical properties (uniaxial compressive strength σc
and basic friction angle ϕb), three-dimensional roughness parameters (A0, C, θmax

*), and
measured peak dilation angle (ip) collected in the dataset are shown in the Supplemental
Files. A detailed statistical description of the input variables and output variable is shown
in Table 2. As shown, there is an evident difference in the data distribution (e.g., data scope,
magnitude difference) for variables. Therefore, in order to speed up the computational
efficiency and convergence of ML, all inputs and output need to be normalized to (0,1)
range according to their maximum and minimum values. The normalization formula is
shown in Equation (8) as follows: 

x′i =
xi−xmin

xmax−xmin

y′i =
yi−ymin

ymax−ymin

(8)
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where xi
′ and yi

′ represent normalized input and output values of the i-th sample; xi and
yi represent experimental input and output values of the i-th sample; xmin, xmax, ymin, ymax
represent corresponding minimum and maximum values.

Table 2. Statistical description of inputs and output.

Variables Type Maximum Minimum Mean Standard Deviation Kurtosis Skewness

A0 Input 0.69 0.43 0.51517 0.05727 2.76052 1.54207
C Input 13 3.21 8.12258 2.18752 −0.36112 −0.43657

θmax
* (◦) Input 90 39 68.11685 12.15342 −0.65228 −0.30474

σc (MPa) Input 173 10 64.52247 54.23245 −0.33911 1.08714
σn (MPa) Input 8 0.2 1.95169 1.48853 4.13201 1.80875

ϕb (◦) Input 37 28 33.53933 2.64169 −0.13365 −0.66941
ip (◦) Output 39.3 8.5 24.89888 6.32154 −0.02348 −0.1438

The distribution characteristics of the dataset are visualized by means of a violin plot,
as shown in Figure 4. It combines the features of a kernel density plot and a box plot while
showing the first quartile, median, and third quartile of the dataset. A matrix analysis
was plotted to show the correlation coefficients between the variables, with negative
numbers representing negative correlations. It is easy to see from Figure 5 that all the
correlation coefficients are less than 0.53, which indicates that these input variables are
independent of each other and do not cause multicollinearity problems. Moreover, the
correlation coefficients between the input and output variables are relatively low (all values
are less than 0.35 in absolute value), which indicates that the relationship between the
peak dilation angle and these inputs is not a simple multivariate linear relationship but
a complex nonlinear mapping relationship. In other words, it is difficult to establish an
explicit equation between the peak dilation angle and the inputs. This is the reason why
machine learning methods are used to predict the peak dilation angle in this paper.
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4. Results and Comparisons
4.1. Hyperparameters Tuning Process

The hyperparameters c and g have a significant effect on the performance of the
prediction model. The grid is divided into a range of coordinates and according to a
specified step, and all grids are traversed. The evaluation metrics (e.g., RMSE and MSE) are
obtained by searching all combinations of parameters c and g for each selected grid node
one by one using K-fold cross-validation. K-fold cross-validation is a statistical technique
that can successfully remove the training bias brought on by sampling irrationality [73].
Subsequently, the search range and step are then adjusted according to the values of the
evaluation metrics, and the best combination of c and g is the one that provides the best
performance of the model cross-validation metrics. As shown in Figure 6, the search
range for c and g was set to (2−5,25) with a step of 20.2. All grids were traversed and all
combinations of parameters c and g were searched for each selected grid node one by one.
The best model was determined with the lowest value of MSE using 5-fold cross-validation.
Optimal solutions for the parameters in the search range are obtained in the optimal choice
of parameters c and g.

After obtaining the optimal combination of hyperparameters, the framework of the
GS-SVR model for estimating the peak dilation angle is shown in Figure 7. In machine
learning, a training set is typically used to build the model and verify the model’s ability to
predict new data on an independent test set [81]. Therefore, the original dataset is randomly
divided into two subsets after the dataset normalization: the training set and the test set.
Through optimization analysis, 80% of the entire dataset was included in the training set
and the remaining 20% was included in the test set.
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4.2. Performance of GS-SVR Model

The coefficient of determination (R2), adjusted R2 (Adj. R2), root mean square error
(RMSE), and mean absolute percentage error (MAPE) have been widely used for the
performance evaluation of ML. These four evaluation indices are used to characterize
the relationship between the predicted and test values of the peak dilation angle. R2

is a comprehensive metric to measure how strong the relationship is between the two
variables. Adj. R2 represents the ability to accurately predict samples. The RMSE is a metric
for how much actual values vary from the average of the estimated values. The MAPE
measures the average relative error between the estimated and actual values. Generally, R2

(Adj. R2) values equal to 1 and RMSE (MAPE) values equal to 0 indicate the best prediction
performance. The mathematical expressions for these four evaluation indices are listed
below [82]:

R2= 1−

N
∑

i=1

(
ym

i − yp
i

)2

N
∑

i=1

(
ym

i − ym
)2

(9)

Adj.R2 = 1−
[(

1− R2
)
× N − 1

N −m− 1

]
(10)

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣ym
i − yp

i

ym
i

∣∣∣∣∣× 100% (11)

RMSE =

√√√√ 1
N

N

∑
i=1

(
ym

i − yp
i

)2
(12)

where yi
m is the measured results; yi

p is the predicted results; ym is the average of yi
m; N

represents the number of samples; m represents the number of input variables.
In order to highlight the predictive performance of the proposed model, the original

SVR model is also applied to the training set and test set. Figure 8 shows the prediction
effect of the two models on the same training set and test set. The calculation of evaluation
indices of the two models is shown in Table 3. It can be found that, compared with the SVR
model, the GS-SVR model has a higher correlation coefficient (R2 and Adj. R2) and smaller
error index (MAPE and RMSE). Figure 8b indicates that the GS-SVR model underestimates
most of the test set and this is conducive to leaving some safety redundancy in engineering.
Regardless of the training set or the test set, the predicted results of the GS-SVR model are
distributed near the ideal fit line, and the predicted values are closer to the experimental
results than the original SVR model. The values of evaluation indices shown in bold rows
in Table 3 also indicate that the predicted values of the GS-SVR model are more consistent
with the experimental values, and the predicted results are more accurate than those of the
original SVR model.

Table 3. Performance comparison of the proposed GS-SVR and SVR models.

Model
Training Set Test Set

R2 Adj. R2 RMSE MAPE R2 Adj. R2 RMSE MAPE

GS-SVR 0.959 0.959 1.138 3.1% 0.891 0.884 1.798 10.8%
SVR 0.868 0.866 2.102 7.8% 0.780 0.767 3.237 12.7%
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4.3. Comparison with Existing Models

In order to verify the superiority of the new model, the proposed model is compared
with six existing analytical models. The proposed model, Ban et al. (2023) model [22],
Ban (2020) model [40], Grasselli (2001) model [79], Xia (2014) model [38], Yang (2016)
model [39], and Tatone (2010) model [80] were, respectively, applied to this database, and
the predictions of each model are shown in Table 4.

Table 4. Comparison between the measured peak dilation angle and the calculated values by
different models.

Rock Type

Peak Dilation Angle (◦)

Measured GS-SVR
Model

Ban (2023)
Model [22]

Ban (2020)
Model [40]

Xia (2014)
Model [38]

Yang (2016)
Model [39]

Grasselli
(2001)

Model [79]

Tatone
(2010)

Model [80]

Sandstone
[80]

36.4 32.63 32.4 33.2 33 24.5 33.8 33.6
32.1 32.39 31.7 31.7 30.2 24.6 31.2 31.6
31.1 30.82 28.9 29.1 27.3 23.3 28.8 29.2
30.3 27.30 30.4 30.3 27.3 24.8 27.6 28.6
28.5 25.85 29 29.3 25.7 24.4 26.1 27.1
27.6 29.01 27.2 27.1 23.1 22.9 24.2 25
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Table 4. Cont.

Rock Type

Peak Dilation Angle (◦)

Measured GS-SVR
Model

Ban (2023)
Model [22]

Ban (2020)
Model [40]

Xia (2014)
Model [38]

Yang (2016)
Model [39]

Grasselli
(2001)

Model [79]

Tatone
(2010)

Model [80]

Sandstone
[38]

24.6 18.32 19.7 19.7 17.3 18.4 22 22.4
15 15.75 17 17 15.1 16.6 18.1 18.8

14.7 14.41 15.4 15.4 13.6 14.9 15.1 15.8
13.3 13.38 14.2 14.2 12.6 13.4 12.8 13.6
8.5 8.44 12.4 12.4 11.4 10.9 10.1 10.7

31.2 28.29 28.5 28.6 24.5 24.9 24.5 25.1
25.3 25.0 24.9 24.9 20.7 22.9 19.9 20.8
20.7 21.80 22.6 22.6 18.5 21 16.9 17.8
19.3 18.85 20.9 20.9 17.2 19.2 15.1 15.8
13.1 14.09 18.4 18.4 16.1 16.2 13.5 13.9
39.3 35.78 31.2 31.4 36.9 25.6 26.5 27
32.6 32.31 27.7 27.8 31.9 23.6 22.6 23.4
27.6 28.81 25.5 25.5 28.6 21.7 19.6 20.5
25.4 20.54 23.8 23.8 26.4 20 17.5 18.4
19.5 19.78 21.3 21.3 24.1 17 15.2 15.8

Sandstone
[39]

37.1 33.40 28.3 38.9 29 29 29 29
26.2 26.48 28.2 39.9 38.6 31.5 29 29
29 29.29 29.9 34.5 29 29 25.2 25.2
29 29.96 28.6 31.2 22.9 27.6 22.9 22.9

24.3 24.59 27.1 28.6 24.3 26.8 21.5 19.9
29 22.47 28.8 31.8 27.2 28.1 21.7 20.5

27.4 25.95 26.2 27.5 19.7 25.8 18.6 17.3
26.2 25.91 25.5 26.7 18.1 25.4 17 17
24.4 24.69 23.7 24.5 15.8 24.4 15.8 14.7
27.3 21.03 25.8 27.3 19.9 25.6 17.5 16.6

Marble [79]

25.9 26.06 27.5 30.2 27.2 25.9 27.2 27.2
16.1 16.38 20.3 20.3 20.4 17.2 24.6 24.6
17.1 19.32 23.5 23.9 19.2 21.2 25.9 25.9
19.9 20.19 20.6 20.9 21.2 19.5 22.1 22.5
22.5 22.20 20.4 20.6 21.9 18.6 23.6 23.6
21.9 20.92 20.3 20.6 17.9 20 22.5 23
19 19.67 19.2 19.4 19 20.4 21.2 22.1

22.1 21.80 19.2 19.4 17.7 19.6 20.9 21.7
23 22.54 17.9 18 17.9 17.2 22.5 22.5

22.9 22.61 24 24.4 22.9 21.2 25.9 25.9
22.2 21.91 22.8 23.1 19.5 20.4 26.6 25.3
17 17.27 19.8 20.3 20.5 17 14.9 17

10.5 10.78 8.4 8.4 14 4.9 12.3 11.1
10.8 10.41 13.8 14 16.3 9.5 29.1 13.1

Granite [79]

34.1 33.81 35 42.3 33 35.7 29.5 30.4
33.7 33.99 34.3 44.5 36.5 35.7 31.8 32.2
31.5 30.10 34.2 36.9 31.5 29 29 29.6
31 30.71 33.9 35.4 29.1 25.5 30.1 30.1

34.9 31.36 34.6 42.6 33.5 32.7 31 31.9
34.2 34.49 34.8 42 32.7 31.9 31 31.9
35.6 35.31 33 44.6 38.8 32.7 32.7 33.5
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Table 4. Cont.

Rock Type

Peak Dilation Angle (◦)

Measured GS-SVR
Model

Ban (2023)
Model [22]

Ban (2020)
Model [40]

Xia (2014)
Model [38]

Yang (2016)
Model [39]

Grasselli
(2001)

Model [79]

Tatone
(2010)

Model [80]

Granite [39]

27.9 27.63 27.6 34.2 33.2 28 28 28
28.7 28.98 27.9 32.2 28 28 27.1 27.1
29.4 28.67 27.1 29.7 23.8 27.4 25.1 25.1
27.1 27.39 27 29.8 24.9 27.1 24.4 24.4
24 24.18 23.8 24.8 19.5 24 21.4 21.4

22.7 22.99 23.1 23.9 19.2 23.4 20.4 20.4
22.6 20.57 22.2 22.8 20 22 19.6 20
25.8 25.52 24.8 26.4 23.4 24.4 20 20.3
23.3 23.01 23.4 24.5 19.7 23.3 18.3 18.6
23.8 24.09 25.1 27.1 22.3 24.8 19 19

Limestone
[79]

28.1 28.39 26.9 30.5 27 28.1 24.6 25.9
27 27.28 28 35.4 28.1 31.7 28.1 28.1
20 19.70 19.7 20.4 19 17.9 20 19
26 23.93 24.8 27.1 24.9 23.2 23.2 22.5

22.1 22.39 23.8 26.2 24.1 23.1 23.1 22.7
28.1 28.39 27.9 33.4 33.3 28.1 28.1 28.1
21.6 21.30 23.5 25.5 25.8 21.6 21.6 21.6

Cement
mortar [40]

33.6 30.27 24.6 24.7 25.7 21.7 24.7 25.4
25.2 26.73 21.5 21.5 23.1 20 20.9 21.5
22.5 23.33 19.5 19.5 21.3 18.4 17.7 18.5
20.5 20.22 18 18 20 17 15.5 16.3
30.3 25.53 21.5 21.5 22.9 19.6 23.6 24
22.5 21.53 18.6 18.6 20.7 17.7 20 20.7
21.2 21.48 16.8 16.8 19.1 16.3 16.9 17.7
19.4 19.10 15.5 15.5 18.1 15 14.7 15.5
32.1 27.02 23.8 23.9 27.9 22.1 24.7 25
23.8 24.31 20.7 20.8 25.4 20 21.3 21.9
21.8 20.09 18.8 18.8 23.5 18.1 18.4 19.3
19.9 19.62 17.4 17.4 22.1 16.3 16.3 17.1
26.3 26.01 22.7 22.7 27.9 20.5 24.3 24.7
20.5 22.88 19.8 19.8 25.4 18.7 21.3 21.9
19.7 19.99 18 18 23.6 16.9 18.5 19.3
18.2 17.47 16.6 16.7 22.3 15.4 16.4 17.3
36.2 33.91 27.9 28.1 33.2 23.3 26.7 27
27.6 25.92 24.7 24.8 29.8 21.5 22.9 23.6
23.1 25.19 22.6 22.7 27.3 20 19.9 20.7
21.5 21.21 21 21.1 25.5 18.6 17.7 18.5

In order to make the estimation results more vivid, the estimation results and errors
of each model are drawn, as shown in Figure 9. It can be seen from Figure 9 that the
estimation performance of the GS-SVR model is significantly better than the other six
models. The four evaluation indices shown in Figure 9 also indicate that the GS-SVR model
outperformed the other six models in terms of predicting the peak dilation angle. That
is, the lowest MAPE = 4.5% (RMSE = 1.663) and the highest R2 = 0.917 (Adj. R2 = 0.916)
values for the dataset were obtained from the GS-SVR model. From this point of view, the
GS-SVR model is easier and more robust than existing models. Interestingly, the evaluation
indices for both training set (R2 = 0.92, RMSE = 1.138) and test set (R2 = 0.891, RMSE = 1.798)
were similar to that obtained using the dataset (R2 = 0.917, RMSE = 1.663), which also
suggests the GS-SVR model has similar accuracy in both fitting and prediction and has
high generalizability.
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5. Discussion
5.1. Relative Importance of Inputs

A sensitivity analysis of diverse input variables is carried out for a better understand-
ing of the peak dilation angle. The method used for interpreting the relative importance of
input variables is Kendall’s tau coefficient. Figure 10 demonstrates the obtained relative
importance scores for each input variable. Note that each input variable contributes to the
peak dilation angle, but with different levels of significance. It can be seen that the σn is the
most sensitive variable for peak dilation angle. The influence of the A0 on the peak dilation
angle is found to be the smallest among the input variables. The relative importance score
of each input variable revealed important discoveries and indicated potential experimental
studies of peak dilation angle. These findings might provide a more detailed understanding
of the peak dilation angle and present potential experimental studies in the future.
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5.2. Contribution and Limitations

The primary advantage of this study is that a machine-learning-based model for
predicting peak dilation angle is proposed. This method can provide a low-cost, time-
saving, and non-destructive prediction of peak dilation angle for relevant geotechnical
engineering, especially for projects with time and budget constraints.

Compared with the existing prediction models, the method has the following advan-
tages: (1) the GS-SVR model does not require any mechanical testing after model training
is completed; (2) the generalization capability of the GS-SVR model can be easily improved
using large datasets, which may be better than the empirical equations established between
the peak dilation angle and each influencing variable; (3) compared with the six analytical
models to predict peak dilation angle, the advantages of ML techniques are strong data
compatibility and model generalization. The accuracy of the GS-SVR model is the highest
relative to the six analytical models.

There are still some shortcomings that need to be explored in the future. The scale
effect is an important research topic in rock mechanics, and the effect of scale on shear
mechanical behaviour of rock discontinuities is still unknown. In rock engineering design,
the accurate understanding and mastering of the law of rock scale effect is related to the
selection of rock mechanics parameters. How to extend the proposed model based on
laboratory test results to the engineering scale is the next important research topic, and
how to apply this model to industrialization is also an interesting direction. It might be
necessary to create a graphics user interface (GUI). The omission of factors such as water
content, shear displacement rate, and temperature is also a clear limitation of this study. In
addition, as a data-driven approach, the predictive performance of the proposed model
is severely affected by the quantity and quality of the Supporting Dataset. The method
might be limited in some cases if there are information restrictions or not enough rock
samples available. The final limitation is that the generalization capability of the proposed
model on completely unknown test results (e.g., not included in this dataset) has not been
fully investigated.

6. Conclusions

This paper intends to provide an efficient method for predicting the peak dilation
angle of rock discontinuities using a machine learning tool. The method is a hybrid GS-SVR
model, which incorporates support vector regression (SVR) techniques and augments with
the grid search optimization algorithm to improve prediction performance and optimize
hyperparameters. To train and evaluate the proposed model, relevant datasets from
experimental tests on various rocks were retrieved and GS and K-fold cross-validation
methods were adapted to eliminate the overfitting or underfitting problem of the SVR
model. From the analysis results, it is found that the hybrid GS-SVR model has higher
prediction accuracy and less error compared with the original SVR model and existing
analytical models. In addition, a sensitivity analysis was performed to examine the relative
importance score of the three input variables (three-dimensional roughness, normal stress,
and basic friction angle). The normal stress has the greatest effect on the peak dilation
angle, followed by the basic friction angle and the least three-dimensional roughness.
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Abbreviations

τp Shear strength
ip Peak dilation angle
i0 Dilation angle under zero normal stress (◦)
ϕb Basic friction angle
k1k2 Fitting constant
SRP Stationary roughness profile
p, q Regression coefficients
C Roughness parameter characterizing distribution of apparent dip angles over joint surface
θA Average angle of asperities facing shear direction
JRC Joint roughness coefficient
JCS Joint wall compressive strength
σn Normal stress
σc Uniaxial compressive strength
a, c, d Fitting constants
σt Tension strength
A0 Maximum potential contact area for the specified shear direction
θmax Maximum apparent dip angle (◦)[
θp
]

x Average of the mean profile angles
θ∗cr2 Fitting constant
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