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Abstract: S- and Se-based chalcogenide glasses are intrinsically metastable and exhibit a number
of photo-induced effects unique to this class of materials, reversible photostructural changes and
photo-induced anisotropy being major examples. These effects are usually interpreted in terms of
the formation of valence alternation pairs and ‘wrong’ bonds. In this work, using density functional
theory simulations, we demonstrate for the case example of As2S3 that a strong decrease in the optical
band gap can be achieved if a polymorphic transformation of the local structure from orpiment to
that of tetradymite takes place. For the formation of the latter, the presence of lone-pair electrons in
near-linear atomic configurations is crucial. Our results represent a novel approach to understand-
ing the photo-induced structural changes in chalcogenide glasses as being due to the presence of
polymorphism, and will lead to their wider use in various photonic devices.

Keywords: chalcogenide glasses; photostructural changes; polymorphism; density functional theory

1. Introduction

Tellurium-based chalcogenides, also known as phase-change alloys such as GeTe and
Sb2Te3, are widely used in optical memory devices (compact discs, digital versatile discs
and Blu-ray discs) as well as in so-called phase-change random access memory (PC-RAM)
devices. In these applications, the information is stored in the structure of the material,
which can be controllably changed during a reversible transition between the amorphous
and crystalline states. The amorphous phase (RESET state) is less reflective and highly
resistant, while the crystalline phase is more reflective and less resistant. The capability of
these chalcogenides to undergo a fast and reversible crystallization–amorphization process
is due to the poor glass-forming ability of Te-based chalcogenides.

Chalcogenides, based on lighter elements such as sulfur or selenium, on the other
hand, are good glass formers and form very stable glasses. As such, being intrinsically
metastable, their structure can be reconfigured within the amorphous phase. Consequently,
chalcogenide glasses, of which As2S3 is a classic representative, exhibit a number of photo-
induced phenomena, such as reversible photostructural change, photo-induced anisotropy,
photo-induced volume expansion, etc. (for reviews, see [1,2]). Reversible photostructural
change, experimentally detected by structure-sensitive techniques such as Raman scatter-
ing [3], X-ray scattering [4] and extended X-ray absorption fine structure (EXAFS) [5,6],
manifests itself as photodarkening [7] when the optical band gap decreases upon illumi-
nation. The initial properties can be restored by subsequent annealing at temperatures
close to the glass-transition temperature. The band gap decrease depends on the material
composition and can reach a value as large as 0.3 eV [8], which is close to 15% of the initial
gap value. The photodarkening is usually accompanied by volume expansion [9,10]. When
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glasses are exposed to linearly polarized light, photo-induced dichroism and birefringence
are also observed [11]. The photo-induced anisotropy can be reoriented if the polarization
of the light is changed [12]. In addition, chalcogenide glasses are highly transparent into
the infrared region of light.

These properties enable numerous photonic applications [13–15]. The high trans-
parency of chalcogenide glasses in the spectral region of 2–25 µm makes them an attractive
material for optical fibers and waveguides for communications and optical systems [16].
The high material non-linearity opens up the possibility of their use in non-linear opti-
cal devices [17]. Photodarkening, which is accompanied by a change in refractive index,
and allows one to engineer the properties of these materials in a controllable way, can be
used to create waveguides in evaporated films [18], fabricate Bragg gratings [19] and dis-
tributed laser mirrors [20], to name a few. The photo-induced change in chemical reactivity
makes them high-resolution photoresists [21,22]. Surface modification such as photoex-
pansion [10,23,24] allows one to fabricate lenses without the need to etch the materials. Of
special interest is direct surface relief laser writing on chalcogenide glasses such as As2S3
using femto-second laser light [25–28].

In order to develop novel applications of photo-induced phenomena in chalcogenide
glasses, an atomistic-level understanding of structural changes is needed. Various models
have been proposed to account for the observed changes, such as bond switching [29],
the formation of photo-induced valence alternation pairs [5] and the formation of ‘wrong’
bonds [3]. It was also proposed that so-called soft modes may serve to generate states
with negative correlation energy responsible for photodarkening [30]. Computer studies
also concluded that interchain interaction was enhanced in selenium as evidenced by
the formation of dynamic covalent bonds between neighboring layers [31]. In this work,
we propose a novel approach to photostructural changes based on a lone-pair-enabled
polymorphism of the local structure.

2. Simulation Details

Density functional calculations of the orpiment and tetradymite phases were carried
out at 0 K using the plane-wave pseudopotential-based code CASTEP [32]. The Vander-
bilt ultrasoft scalar relativistic pseudopotentials [33] were chosen to describe electron–ion
interactions. The As 4s24p3 and S 3s23p4 electrons were assigned to valence electrons.
The exchange-correlation term was evaluated within the generalized gradient approxima-
tion (GGA) using the PBE functional [34] as implemented in CASTEP. The cut-off energy of
330 eV was used, based on a convergence study. The simultaneous convergence criteria
were set to the following values: energy—5 × 10−6 eV/atom; max. force—0.01 eV/A; max.
stress—0.02 GPa; max. displacement—5 × 10−4 Å. Phonon dispersion spectra were calcu-
lated for equilibrium geometry using the linear response approach or density functional
perturbation theory (DFPT) [35] and its CASTEP implementation within the plane-wave
pseudopotential formalism [36].

The amorphous phase was generated by the following ‘melt-quench’ procedure [37].
The initial (crystalline) structure was randomized by heating the structure to 3000 K over
a period of 20 ps followed by cooling to a temperature just above the melting point
900 K over a period of 45 ps followed by quenching from 900 to 300 K over a duration
of 15 ps. essentially A total of 240 atoms were included in the simulation cell with a
density 3.49 g/cm3. Ab initio molecular dynamics calculations were carried out using
the plane-wave pseudopotential code VASP using an NVT ensemble [38] with a Nosé
thermostat. The gamma point and a Gaussian smearing of 0.05 eV were used for Brillouin
zone integration. A value of 260 eV was chosen for the plane-wave cutoff as recommended
by the VASP developers. The Perdew–Burke–Ernzerhof exchange-correlation functional
was utilized [34]. The projected-augmented wave method [39], in which the outermost
s-and p-electrons were treated as valence electrons, was used to correct for the effect of the
core electrons within the augmentation sphere [40].



Materials 2023, 16, 6602 3 of 9

3. Results and Discussion

First of all, we ask the question ‘Why the absorption changes under photoexcitation in
some glassy materials but not in others?’ The answer, we believe, is linked to the nature of
the band gap in glasses. The gap in crystals, in most treatments, is closely related to the
Bragg reflection of the electron waves by the crystal lattice (at edges of the Brillouin zone)
and its mathematical treatment is based on the assumption of long-range order in a perfect
crystal. Glasses do not have a periodic structure and consequently do not give a sharp
Bragg reflection. Then, “how can glass be transparent?” asks Sir Nevill Mott in his Nobel
lecture [41]. An answer to this question can be traced to A.F. Ioffe [42], who proposed that
optical properties of materials are primarily determined by the short-range order. It is not
surprising, therefore, that most glasses possess properties very similar to their crystalline
counterparts. This fact has long been known as the Zachariasen paradigm [43], stating that,
if a glass is formed from a crystal, their optical properties are fairly the same, since glasses
must be considered as the media maintaining the local bonding structure of their parent
crystals and losing only the long-range order.

The crucial point of the Zachariasen paradigm is that the glass “maintains the local
bonding structure of the parent crystal”. But what happens if a glass is a ‘child’ of several
different ‘parent’ crystals? Obviously, such a glass may have fragments with local structures
reminiscent of different crystalline phases, or different polymorphs. In this case, the proper-
ties of the glass will be determined by the crystalline polymorph whose local structure the
glassy phase inherited. Since electronic excitation can cause transitions between different
crystalline polymorphs [44,45], it is not unnatural to assume that a similar process can take
place in a glassy phase. In other words, we argue that a precondition for photostructural
changes to occur in glasses is the presence of polymorphism in the related crystals.

In this section, we consider the effect of the bonding nature and local bonding ge-
ometry in As2S3 on the phase stability and optical properties of the material. Because, as
mentioned above, the local structure of an amorphous material usually resembles that of
the corresponding crystal [43,46], we model the local structure of the glass by those of the
corresponding crystalline polymorphs. Here, it is interesting to note that while crystals such
as As2S3 and As2Se3 possess the orpiment structure, their isoelectronic homologues Sb2Te3,
Bi2Se3 and Bi2Te3 crystallize into a layered tetradymite structure. The latter attracted much
attention for being robust three-dimensional topological insulators [47]. In Figure 1, we
show the orpiment (left) and tetradymite (right) structure of AV

2 BVI
3 , where yellow circles

correspond to chalcogen atoms and violet circles depict pnictogens.

Figure 1. The orpiment (a) and tetradymite (b) structures of AV
2 BVI

3 . Pnictogen atoms are shown in
violet and chalcogen atoms are yellow.

As mentioned above, these two groups of AV
2 BVI

3 materials are isoelectronic but form
very different structures. In the orpiment structure, covalently bonded fragments are
formed with all elements satisfying the 8–N rule [48], i.e., chalcogen atoms are two-fold
coordinated and pnictogens are three-fold coordinated. The interaction between covalently
bonded blocks is usually described as being of van-der-Waals type. Heavier chalcogenides
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and pnictides typically form a tetradymite structure based on quintuple layers (QLs) with
the stacking sequence of C-P-C-P-C, where C stands for chalcogens and P corresponds to
pnictogens. The outermost chalcogen atoms in the quintuple layer are three-fold coordi-
nated, with all other atoms being octahedrally coordinated. In both cases, the 8–N rule
is violated.

The octahedral local coordination in the tetradymite structure is enabled by the pres-
ence of p-orbitals that can serve to form covalent bonds. For example, in AIVBVI crystals,
the cubic (rhombohedrally distorted, to be exact) structure can be formed if Te atoms
formally donate two electrons to a group IV element, such as Ge or Sn. The combination of
a Te lone-pair and an empty p-orbital of Ge (Sn) allows for the formation of a dative bond,
making both Te and Ge (Sn) three-fold coordinated. The details can be found in [49,50].
Interaction between back-lobes of the p-orbitals involved in covalent bonding leads to the
creation of resonant (or metavalent) bonds [51,52], making participating atoms six-fold co-
ordinated. Similar multicenter bonds formed due to the presence of lone-pair electrons and
back-lobes of p-orbitals are responsible for the formation of quintuple layers in materials
such as Sb2Te3.

In Figure 2, we show an in silico amorphous As2S3 structure obtained using the
procedure described above. One can see that, indeed, in addition to AsS3 units char-
acteristic of the crystalline orpiment phase, linear atomic fragments (in some cases as
long as five atoms) and As-S-As-S square rings reminiscent of the tetradymite phase are
formed. (The tetradymite fragments are shown in somewhat brighter colours in the figure).
This result demonstrates the suitability of the proposed concept. Interestingly, such ex-
tended linear fragments were also found in the amorphous phase of Sb2Te3 [53]. It should
also be noted that similar extended fragments, called hypervalent bonds, formed due to
the presence of lone-pair electrons, were introduced by Dembovsky and Chechetkina [54]
as major defects in chalcogenide glasses.

Figure 2. In silico melt-quenched amorphous As2S3. In addition to fragments satisfying the 8–N rule,
linear fragments marked by brighter colours and As-S-As-S squares are clearly visible.

We now proceed to the stability and properties of different As2S3 structures. The or-
piment and tetradymite structures of As2S3 optimized at 0 K are shown in Figure 1 and
possess an energy difference of 0.7 eV per As2S3 formula unit with the stable phase charac-
terized by the orpiment structure. The rather large energy difference ensures that, in the
ground state of the glass, the fraction of QL-like building units is negligibly small. The bulk
tetradymite phase of As2S3, on the other hand, is characterized by a phonon dispersion
spectrum that contains imaginary modes (Figure 3), i.e., it is not stable. We suppose, how-
ever, that fragments of this structure may be created in the photo-excited state and survive
surrounded by the orpiment-like network of the glass.
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Figure 3. Phonon dispersion spectra calculated for the tetradymite phase of As2S3. The presence of
imaginary modes (shown as negative in the plot) is an indication of the phase instability.

It is informative to note that the average coordination number in the phase containing
fragments of QLs is increased compared to the orpiment phase, which is in line with the
experimental observation for elemental amorphous selenium [5]. Figure 4 compares the
calculated densities of states for the orpiment and tetradymite phases. One can clearly
see that the tetradymite structure with QLs has a significantly smaller band gap (0.7 eV
vs. 1.8 eV). Also shown are the positions of the corresponding absorption edges with that
for the tetradymite phase shifted to smaller energies, which corresponds to darkening.
A fraction of 5% of the tetradymite phase would cause a 0.05 eV edge shift, which is in
perfect agreement with the experiment. At the same time, it should be noted that the use
of the PBE functional usually results in an underestimation of the band gap; sometimes,
the difference between the calculated and experimental values can reach a value of 50%.
Consequently, a quantitative comparison of the obtained results with the experiment is not
very accurate.

Figure 4. Calculated densities of states around the Fermi level for the orpiment and tetradymite
phases demonstrate a significantly smaller band gap for the tetradymite phase. The inset shows the
simulated absorption edges for the two phases with that for the tetradymite phase shifted to smaller
energies, which corresponds to darkening.

It is interesting to note that a change between the two structures (locally) requires only
minor atomic diffusion as illustrated in Figure 5.
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Figure 5. Schematics of the photo-induced structural change in the As2S3 glass. Arsenic atoms are
shown in violet and S atoms are yellow. (a)—ground state, (b)—photodarkened state.

The significantly lower optical gap for the structure with resonantly bonded com-
plexes would account for the experimentally observed photodarkening. Furthermore, the
slightly longer As-S interatomic distances in the extended QL structure as opposed to the
classic covalent bond length (2.66 Å as opposed to 2.28 Å for the relaxed structures in
our simulations) naturally accounts for the experimentally observed volume expansion.
Since electrons located on p-orbitals have very anisotropic wave functions, the formation
of such aligned complexes due to the directionality of the excitation source as well as their
optical response to the probe beam are strongly anisotropic, which explains photo-induced
anisotropy in chalcogenide glasses [55].

Here, we would like to note that the idea of the formation of tetradymite-like struc-
tural fragments with shorter and longer bonds was initially proposed by Dembovsky
and Chechetkina as the self-organization of hypervalent bonds, or bond waves [56].
Recently, the important role of lone-pair electrons in the formation of multicenter bonds
has been stressed in various publications [57,58], underscoring their significance for
chalcogenide-based materials.

It is interesting to note some similarities between photodarkening in S- and Se-based
chalcogenide glasses and the change in optical properties during the phase-change in
tellurides [59] (e.g., for the case of GeTe-Sb2Te3, where the band gap decreases from 0.7 eV
to 0.5 eV upon crystallization). It was shown by different groups that the origin of the
observed gap decrease was the formation of resonant bonds [60,61] in the octahedral local
geometry of Ge atoms in the rock-salt-like crystalline phase as opposed to tetrahedrally
coordinated Ge atoms satisfying the 8–N rule in the amorphous phase. In other words, the
correlation between the formation of the extended multicenter, or hypervalent, or resonant,
bonds and the decrease in the optical gap seems to be a general feature for various classes
of chalcogenides.

Finally, we note that the model proposed in this work does not negate previously
suggested models such as the photo-induced creation of valence alternation pairs. It is an
independent and complementary mechanism that could account for the protodarkening
process in chalcogenide glasses.

4. Conclusions

In conclusion, we propose that due to the presence of lone-pair electrons on chalcogen
p-orbitals, aligned multicenter hypervalent complexes with resonant bonds can be formed
in S- and Se-based chalcogenide glasses in the electronically excited state that are similar in
their bonding nature to the atomic arrangement in quintuple layers of heavier chalcogenides.
The lower optical gap for the resonantly bonded structure accounts for the reversible
photodarkening and the increased interatomic distances provide a natural explanation for
volume expansion, including direct surface modification by femtosecond laser, while the
strong anisotropy of the multicenter fragments can account for photo-induced anisotropy.
Quantitative estimates are difficult to make because the PBE functional used usually
underestimates the gap value. The deeper understanding of the atomistic mechanism of
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the photo-induced changes in chalcogenide glasses proposed in this work will lead to their
wider uses in infrared photonic devices, including polarization-sensitive ones.
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