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Abstract: Tetravalent titanyl phthalocyanine (TiOPc) and titanium phthalocyanine dichloride (TiCl2Pc)
films were deposited via the high-vacuum thermal evaporation technique and subsequently struc-
turally and morphologically characterized, to be later evaluated in terms of their optoelectronic
behavior. The IR and UV-vis spectroscopy of the films displayed α- and β-phase signals in TiOPc
and TiCl2Pc. Additionally, the UV-vis spectra displayed the B and Q bands in the near-UV re-
gion of 270–390 nm and in the visible region between 600 and 880 nm, respectively. The films
presented the onset gap (~1.30 eV) and the optical gap (~2.85 eV). Photoluminescence emission
bands at 400–600 nm and 800–950 nm are present for the films. One-layer ITO/TiCl2Pc or TiOPc/Ag
and two-layer ITO/PEDOT:PSS/TiCl2Pc or TiOPc/Ag planar heterojunction devices with poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) deposited by the spin-coating technique
were constructed. In these devices, an electrical activation energy between 0.18 and 0.21 eV and a
refractive index between 1.14 and 1.44 were obtained. The devices presented a change in the J–V
curves for the illuminated and darkness conditions, as much as 1.5 × 102 A/cm2, related to the
device architecture and phthalocyanine ligand. The latter indicates that the films should be used for
optoelectronic applications.

Keywords: organic semiconductor; titanium phthalocyanine; active film; optical properties; electrical
properties

1. Introduction

Nowadays, the use of organic semiconductors with charge-carrying capabilities for
the manufacture of electronic devices is evident [1–3]. Organic semiconductors show
promise for photoconversion through their synthetic variability and their low-temperature
processing [2,4]. They have been used in photoelectronic devices and solar cells due to
their thermal stability, low cost, and an affordable simple synthesis. The right choice of the
base organic structure is a determinant aspect in the design of new organic semiconductors.
The conjugated compounds with an aromatic system extension tend to show a bigger
interaction with neighboring molecules, thus, favoring the charge transport along the
semiconductor layer. On the other hand, the material chemical structure determines the
electronic device stability and durability. The p-type semiconductors show low HOMO
orbital energy values and present good stability in the air [5,6]. Among organic p-type
semiconductors, phthalocyanines (Pcs) are representative macrocycle systems with 42 π
aromatic electrons, with a good thermal and chemical stability [1–4]. MPc molecules
are particularly appealing because of their unique optical and electrical properties [7–9],
allowing for their use in organic optoelectronic device applications and particularly in
photovoltaic devices, due to the growing interest in solar energy conversion. The Pcs also
acquire unique properties as a consequence of the metallic atom presence within the Pc,
such as Cu and Zn [10–14].
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Along with the already-mentioned Pcs with metallic atoms, there are also phthalocya-
nines with titanium tetravalent configuration, such as titanyl phthalocyanine (TiOPc) and
titanium phthalocyanine dichloride (TiCl2Pc) [15–17]. They show a p-type transport char-
acteristic, which makes them act as semiconductors. Apparently, a relationship between
the charge carrier transport type and their axial ligand also exists. The TiCl2Pc has a p-type
transport characteristic, where both the axial ligands and the electronegativity of the metal
influence the LUMO energy and the charge distribution [15]. The TiCl2Pc exhibits emission
efficiencies enough to be considered as potential infrared emitters [15,17]. On the other
hand, the TiOPc also presents a p-type transport characteristic and it is known to be one
of the organic materials that exhibits the largest photo-carrier generation efficiency, which
has been successfully tested in laser-printer technologies [13,14,16,17]. Additionally, the
TiOPc shows interesting non-linear optical properties with applications for optical disk
design [17]. However, related studies for the molecular state of TiOPc and TiCl2Pc are still
rare and titanium phthalocyanine compounds have not received extensive research and
study [18]. This results in a lack of optoelectronic properties’ correlation with their chemical
structures, which is much less explored than other Pcs [7–18]. Due to that previously
mentioned, the objective of this work is to present a comparative study between optical
properties and the charge-carrying capability present in each one. The TiOPc and TiCl2Pc
are non-planar molecules (see Figure 1), which is different to most Pcs (such as CuPc and
ZnPc) studied in organic electronics.
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Figure 1. (a) Titanyl phthalocyanine (TiOPc) and (b) titanium (IV) phthalocyanine dichloride (TiCl2Pc).

This work presents two important differences with respect to other studies carried out
on titanium phthalocyanines. The first novelty is the evaluation of the chloride and oxygen
ligands’ influence on the optical and electrical properties of TiCl2Pc and TiOPc, respectively.
Subsequently, the most important novelty is the preparation and the optical and electrical
characterization of the film-based planar heterojunction: poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate/phthalocyanine (PEDOT:PSS/TiCl2Pc or TiOPc), for the determina-
tion of the optimal heterostructure to be used as an active layer in photovoltaic devices.
The search of organic semiconductors that act as a stable active layer continues to be an
interesting theme within the molecular electronics field. This is because of the stability
and solubility problems in organic semiconductor films that hinder their application in
optoelectronic devices. Moreover, the PEDOT:PSS used for this work is a polymer that,
due to its thermal and mechanical stability, has proved its worth in the development of
several electronic devices [19]. The aim in this work is to fabricate a highly efficient planar
heterojunction by exploiting the benefits of the enhanced electrical conductivity of the
PEDOT:PSS with interesting characteristics in TiCl2Pc and TiOPc. The resulting electrical
characterization of the ITO/PEDOT:PSS/MPc or MPc/Ag devices made it possible to
establish their possible applications in electronic and photovoltaic devices.
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2. Materials and Methods
2.1. Materials and Equipment

All reagents and solvents were obtained from commercial suppliers (Merck KGaA,
Darmstadt, Germany) and used without further purification. The used compounds were
titanyl phthalocyanine (C32H16N8OTi) with a molecular structure shown in Figure 1a and
titanium(IV) phthalocyanine dichloride (C32H16Cl2N8Ti) with a molecular structure shown
in Figure 1b. The IR spectroscopy characterization of powdered materials and films was
carried out by means of a Nicolet iS5-FT spectrophotometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA), within a 4000–300 cm−1 region with an 8 cm−1 resolution. Morpholog-
ical and topographical characteristics were investigated with a ZEISS EVO LS 10 scanning
electron microscope (SEM) (Carl Zeiss AG. Jena, Germany) and with a Nano AFM atomic
force microscope (Nanosurf AG, Liesta, Switzerland) using an Ntegra platform for the films
deposited on the PET substrate. The X-ray diffraction (XRD) analysis was performed with
the θ–2θ technique using a Bragg-Brentano geometry with a Siemens D5000 diffractometer
(Siemens, Aubery, TX, USA) and working with Cu-Kα (λ = 0.15405 nm) radiation. The
samples were measured at 0.4◦/min, interval 2–70◦. The absorbance and transmittance of
the films on glass were obtained in a 200–1100 nm wavelength range, on a UV-Vis 300 Uni-
cam spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA), respectively.
Additionally, a Gaertner L117 Ellipsometer equipped with a He-Ne laser (λ = 632.8 nm)
was used to obtain the refractive index, the optical properties, and to verify the thickness
obtained from the evaporator quartz microbalance. Photoluminescence (PL) was measured
using a He-Cd laser (Kimmon Koha Co., Ltd., Centennial, CO, USA) with an excitation
wavelength of 325 nm and integration time of 100 ms. For the electrical characterization
of the devices, ITO and silver were used as anode and cathode, respectively. For this eval-
uation, a programmable voltage source, a sensing station with lighting and temperature
controller circuit from Next Robotix (Comercializadora K Mox, S.A. de C.V., Mexico City,
Mexico), and an auto-ranging Keithley 4200-SCS-PK1 pico-ammeter (Tektronix Inc., Beaver-
ton, OR, USA) were employed with a four-point probe collinear method. The evaluation of
the electrical behavior of the flexible devices was performed both under illuminated and
darkness conditions. Further, it was performed by changing the temperature from 25 ◦C to
245 ◦C and the illumination light color.

2.2. Thin-Film and Device Fabrication

The TiOPc and TiCl2Pc were deposited by the high-vacuum thermal evaporation
technique onto the different substrates: monocrystalline n-type silicon wafers (c-Si), glass,
indium tin oxide (In2O3·(SnO2)x)-coated polyethylene terephthalate (PET-ITO) substrate,
and ITO-coated glass substrate (glass-ITO). Previously, all substrates, excluding PET-ITO,
were cleansed by applying an ultrasonic process, using chloroform, methanol, and acetone,
and then dried in vacuum. TiOPc and TiCl2Pc were deposited in a high-vacuum evapo-
ration system (Intercovamex, S.A. de C.V., Cuernavaca, Morelos, Mexico) using tantalum
crucibles, a vacuum pressure of 1× 10−5 torr, and deposit speed of 4.5 Å/s. Pcs were heated
to 300 ◦C to produce their phase change, which was initially carried out in the gaseous state,
so that they would finally be deposited in thin-film form upon contact with the substrates
set at room temperature. Due to the different Pcs structure and melting point, the thickness
of each film was 138 Å for TiOPc and 31 Å for TiCl2Pc. The thickness was monitored using
a microbalance quartz crystal monitor, connected to a thickness sensor. For the evaluation
of electrical properties, the structures of ITO/MPc/Ag and ITO/MPc/Ag were used in
the device setup with PET and glass substrates (see Figure 2a). After depositing the TiOPc
and TiCl2Pc films, they were subjected to a heat treatment in an oven (Briteg Instrumentos
Científicos S.A. de C.V.) for 2.5 h at 300 ◦C and left to cool for 10 min at room temperature.
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To complement the study on the behavior of phthalocyanine films as an active layer,
additional devices were fabricated on glass: ITO/PEDOT:PSS/MPc or ITO/MPc/Ag (see
Figure 2b). Energy-level diagrams for the fabricated devices are shown in Figure 2c. The
poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) film was deposited
by the spin-coating technique as a hole-transporting layer in Smart Coater 200 equipment
(Laurell Technologies Corporation, North Wales, PA, USA). The dispersion used for the
manufacture of the films consisted of poly(3,4-ethylenedioxythiophene) polystyrene sul-
fonate (PEDOT:PSS) in 1.1% in H2O with neutral pH and high-conductivity grade. The
dispersion was deposited on the substrate and the equipment was operated at a constant
angular speed of 300 rpm during 10 s and an acceleration of 80 rpm/s, then dried at 80 ◦C
for 3 min. After the deposit of PEDOT:PSS, the TiOPc and TiCl2Pc were subsequently
deposited by the high-vacuum thermal evaporation technique with the previous deposition
parameters and annealed for 2.5 h at 300 ◦C.

3. Results and Discussion
3.1. Structural and Morphological Characterization

IR spectroscopy was performed for TiOPc and TiCl2Pc, in KBr pellets and in films
deposited on a silicon substrate. The above is to establish if any degradation of the material
took place during the deposit of the film as a consequence of the Pc sublimation and its
subsequent deposition on the substrates. The IR spectroscopy is based on the fact that the
Pc bonds have specific vibration frequencies that correspond to the molecule energy levels.
In the present study, it is sought that the spectrum of the TiOPc and TiCl2Pc in pellets
equals the films spectrum, deposited in silicon. In Figure 3a,b and in Table 1, the values
found of the representative vibrations of the TiOPc and TiCl2Pc structures are shown, both
in pellets and in thin film: (i) the band responsible for the pyrrole in-plane stretch vibration
in the Pc ring is observed around 1587 and 1335 cm−1, (ii) the bands located around 1290,
1166 and 1118 cm−1 are the result of the interaction between C of the peripheral rings,
with the hydrogen atoms [20], (iii) the band located around 753 cm−1 is the interaction
in plane of C-H deformation, and (iv) the bands observed around 1610 and 1475 cm−1

result from a C=C stretching mode [15–17,20]. From the IR spectroscopy analysis, it can be
concluded that the signals are present, so there is no thermal degradation. Additionally, the
IR spectra were used to identify the different polymorphs in MPcs [7,15,21]. MPcs can exist
in various polymorphic forms identified as α, β, γ, δ, ε, and χ phases with the metastable α
phase and stable β phase being the most common [7,22–24]. The signals are found around
724 cm−1 for the α phase and around 777 cm−1 for the β phase [15,25,26]. In the case of the
TiOPc and TiCl2Pc films, the spectrum in KBr displayed the signals of both phases. In the
literature, it is mentioned that the phase transition from α to β phase occurs in most metallic
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phthalocyanine (MPc) films through a temperature exposure from 200 to 300 ◦C [7,23,27–29].
However, as can be seen in Figure 3c, for the non-planar TiOPc, this transformation did
not occur, neither when forming the film nor when performing the annealing. Similar
results occurred with TiCl2Pc in KBr pellet and in film form, also after annealing; the α
and β phases of the phthalocyanine were maintained. This result is indicative of the high
thermal stability of TiOPc and TiCl2Pc. The latter is a high-vacuum evaporation technique
that tends to form amorphous films as a consequence of the sublimation and subsequent
nucleation and growth process. In the TiOPc and TiCl2Pc films, there were practically no
changes in orientation and structure.
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800 cm−1.

Table 1. Comparison between the IR signals obtained for TiOPc and TiCl2Pc in KBr pellet and film
over silicon.

Assignment TiOPc
KBr Pellet (cm−1)

TiOPc
As-Deposited Films

(cm−1)

TiCl2Pc
KBr Pellet (cm−1)

TiCl2Pc
As-Deposited Films

(cm−1)

C=C stretching 1611 1610 1611 1609
C=C benzene stretching 1476 1471 1472 1479

In-plane pyrrole
stretching 1584, 1338 1591, 1331 1585,1334 1591, 1335

C-H bending 1293, 1166, 1118 1284, 1162, 1117 1293, 1160, 1119 1286, 1169, 1119
In plane

C-H deformation 751 754 753 754
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Another important aspect to consider additionally to the thermal stability is the
morphology of the films deposited in terms of their homogeneity, grain size, and impurity
level. To verify the above, SEM was performed and, in Figure 4, the microphotographs
at 1000x are shown, which allow for the observation of the morphological characteristics
of the TiOPc and TiCl2Pc films on the glass substrate. With SEM analysis, the particle
size can be analyzed, as well as the morphology and the uniformity of the Pc films. It
should be noted that the film uniformity is an important factor so that the electric charge
transport must remain constant throughout the entire device area. On the contrary, if
there are films with heterogeneous morphology, their electric properties decrease because
the charge transport is not uniform. In Figure 4a,b, a greater number of particles in the
TiOPc film is observed, while the TiCl2Pc film is more uniform. In addition, in the film in
Figure 4a, larger particles are observed on the surface and even form agglomerates of sizes
around 2 µm. The particles at the top of the films are formed as result of the nucleation and
growth of the Pcs during deposit. Apparently, the growth of the TiOPc and TiCl2Pc films
is carried out by the Stranski–Krastanov mode (SK). SK growth describes the formation
of complete Pc monolayers, where subsequent 2D growth is unfavorable and 3D island
growth continues. Island growth occurs when Pc molecules are more strongly attracted
to each other than to the substrate, resulting in 3D growth and Pc films experiencing SK
growth [30–32]. The higher uniformity in the film with TiCl2Pc could generate a greater
charge transport, although there are factors that will have to be considered later, such
as the topography and roughness of the films. According to the AFM micrographs in
Figure 4c,d, the film topography consists of fine and granular particles homogeneously
distributed around the film surface. With respect to the roughness, Table 2 shows the results
for TiOPc and TiCl2Pc films and there is no significant variation between the Root Mean
Square (RMS) roughness and the average (Ra) roughness of both films. This is expected
considering that the substrate and the film deposit parameters are the same. Additionally, it
is important to consider that low roughness is observed for both films, which is considered
an advantage for the charge transport and for films interaction in a planar heterojunction
for optoelectronic devices (see Figure 2). The TiOPc and TiCl2Pc films’ low roughness will
make a perfectly defined interface between the films that integrate the devices and will also
ease the transport of the charge carriers.
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Table 2. Roughness and mechanical properties of the TiOPc and TiCl2Pc films.

Film RMS (nm) Ra (nm)

TiOPc 18.33 13.32
TiCl2Pc 17.67 14.61

Figure 5 shows the XRD patterns for the TiOPc and TiCl2Pc films and devices. In
addition, Table 3 shows the XRD peak positions, FWHM, and crystallite size for the
TiOPc and TiCl2Pc films and devices. By comparing the TiOPc and TiCl2Pc annealed
films, the contribution of the Pcs and the films can be observed and they are found to
be polycrystalline [33,34]. Various peak positions are coincident with a slight shift and
with an intensity variation. The most intense peaks can be observed, approximately, at
7.6◦, 12.8◦, 25.7◦, and 28.6◦, but for the TiOPc, further peaks are also observed at higher
2θ values. However, by comparing to the literature, there is a shift to higher 2θ values,
which may be related to a structural change and arrangement consequence of the thermal
annealing. To understand this effect, an XRD pattern for the TiCl2Pc film is shown in
Figure 5. By comparing to the annealed film, broader peaks and lower 2θ values (Table 3)
for the characteristic Pc peaks can be observed and match with the literature [33,34]. XRD
patterns for the PEDOT:PSS/TiCl2Pc and PEDOT:PSS/TiOPc devices are also shown in
Figure 5. First, a very intense peak appearance is observed related to the PEDOT:PSS effect,
in particular for the PEDOT:PSS/TiCl2Pc, complimentary to that observed for the TiOPc and
TiCl2Pc annealed films. Further, a shift to higher 2θ values (Table 3) for the characteristic Pc
peaks can be observed, indicative of the PEDOT:PSS effect in the Pc deposition. Due to the
observed polycrystalline behavior, the film and device crystallite size can be estimated by
the Scherrer equation [35,36]:

D =
Kλ

βcosθ
(1)

where D is the mean crystallite size of the θ Bragg angle, λ the X-ray wavelength, K
the shape factor (~0.89), and β the full width at half maximum (FWHM). Table 3 shows
the resulting sizes (~0.2–1 nm), where for the TiCl2Pc film, smaller sizes are presented,
supporting the observations in Figure 4. On the other hand, the PEDOT:PSS/TiCl2Pc
and PEDOT:PSS/TiOPc devices had very different results. For the PEDOT:PSS/TiOPc,
an interesting increase in crystallite size was observed, but for the PEDOT:PSS/TiCl2Pc,
an apparent decrease is observed. The latter will affect the optoelectronic properties of
the devices compared to the the TiOPc and TiCl2Pc annealed films, resulting from the
absorption and charge-carrier transport variation.
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Table 3. XRD peak position, FWHM, and crystallite size for the TiOPc and TiCl2Pc films and devices.

TiCl2Pc TiOPc Annealed TiCl2Pc Annealed PEDOT:PSS/TiOPc PEDOT:PSS/TiCl2Pc

2θ
(Degree)

FWHM
(Degree) D (nm) 2θ

(Degree)
FWHM

(Degree) D (nm) 2θ
(Degree)

FWHM
(Degree) D (nm) 2θ

(Degree)
FWHM

(Degree) D (nm) 2θ
(Degree)

FWHM
(Degree) D (nm)

- - - 7.680 0.407 0.340 7.611 0.611 0.226 7.630 0.164 0.843 9.620 0.856 0.162
- - - - - - - - - 9.360 0.553 0.251 - - -

11.020 0.393 0.355 - - - - - - - - - 10.619 0.585 0.238
- - - 12.781 0.575 0.244 12.792 0.398 0.353 13.582 0.124 1.137 - - -

17.977 0.324 0.445 - - - - - - - - - - - -
19.280 0.628 0.231 - - - - - - - - - - - -
24.740 0.462 0.327 25.560 0.377 0.403 25.740 0.605 0.252 26.315 0.225 0.680 26.635 0.523 0.293
26.783 0.404 0.380 - - - - - - - - - - - -
28.688 0.337 0.464 28.573 0.378 0.413 28.669 0.638 0.245 27.334 0.217 0.711 - - -
29.321 0.297 0.529 31.081 0.380 0.421 - - - 33.014 0.144 1.135 - - -
34.280 0.366 0.453 - - - - - - - - - 33.265 0.154 1.064

- - - 47.982 0.352 0.582 46.100 0.362 0.546 - - -
- - - 49.660 0.456 0.464 - - - - - - - - -
- - - 50.980 0.287 0.759 - - - - - - - - -
- - - - - - 60.674 0.458 0.611 61.740 0.163 1.776 61.814 0.214 1.356
- - - 65.791 0.324 1.032 - - - 65.964 0.144 2.337 - - -
- - - - - - - - - 66.526 0.133 2.587 - - -

3.2. Evaluation of Optical Properties

In order to study the optical behavior of TiOPc and TiCl2Pc, UV-vis spectroscopy was
carried out in the films deposited and annealed. In Figure 6, the UV-vis absorption spectra
of TiOPc and TiCl2Pc are shown and they are the result of their conjugated π-electron
systems and the central titanium overlapping orbitals [7,28,29,37–39]. According to the
spectra, it is observed that the annealing influences the film’s absorption by its decrease
and redshift. The annealing also defines and enhances the electronic transitions, probably
due to an arrangement of the Pc molecules forming the films. Additionally, the spectra
displayed two strong absorption bands, known as B and Q bands. The B band in the near-
UV region of 270–390 nm is assigned to the electronic transition between π and π* (b2u to eg)
orbitals [7,28,40]. For TiCl2Pc, the B band displayed two peaks: (i) the low-energy region
(around 340 nm) is due to the π-d transitions between the Pc ring and the titanium atom and
(ii) the higher-energy region (around 290 nm) corresponding to d-π* transitions [7,17,41,42].
The Q band in the visible region of the spectrum between 600 and 880 nm represents
the π-π* transition (b1u to eg) orbitals [7,28,40]. A split of the annealed film’s Q band is
observed, probably by the Davydov splitting. The extent of Davydov splitting is related to
the degree of available molecules able to participate in electronic transitions, in particular,
interactions between the dipole moment transition from adjacent molecules [7,29]. In the
annealed film Q band, the high-energy peak (around 660 nm) is related to the electronic
transition from π-π* orbitals of the macrocycle, while the low-energy peak (around 820 nm)
may be explained as a second π-π* transition, an exciton peak, a vibrational interval, or a
surface state [7,28,29]. The position, intensity of these peaks, and the amount of Davydov
splitting for the α and β phases in Pcs are different and depend on the molecular orbital
overlap. For the two films, the intensity of the higher-energy maximum peak (661 nm)
is almost equal to the lower-energy peak (823 nm), with a Davydov splitting amount of
162 nm among the two phases. The above means that for both phthalocyanine films, the α
and β phases are present and, apparently, the non-planar TiOPc and TiCl2Pc have π-stacked
configuration with face-to-face packing [7]. Finally, in the UV-vis spectra, it is observed
that for the TiOPc film, greater Q-band absorption and redshift are present. The above is
probably due to the oxygen coordination to the titanium atom, compared with the chlorides
in the fifth and sixth position of the titanium coordination sphere in the TiCl2Pc.
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(c) Transmittance and (d) absorption coefficient of TiOPc and TiCl2Pc films after annealing.

Regarding the transmittance, Figure 6c shows the spectrum for both annealed films.
It is observed that for the TiCl2Pc film, there is a higher transmittance with respect to the
TiOPc film. On the other hand, the spectrum can be split into different regions; the first is
the non-absorption region between 380 and 620 nm. The second is the absorption region
and it is clearly seen that the minimum in the transmission spectra in a 600–880 nm range
is due to the band-to-band transition region, which corresponds to the Q band. Finally,
the third region is, again, the non-absorption between 880 and 1000 nm. These results are
interesting because the predominant factor in the optical properties of the films is observed
to be a consequence of the macrocycle with the titanium atom in the phthalocyanine and
not due to its substituent. In addition, the observed wavelength-dependent change in its
behavior is an indication of the possible applications as a transparent anode in photodiodes
or solar cells, to mention some device types, where electromagnetic radiation is a decisive
parameter for its operation.

Reflectance (R) and the refractive indices (n) in semiconductors films are relevant in
the design and analysis of optoelectronic devices [43]. The resulting refractive index from
ellipsometry measurements for the studied films was 1.137 and 1.182 for TiOPc and TiCl2Pc,
respectively. For normal incidence, the reflection coefficient that affects the intensity of the
radiation is expressed as [44]:

R =
(n− ns)

2 + k2

(n + ns)
2 + k2

(2)

where k is the attenuation or extinction constant and ns is the refractive index of the
substrate, which, for glass, is 1.52. In the case where k = 0, in the transparent range, the
reflectance is 0.0208 and 0.0156 for TiOPc and TiCl2Pc, respectively. These films are not



Materials 2023, 16, 551 10 of 20

perfectly transparent or perfectly reflective and radiation is lost. The losses are manifested
through the absorption coefficient (α) given by Equation (3) [18,35]:

α =
1
d

ln

 (1− R)2

2T
+

√
R2 +

(1− R)4

4T2

 (3)

where d is the film thickness and T is the transmittance of the films and, in the case of TiOPc
and TiCl2Pc thin films with R << 1, the previous expression is expressed as follows [45]:

α =
1
d

ln
[

1
T

]
(4)

The spectral behavior of the α for the annealed films in a photon energy range of 1.2–4
eV is depicted in Figure 6d. According to the literature for MPc films [20,21,39,41,46,47],
the films have a high α > 106. The traps inside the energy gap can be responsible for the
high α, indicating that these films can be used in optoelectronic devices.

To complement the study of the optical behavior in the TiOPc and TiCl2Pc films,
the energy bandgap was calculated through Tauc’s method used as a standard empirical
model [48]. The optical bandgap energy controls the light-absorption efficiency in optoelec-
tronic devices. The calculation to obtain the optical bandgap energy with Tauc’s method
is based in the Urbach relation (see Equation (5)), where h is Planck’s constant, parameter
B depends on transition probability, Eg is the bandgap energy, and n is dependent on the
electronic transition process, where n = 2 for indirect allowed transitions [46,48–51].

αhν = B(hν− Eg)n (5)

The frequency (ν) is experimentally obtained from Equation (5), where c is the speed
of light and λ is the wavelength.

ν =
c
λ

(6)

The dependence of (αhν)n on hν was plotted and the Eg was evaluated from the x-axis
intercept at (αhν)1/2= 0. The Figure 7 plots show two transitions; the first transition is
the onset gap

(
Eonset

g

)
and the second one corresponds to the optical gap (Eoptical

g ) [47]
for the films before and after annealing. The results are shown in Figure 7 and Table 4. It
is important to observe, in Table 4, that the onset bandgap is slightly less for the TiOPc
film and decreases after thermal treatment. However, the optical gap practically does
not change after annealing and there is not a change between the two films. In addition,
the obtained energy bandgap values are similar to those reported in the literature for
TiPcCl2 films and other chlorinated phthalocyanine films, such as AlPcCl, GaClPc, and
SnPcCl2 [18]. Apparently, the ligands and, in general, the titanium atom, not related to
the charge transport in the films. The charge transport is mainly related to the molecular
packing and the highly aromatic electrons of macrocycle. The electronic transition from π

to π* explains that the optical gap and the onset gap are a consequence of several factors,
including defects, structure disorder, and traps. According to Alosabi et al. [18], the Urbach
energy can be used to determine the defects in the energy gap. The Urbach energy EU can
be determined according to Equation (7) [18,36]:

α = Aaexp
(

hv
EU

)
(7)

where, in addition to the parameters defined above, Aa is a constant of the material that
conforms to the absorption coefficient at the energy gap. The exponential absorption
edge can be interpreted as the exponential distribution of localized states in the energy
bandgap [18]. Figure 7c,d displayed the linear relation between ln(α) and hν for the TiOPc
and TiCl2Pc films. The values of the Urbach energies were determined from the reciprocal
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of the slope from this linear relation. The obtained Urbach energy values are 0.40 eV and
0.32 eV for TiOPc and TiCl2Pc films, respectively. The Urbach energy value for TiCl2Pc
is slightly lower than those obtained for MPc films with different metal atoms than the
titanium atom (around 0.4 eV) [18].
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Table 4. Onset gap
(

Eonset
g

)
and optical gap (Eoptical

g ) for the TiOPc and TiCl2Pc films.

Thin Film Onset Gap (eV) Optical Gap (eV)
TiOPc 1.43 2.85

TiOPc heat treated 1.32 2.85
TiOPc + PEDOT:PSS 1.5 2.91

TiOPc + PEDOT:PSS heat
treated 1.27 2.85

TiCl2Pc 1.48 2.83
TiCl2Pc heat treated 1.34 2.85

TiCl2Pc + PEDOT:PSS 1.52 2.94
TiCl2Pc + PEDOT:PSS heat

treated 1.29 2.79

To evaluate the behavior as an active layer in optoelectronic devices, the TiOPc and
TiCl2Pc films were deposited on a PEDOT:PSS polymer hole-transporting film. Later,
the energy bandgap of these systems was evaluated, before and after annealing, and
the results are shown in Table 4. In this case, the annealing process decreased the onset
gap and the optical gap, although the values for both systems, PEDOT:PSS/TiOPc and
PEDOT:PSS/TiCl2Pc, are similar.

Additionally, photoluminescence (PL) measurements were conducted on the samples
and plotted in Figure 8. The PL emitted by the excitation spot on the films appeared
as follows: blue green (TiCl2Pc), blue (TiOPc), violet blue (PEDOT:PSS/TiCl2Pc), violet
blue (PEDOT:PSS/TiOPc), and with an intensity high enough that was observed with the
naked eye. As depicted for all the devices, two main broad bands are observed in the
400–600 nm and 800–950 nm ranges. The measurements were conducted for three locations
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within the sample to evaluate the homogeneity and PL response: at the sample center, near
the edge, and the edge. For all spectra, the sample center presents a higher PL intensity.
The spectra for all locations are almost similar for most of the samples, maintaining the
emission wavelengths due to homogeneity, but the emission intensities vary according to
the location along the sample. The latter is mainly related to the location film thickness and
arrangement of the molecules, as a consequence of the deposition process. The emission in
the blue region (i.e., 430–550 nm) is present in all spectra and related to the phthalocyanine
contribution [52,53]. For TiCl2Pc (Figure 8a), a maximum emission is observed at 475 nm
and for the TiOPc film (Figure 8c) at 460 nm, which is also present for the TiCl2Pc film. On
the other hand, a shoulder around 430 nm is observed for both films, but more intense
for TiCl2Pc, mainly related to a singlet exciton recombination. Further, a broadening to
600 nm of this emission band is observed like a bandtail for TiCl2Pc. All of this may
be related to the ligand coordinated to the tetravalent titanium affecting the number of
intrinsic levels on the conduction bands. The emission doublet around 800–950 nm is
also related to the phthalocyanine and is affected by the ligand by means of the exciton
recombination. The broadening of both intense signals may be related to the formation of
delocalized states between HOMO and LUMO, indicative of a non-radiative mechanism.
For the PEDOT:PSS/TiCl2Pc (Figure 8b) and PEDOT:PSS/TiOPc films (Figure 8d), a change
in the spectra is observed, compared to Figure 8a,c. A blue shift in the maximum emission
band to 420 nm is observed. However, a shift to 410 nm is observed in Figure 8b for the near
edge and edge locations, influenced more by the PEDOT:PSS due to the film deposition
process. The emission bands around 420–450 nm and 760–810 nm are attributed to the
PEDOT:PSS [54,55]. The PEDOT:PSS/TiCl2Pc spectra (Figure 7b) present a second emission
band around 550 nm that can be related to the TiCl2Pc, which is more intense in the center
location. Although the Q and B bands of phthalocyanine are primarily responsible for
PL in films, according to our data, the PL in the films is substantially affected by the
intermolecular structure. The smallest optical gap is obtained in the films with PEDOT:PSS
and, in this case, the PL is enhanced by the presence of the polymer (Figure 8b,d).
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3.3. Determination of Electrical Behavior

One-layer and two-layer planar heterojunction devices were constructed (see Figure 2)
and electrical conductivities of the TiCl2Pc and TiOPc films with thermal annealing were
obtained from I-V characteristics and measured in a 300–520 K temperature range (Figure 9).
The obtained conductivities were around 10–103 S/cm, presenting similar increasing behav-
ior with temperature. It is interesting to note that the TiCl2Pc (Figure 9a) presents higher
conductivities than TiOPc. The conductivity presents the following equation [56,57]:

σ = σ0e−Ea/kT (8)

where Ea is the thermal activation energy of the electrical conductivity, σ0 is the pre-
exponential factor depending on the material nature, and k is Boltzmann’s constant
(1.38 × 10−23 J/K). As observed in Figure 9, a plot of ln(σ) versus 1000/T was linearly
fitted and the slope can be used to determine the thermal activation energies of the thin
films. The conductivities are close to reported values for various Pcs [56,57]. The calculated
activation energy values yield between 0.18 and 0.21 eV before and after thermal annealing,
similar to reported PC results [53,54]. TiCl2Pc (0.185 eV) presents a lower activation energy
than TiOPc (0.208 eV) (Figure 9a,c). However, after thermal annealing, TiCl2Pc (0.214 eV)
presents a higher activation energy than TiOPc (0.183 eV). The previous may be related
to a change in the molecular array and packing and to the film homogeneity due to film
growth process.
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The model fitting of null-ellipsometry measurements provided the optical properties
of the films, as shown in Table 5. The ellipsometric parameters Psi and Delta were given by
the change in the light polarization state due to the sample reflection and are related to the
magnitude of reflectivity and the phase, respectively. The following equation describes the
ratio of sample reflectivity:

ρ =
Rp

Rs
= tan(ψ)ei∆ (9)

where Rp and Rs are the Fresnel reflection coefficients for the p- and s-polarized light. The
incident light electric fields are parallel (p) and perpendicular (s) to the plane of incidence.
Psi represents the amplitude ratio and delta the phase difference in the light polarization
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caused by the surface reflection. However, the refractive index can be obtained from the
following equation:

〈ε〉 = (〈n〉+ i〈k〉)2 = sin(θ)2

[
1 + tan(θ)2

(
1− tan(ψ)ei∆

1 + tan(ψ)ei∆

)2]
(10)

where ε is the dielectric function, n the refractive index, k the extinction coefficient, and θ
the light incident angle. It can be observed that for Psi, the TiCl2Pc presents a larger value.
However, the Psi magnitude is lower for the devices and the difference is larger among
the devices, but the Psi magnitude is larger for the PEDOT:PSS-TiOPc device. Despite this,
the delta parameter presents the opposite behavior, but also, the devices present smaller
values. On the other hand, the films’ refractive index was also obtained from the previous
parameters and is shown in Table 5. The small refractive index shown for the films is
indicative of a small light reflection by passing light from an air medium (n = 1) to the
films, allowing for a higher light absorption for solar cell applications. By comparing
the devices, it is interesting to note that the refractive index is larger for the TiCl2Pc than
for TiOPc and for both PEDOT:PSS devices, it is increased, but more pronounced for the
PEDOT:PSS/TiCl2Pc. The obtained results are a good indicator that the devices with these
active films should be used for photovoltaic applications.

Table 5. Optical and electrical properties for the TiOPc and TiCl2Pc films and devices.

TiOPc TiCl2Pc PEDOT:PSS/TiOPc PEDOT:PSS/TiCl2Pc

Psi (◦) 25.00 28.80 22.70 6.50
Delta (◦) 140.40 137.00 134.80 160.00

Refractive Index (n) 1.137 1.182 1.148 1.436
Photocurrent density

(@ 0V, A/cm2) 0.03 6.56 0.84 1.45

The current density–voltage (J–V) measurements were initially performed at room
temperature and in darkness, while also under illumination conditions for the device
structures shown in Figure 2. The active film thickness was 5.8 nm and 22.7 nm for the
MPc and PEDOT:PSS/MPc device type, respectively. The purpose was to compare the
light effect on the film’s electrical behavior. Figure 10 presents the J–V characteristic curves
obtained for the films and devices. First, the curves present different electrical behavior and
are not symmetrical. A change in the J–V curves is observed for the illuminated condition
compared to the darkness condition for all the devices; however, the effect depends on the
device architecture. The latter indicates that the devices may be used for optoelectronic
applications. The darkness and illuminated J–V characteristic curves for TiCl2Pc (Figure 10a)
resemble a Schottky curve, which, under illuminated conditions, shows larger current
density values, suitable for solar cell applications. The darkness curve shows, at 1.5 V, an
approximate current density of 1.1 × 102 A/cm2 compared to the 1.4×102 A/cm2 of the
light curve. However, the curves for TiOPc (Figure 10b) are very different to the TiCl2Pc,
resulting in an almost linear behavior and larger current density values. Hence, there is an
important effect of the ligand on the electrical output. Despite this, there is also a change
in the current density values due to illumination of approximately 1.5 × 102 A/cm2 at
1.5 V. On the other hand, the devices with PEDOT:PSS shown in Figure 10c,d present a
larger effect on the current density due to illumination compared to the previous devices.
Further, an important change in the curve shape and current density values is observed
due to the PEDOT:PSS layer. In the case of the PEDOT:PSS/TiCl2Pc (Figure 10c), there is an
enhancement in the current density values but, for the PEDOT:PSS/TiOPc, the opposite
effect is observed. Table 5 presents the photocurrent density at 0 V for the different devices.
It is observed that the device with PEDOT:PSS/TiOPc presents enhanced photocurrent
compared to TiOPc, but the largest value is for the TiCl2Pc (6.56 A/cm2), while the smallest
is for the TiOPc (0.03 A/cm2). A change in photocurrent of about 28-times between the
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device with and without PEDOT:PSS is observed for the TiOPc and of about 5-times for
the TiCl2Pc.
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Additionally, the PEDOT:PSS/TiCl2Pc and PEDOT:PSS/TiOPc devices were subjected
to thermal annealing and J–V characteristic curves were obtained and plotted in Figure 11.
Compared to devices with no annealing, the thermal annealing process increases the current
density values, enhancing the conductivity and affecting the photocurrent derived from
the illuminated conditions. The curves for darkness and illuminated conditions are not
symmetrical and the current density values are larger for the light curves, also indicating
that the annealed devices are suitable for optoelectronic applications. For further analysis,
the devices were illuminated with different light colors and J–V curves were measured.
Figures 11b,d and 12 show the resulting characteristic curves for the different devices,
including the darkness curve as a reference. Figure 12a shows the J–V curve for the TiCl2Pc
and a marked effect due to the incident light color is observed, where the largest current den-
sity value variation is observed for the red light and the least for UV light. Figure 12b shows
the J–V curve for the TiOPc and a slight effect due to the incident light color is observed.
Figure 12c shows the J–V curve for the PEDOT:PSS/TiCl2Pc and also a marked effect due
to the incident light color is observed. However, the largest effect is observed under UV
and yellow incident lights. Figure 12d shows the J–V curve for the PEDOT:PSS/TiOPc,
with a marked effect due to the incident light color, where the largest photocurrent density
is observed for the blue light, while for the UV light, the lowest. However, an apparent
increase in the photocurrent with the wavelength is observed, disregarding the UV curve.
It is interesting to note that the blue-color curve presents a more pronounced photocurrent,
which may indicate that the PEDOT:PSS/TiOPc is more photo-sensitive to this wavelength.
For the PEDOT:PSS/TiCl2Pc annealed device (Figure 11b), the incident light effect in the
photogenerated current is small but still observable and dependent on the light color.
Further, for the PEDOT:PSS/TiOPc annealed device (Figure 10b), an incident light effect is
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observed, where the largest current density value variation is observed for the blue light
and the least for the UV light. An almost direct relation to the wavelength variation is
observed by not considering the UV curve.
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Moreover, the conductivity values on forward and reverse bias were calculated for the
devices under different incident light colors, from the J–V characteristic curves, plotted in
Figure 13. The obtained conductivity values lay between approximately 10 and 104 S/cm,
in good accordance with other Pc results in the literature [57,58]. It can be observed that
depending on the device architecture and annealing, there is a change in the conductivity for
forward and reverse bias. This variation may be significant, as for the PEDOT:PSS/TiOPc,
and less so for the TiOPc. The greatest forward bias conductivity is observed for the
annealed PEDOT:PSS/TiCl2Pc and the smallest for the TiCl2Pc, while for the reverse bias
conductivity, the greatest is observed for the annealed PEDOT:PSS-TiCl2Pc and the smallest
for the PEDOT:PSS/TiOPc. The effect of the incident light on the conductivity shown in
Figure 13 indicates that some of the devices have no variation, whereas other devices are
more affected and, in some cases, present a tendency, as for annealed PEDOT:PSS/TiOPc.
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