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Abstract: In this study, a biochar obtained from poplar wood gasification at a temperature of 850 ◦C
was used to adsorb the xenoestrogens 4-tert-octylphenol (OP) and bisphenol A (BPA) and the herbicide
metribuzin from water. Scanning electron microscopy (SEM-EDX) and Fourier-transform infrared
(FTIR) spectroscopy were employed to investigate the surface micromorphology and functional
groups composition of biochar, respectively. The study of sorption kinetics showed that all compounds
achieved the steady state in less than 2 h, according to a pseudo-second order model, which denoted
the formation of strong bonds (chemisorption) between biochar and the compounds. Adsorption
isotherms data were described by the Henry, Freundlich, Langmuir and Temkin equations. At
temperatures of 10 and 30 ◦C, the equilibrium data of the compounds were generally better described
by the Freundlich model, although, in some cases, high correlation coefficients (r ≥ 0.98) were obtained
for more than one model. Freundlich constants, KF, for OP, BPA and metribuzin were, respectively,
218, 138 and 4 L g−1 at 10 ◦C and 295, 243 and 225 L g−1 at 30 ◦C, indicating a general increase of
adsorption at higher temperature. Desorption of all compounds, especially OP and BPA, from biochar
was slow and very scarce, denoting an irreversible and hysteretic process. Comparing the results
of this study with those reported in the literature, we can conclude that the present biochar has a
surprising ability to retain organic compounds almost permanently, thus behaving as an excellent
low-cost biosorbent.

Keywords: biosorbent; sorption kinetics; sorption isotherm; xenoestrogen; endocrine disrupting
chemical; herbicide; desorption

1. Introduction

The growing global demand for energy and the current environmental and geopolitical
crisis related to the supply of fossil fuels require the exploration and optimization of clean
and renewable energy production processes. Thermochemical conversion processes of
waste biomass, such as gasification, pyrolysis and hydrothermal carbonization, along with
biological processes, such as anaerobic digestion, are considered relatively inexpensive and
environmentally friendly solutions for energy needs. In addition to gaseous and liquid
fuels, these processes release large quantities of recyclable carbon-rich byproducts, which
have proved to be valid soil improvers [1,2] or very efficient biosorbents for practices of
environmental remediation [3–5]. In addition to responding to the demand for energy,
the technologies used for the treatment of biowaste represent virtuous solutions to other
emergencies, such as the disposal of the enormous mass of organic solid waste, the re-
duction of climate-altering gases emission into the atmosphere and the implementation of
circular economy.

Gasification is a promising dry biomass conversion technology that produces a syn-
thetic gaseous mixture (syngas), a bio-oil and a carbonaceous black material known
as ‘biochar’. Common operating parameters of gasification are temperatures between
700 and 1000 ◦C, limited oxygen atmosphere and very short retention times (few hours
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or less) [6,7]. Suitable feedstock is forest and agricultural residues and the organic fraction
of municipal solid waste. The incorporation of biochar into agricultural soil provides a
very useful supplement of organic matter, which contributes to modulate the bioavail-
ability of phytonutrients and contaminants [8]. Due to its excellent ability to adsorb both
inorganic and organic pollutants, biochar is increasingly used in soil and water remedia-
tion practices [9,10]. Chemical modifications and microbial enrichment of biochar have
proven effective treatments to enhance the sorption potential of this material [11,12]. The
capacity of biochar to immobilize pollutants depends on its physicochemical properties,
such as porosity, micromorphology, elemental composition, surface functional groups and
degree of aromatization, which, in turn, depend on the operating conditions adopted for
its production. The high temperatures of the gasification process favour a large specific
surface area and a high number of adsorption sites for biochar, along with a high degree of
aromaticity, low H/C ratio and high C/N ratio.

Repeated soil applications of agrochemicals in conventional agriculture and the in-
creasing use of grossly decontaminated wastewater and sewage sludge for soil fertil-
ization have caused the widespread presence of organic xenobiotics in terrestrial and
aquatic environments. Environmental pollutants include agrochemicals, industrial prod-
ucts and byproducts, dyes, pharmaceuticals, personal care products, surfactants and so
on [13,14]. Many of these pollutants are endocrine-disrupting chemicals (EDCs), as they
can interfere with the endocrine system of wildlife, especially fishes, mammals and hu-
mans, causing severe dysfunctions and disturbances to the reproductive and cardiovascular
systems [15–17]. Most of these pollutants are persistent and highly toxic, even at concentra-
tions of a few parts per billion in water [18].

Among EDCs, there are the xenoestrogens 4-tert-octylphenol (OP) and bisphenol A
[2,2-Bis(4-hydroxyphenyl) propane, BPA], which are widely employed for the industrial
preparation of daily-use manufacts, such as medical devices, adhesives, paints, electrical
and electronic parts, flame retardants, food and beverage packaging and so on [19]. OP
is the product of biodegradation of octylphenol polyethoxylates, which are non-ionic
surfactants used in the production of paints, detergents and agrochemicals [20]. OP is
widely present in wastewater and, due to its recalcitrance, is persistent in ecosystems
for a long time [20]. BPA is the monomer widely used for the industrial preparation of
epoxy resins and polycarbonate plastics and acts as a stabilizer for polyvinyl chloride [15].
According to a recent estimate, the global annual production of BPA is around 8 million
tons [21], and even more are expected to be produced in the future. Both EDCs can
be widely present in ecosystems and have serious detrimental effects on animal and
human health [17].

Among the crop protection products widely used in the world, there are herbicides.
The repeated and incorrect use of these compounds can compromise the self-depollution
capacity of soil and, consequently, these compounds can be transferred from the soil to
natural waters or be absorbed by plants and accumulated in edible organs [22]. All this
causes the contamination of ecosystems and the animal and human food chains. Metribuzin
(4-amino-6-tert-butyl-3-(methylsulfanyl)-1,2,4-triazin-5(4H)-on) is a triazinone chemical
used in huge amounts around the world to control broadleaf weeds in various crops. The
high water solubility of metribuzin makes it one of the pesticides with the highest risk of
transport to ground- and surface water [23]. Metribuzin is also a suspected EDC [16].

Adsorption consists of the accumulation of a solute at the interface between the adsor-
bent phase and the solution phase. In soil, the adsorption/desorption process controls the
fate of contaminants, including movement and persistence, and modulates their bioavail-
ability for plants and microorganisms. The incorporation of organic materials, like biochar,
into the soil can hinder the transport of contaminants into natural water bodies. This is
particularly important in the case of recalcitrant molecules [24]. Furthermore, the need to
decontaminate wastewater for virtuous recycling nowadays requires the abandonment of
complex strategies and expensive materials. In recent years, biochar has shown excellent
adsorption capacity of both inorganic and organic pollutants [5,25]. Among the studies
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available in the literature on the sorption/desorption of organic pollutants by biochar, a
very limited number concern biochar produced by gasification. This process is generally
conducted at much higher temperatures than those adopted in the more common pyrolysis,
and this can greatly influence both the properties of biochar and its efficiency in retaining
pollutants. Furthermore, information on the ability of biochar to remove phenolic xenoe-
strogens, such as BPA and OP, is very scarce. Finally, few studies have focused on the
removal of ECDs from multi-contaminated matrices [13], although multi-contamination is
very frequent in water and soil where pollutants with different hydrophobicity coexist and
interact with solid and dissolved soil components.

The present study aims to evaluate the capacity of a biochar from wood gasifica-
tion to adsorb three EDCs with contrasting physicochemical properties, namely OP, BPA
and metribuzin.

2. Materials and Methods
2.1. Chemicals and Biochar

The compounds OP, BPA and metribuzin have, respectively, a molecular weight of
206.32, 228.29 and 214.29 g mol−1, a water solubility of 3.1, 300 and 1200 mg L−1 and a Log
Kow of 5.50, 3.32 and 1.70 [26]. The chemical structures of the compounds are shown in
Figure 1. OP at 99.5% purity, BPA at 99.0% purity and metribuzin at a purity ≥98.0% were
obtained from Sigma-Aldrich S.r.l., Milan, Italy. All other chemicals used were of extra
pure grade and obtained from commercial companies. Methanol solutions of OP, BPA and
metribuzin were prepared at a concentration of 2000 mg L−1. Then, appropriate volumes of
each solution were combined and diluted with double distilled water to obtain the aqueous
mixtures of the compounds used in the experiments. The most concentrated mixture of the
compounds used in this work (2 mg L−1) had a methanol content of 0.3%.
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Figure 1. Chemical structures of the compounds.

The biochar sample was produced through a high-temperature (850 ◦C) gasifica-
tion process and the SyngaSmart® technology of the RESET s.p.a. company, Rome, Italy.
Chipped and dried wood from the poplar clone Monviso was used as feedstock.

2.2. Biochar Characterization
2.2.1. Basic Characterization and Elemental Analysis

Basic characterization of biochar was carried out according to conventional methods
and is shown in Table 1. Elemental composition was obtained using a CHNS-O Elemental
Analyser, as described in Taskin et al. [27].

2.2.2. Scanning Electron Microscopy (SEM) Analysis

To investigate biochar micromorphology, SEM analysis coupled with energy-dispersive
X-ray spectroscopy (SEM-EDX) was performed. For the purpose, a little amount of biochar
was metallized with Au/Pd and analyzed using a Hitachi TM3000 scanning electron
microscope (Hitachi, Tokyo, Japan) and an Oxford Swift ED3000 microanalysis system.
Backscattered electrons were detected, and SEM micrographs of biochar were obtained at
both 500× and 1800× magnifications.
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Table 1. Some properties of biochar.

Parameter Value

pH a 9.97 ± 0.04 b

Ash (%) c 8.81 ± 0.16
EC (dS m−1) a 3.83 ± 0.14
Elements (%)

C 74.39 ± 0.50
H 0.86 ± 0.04
O 15.42 ± 0.45
N 0.52 ± 0.01

H/C (atomic ratio) 0.14 ± 0.01
O/C (atomic ratio) 0.16 ± 0.01

(O + N)/C (atomic ratio) 0.16 ± 0.01
Note: data are related to dry matter. Element content is on dry and ash-free basis. a 1:10 (w/v) in double distilled
water; b values are the mean ± SD (n = 3); c at a temperature of 700 ◦C for 6 h.

2.2.3. Fourier Transform Infrared (FTIR) Analysis

To evaluate surface functional groups of biochar, the FTIR spectrum was acquired in
transmittance mode. A mixture of 400 µg of biochar and 400 mg of KBr (FTIR grade) was
finely ground in an agate mortar. The mixture was then pressed under vacuum at a pressure
of 6000 kg cm−1 for 10 min, thus obtaining a thin pellet. The sample was analyzed using a
Thermo Nicolet iS50 FTIR spectrophotometer equipped with Nicolet Omnic 6.0 software.
Spectrum acquisition conditions were: wavenumber between 4000 and 400 cm−1, 2 cm−1

resolution and 64 scans min−1.

2.3. Preliminary Adsorption Experiments

Aliquots of 1, 2, 5, 10 and 20 mg of biochar were interacted with a volume of 10 mL of an
aqueous mixture of OP, BPA and metribuzin, each at a dose of 2 mg L−1, which corresponded
to solution/adsorbent ratios of 10,000, 5000, 2000, 1000 and 500, respectively. To achieve
the adsorption equilibrium, the samples were placed under magnetic stirring at 310× g for
120 min at room temperature (26 ± 1 ◦C). The experimental time of 2 h for equilibrium
was established in previous trials. After that, the samples were centrifuged (10,000× g for
10 min) and supernatants were analyzed by ultra-high performance liquid chromatography
(UHPLC) (see Section 2.6). Three parallel experiments were carried out to obtain the average
and error estimates. At the end of experiments, the concentration of the adsorbed molecules,
qt (mg g−1) were calculated using the equation: qt = (C0 − Ct) × V/m, where C0 (mg L−1) is
the starting dose of the molecule in solution, Ct (mg L−1) is the dose at time t (120 min in
these experiments), V (L) is the solution volume and m (g) is the adsorbent mass.

2.4. Adsorption Kinetics

To determine the adsorption rates of OP, BPA and metribuzin onto biochar and to
establish the equilibrium time, sorption kinetics were performed at room temperature
(26 ± 1 ◦C). In these experiments, the solution/adsorbent ratio of 10,000 was adopted.
Volumes of 20 mL of an aqueous mixture of the three molecules, each at dose of 2 mg L−1,
were interacted with 2 mg of biochar in glass centrifuge tubes. The suspensions were stirred
in the dark for time periods ranging from 0 to 120 min. Subsequently, the samples were
processed and analyzed as described in Section 2.3. Each experiment was conducted in
triplicate. Using the equation reported in Section 2.3, the concentration of the adsorbed
compound after a time t, qt (mg g−1), was calculated. The equilibrium time was estab-
lished when at two successive times the quantity of compound adsorbed was unchanged
according to the Student’s t test (p ≤ 0.05).

Sorption kinetics data were fitted into the pseudo-first order (PFO) [28,29] and the
pseudo-second order (PSO) [30] equations, which allowed calculation of the kinetic con-
stants and obtaining indications of the type of molecular interaction between the biochar
and the compounds. Table 2 shows the two theoretical models, along with the correspond-
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ing parameters that were calculated with the non-linear regression method. The accordance
between the experimental data and each model was estimated by the correlation coefficient:

r =

√
∑(qtm−qt)

2

∑(qtm−qt)
2+∑(qtm−qt)

2 , where qtm is the theoretical concentration of the adsorbed

compound (mg g−1) at time t, qt is the experimental concentration (mg g−1) and qt is the
average qt.

Table 2. Theoretical models used.

Model Equation Parameters

Adsorption Kinetics

PFO qt = qe (1 − exp−k1t) qe and qt (mg g−1) are the concentrations of the adsorbed compound at
equilibrium and at time t, respectively, k1 (h−1) and k2 (g mg−1 h−1) are the rate
constants of adsorptionPSO qt =

q2
ek2t

1+ k2qet

Adsorption Isotherm

Freundlich qe = KF Ce
1/n qe (mg g−1) is the concentration of the adsorbed compound at equilibrium,

Ce (mg L−1) is the equilibrium concentration of the compound in solution,
1/n indicates the degree of nonlinearity between the concentration of the
compound in solution and that of the adsorbed compound, while the reciprocal
n is the sorption intensity, KF (L g−1) is the Freundlich adsorption constant,
b (mg g−1) is the maximum adsorption capacity of the adsorbent, KL (L g−1) is
the Langmuir constant that expresses the energy of adsorption and the affinity of
the solute for the adsorbent, Kd (L g−1) is the distribution coefficient

Langmuir qe = (KLCeb)
(1 + KLCe)

Henry qe = Kd Ce

Temkin qe = B ln (AT Ce)

qe (mg g−1) is the concentration of the adsorbed compound at equilibrium;
Ce (mg L−1) is the equilibrium concentration of the compound in solution;
AT (L g−1) is the Temkin equilibrium binding constant, B (J mol−1) expresses the
enthalpy of adsorption; B = RT/bT, where bT is a constant related to the heat of
adsorption; T is the absolute temperature (K) and R is the universal gas constant
(8.314 J mol−1 K−1)

2.5. Adsorption Isotherms

Adsorption isotherms of the compounds onto biochar were conducted at two different
temperatures, 10 and 30 ◦C, using the slurry-type mode. Volumes of 20 mL of aqueous
mixtures of OP, BPA and metribuzin, each at doses of 0.1, 0.2, 0.4, 0.5, 1 and 2 mg L−1, were
added to aliquots of 2 mg of biochar in glass centrifuge tubes. Samples were kept in a
thermostated chamber (F.lli Della Marca S.r.l., Rome, Italy) under magnetic stirring in the
dark for 120 min and subsequently processed and analyzed, as reported in Section 2.3. All
experiments were performed in triplicate.

Desorption experiments were conducted using 2 mg of biochar interacted with a
volume of 20 mL of an aqueous mixture of OP, BPA and metribuzin at individual concen-
tration of 2 mg L−1. Desorption started soon after adsorption and was carried out for four
desorption steps. At each desorption cycle, a volume of 16 mL of equilibrium supernatant
solution was replaced with the same volume of distilled water. After stirring the sample
for an additional 24 h at room temperature (25 ± 1 ◦C) and processing it in the conditions
described in Section 2.3, the residual concentration of the compounds was analyzed in the
supernatant solution by UHPLC (see Section 2.6).

Different models were used to interpret adsorption isotherms data, namely the non-
linear Freundlich, Langmuir and Temkin models and the linear Henry model. The equa-
tions and corresponding parameters are shown in Table 2. The Freundlich parameters,
KF and 1/n; the Langmuir parameters, b and KL; and the Temkin parameters, B and AT,
were all calculated by the non-linear regression method, which allowed minimizing the
sum of squared residuals (SSR) between experimental and theoretical data. The accordance
between the experimental data and each model was estimated by the r value, as described
in Section 2.4. Finally, the linear Henry model assumes that, during the adsorption pro-
cess, there is a constant distribution of the solute molecules between the solution and the
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substrate over the concentration range tested. The Henry equation allows calculating the
distribution coefficient, Kd, from the slope. The organic-carbon-partition coefficient, KOC,
which expresses the amount of compound adsorbed per unit of organic carbon (OC) of the
substrate, was calculated by: KOC = (Kd × 100)/(% OC)) [31].

2.6. Analytical Measurement

Before UHPLC analysis, each sample was filtered through 0.45 µm MilliporeTM cel-
lulose acetate filters. A Dionex Ultimate 3000 RSLC (Waltham, MA, USA), equipped
with an HPG-3200 RS pump, a WPS-3000 autosampler and a TCC-3000 column compart-
ment connected to a SupelcoTM LC-18 column (250 mm × 4.6 mm × 5 µm) was used.
Water (A) and acetonitrile (B) were used to prepare the mobile phase, which flowed at
0.8 mL min−1. The programmed gradient elution was: 0–7 min, 60% B; 7–15 min, from
60 to 90% B. Retention times of OP, BPA and metribuzin were, in order, 13.9, 5.8 and 4.2 min.
A FLD-3400 RS fluorescence detector (Dionex Ultimate 3000 RSLC, Waltham, MA, USA)
operating at wavelengths of 230-nm excitation and 310-nm emission was used to detect
the two phenols, while a DAD-3000 RS diode array detector (Dionex Ultimate 3000 RSLC,
Waltham, MA, USA) at a wavelength of 294 nm was used to detect metribuzin.

3. Results and Discussion
3.1. Biochar Characterization
3.1.1. Basic Characterization and Elemental Analysis

Basic properties of the biochar sample (Table 1) are comparable to those reported in
the scientific literature for wood biochars from pyrolysis or gasification [5]. As expected,
biochar showed high values of pH, EC and ash content. Gasification causes a rearrangement
of the functional groups of the raw material due to the dehydration, decarboxylation and
aromatization processes that occur with the rise in temperature, and that generally leads to
an increase of pH [32].

The elemental analysis provided the elemental composition of biochar and allowed
calculating the atomic ratios of elements (Table 1). It is known that both the feedstock and
the operating conditions adopted in biochar production play a relevant role in its basic
properties and elemental composition. The C, N, H and O contents were comparable with
those reported for other wood biochars obtained by gasification [33]. The high C content of
the material is advantageous for both C storage and adsorption of contaminants. During the
thermochemical conversion of biomass, intense dehydration and decarboxylation processes
cause a marked increase of C content and a decrease of O and H content, compared to
the original biomass [32]. The atomic H/C, O/C and (O + N)/C ratios are important
parameters for evaluating, respectively, the degree of carbonization, hydrophilicity and
polarity index of the material, which strongly depends on the process temperature. The
low H/C ratio of this biochar (0.14) suggests a highly condensed aromatic structure and
a marked thermal degradation [9,30]. Furthermore, the low H/C ratio, along with the
high C/N ratio (166.90), of this biochar is indicative of intense carbonization with abundant
loss of N and H, compared to C [30].

3.1.2. SEM Analysis

The micromorphological aspects of the biochar surface and information on the distribu-
tion and allocation of the pores in the material were investigated using the SEM technique
coupled with EDX elemental analysis. Images were obtained at 500× and 1800× magnifi-
cations (Figure 2). SEM images of the biochar clearly revealed a rough surface with nearly
regular ridges, channels and cavities originating from the cell walls and vascular tissues of
poplar wood used as feedstock for the gasification process (Figure 2A,B). The presence of
numerous pores is due to the volatilization of material during gasification. Microparticles,
mostly of few µm, and small pores of different diameter, nearly or less than 10 µm, were
also present (Figure 2A,B). Porosity and a large surface area of the adsorbent are extremely
important properties for the adsorption of organic molecules. Biochar porosity originates
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from the loss of small volatile molecules, such as H2O, CO, CO2 and CH4, during the
thermochemical conversion of biomass [27]. In a previous work of Taskin et al. [27], SEM
images of two wood biochars showed a wide porosity, but not the original vascular struc-
tures of the plant. This might be due to the lower temperature and the longer residence time
of the pyrolysis process that originated those biochars, compared to this biochar, which
drastically altered the structure of the starting woody biomass.
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  Figure 2. Scanning electron microscopy (SEM) images at magnifications of 500 (A) and 1800 (B) and
energy-dispersive X-ray (EDX) spectrum (C) of biochar. Images were taken with secondary electrons.

The EDX spectrum evidenced the presence on the biochar surface of various elements,
such as Ca, Mg, Na, K, P and so on, that are typical of plant-based materials (Figure 2C).
During the gasification process, the alkali metals K and Na are retained in biochar, which
explains the high pH and EC values observed. Ca, K, Mg and P are the most abundant
elements in biochar [27]. High contents of these elements were found in biochar from
red spruce pellets [27] and chopped red cedar wood [34].

3.1.3. FTIR Analysis

To investigate the chemical structure and surface functional groups of biochar, FTIR
analysis was performed. Overall, the FTIR spectrum (Figure 3) of the biochar was char-
acterized by a poor chemical diversity with few absorption bands, generally of very low
intensities, which denotes an aromatic nature, but with low H content (see Table 1). The
shift of the baseline on the y axis suggests that dehydrogenation mechanisms and subse-
quent rearrangement and polymerization of carbonaceous aromatic units have occurred
during biochar formation. In detail, the absorption frequencies (cm−1) of the biochar spec-
trum and the relative assignments are as follows: 3445 cm−1, O-H stretching of hydroxyl
groups and C-H stretching of 5-membered N/O-heterocyclic C (e.g., furans and pyrroles);
2923–2853 cm−1, C-H asym and sym stretching of CH2 groups; 1636 cm−1: C=C aromatic
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skeletal vibration; 1384 cm−1, in-plane bending of phenolic –OH, likely related to ligneous
syringyl units, and furanosic-like structures; 1260 cm−1, C-O stretching of phenolic groups,
indicative of guaiacyl units associated with lignin; 1114 cm−1: sym C-O-C stretching vibra-
tions in cellulose and hemicellulose and/or aliphatic -OH; 1032 cm−1, sym stretching of
acid derivatives, aliphatic C-O-C and –OH representative of oxygenated functional groups
of cellulose and hemicellulose and methoxy groups of lignins; 874 and 668 cm−1, aromatic
C-H out-of-plane bending [35,36]. It is evident that, due to the extended carbonization
at 800 ◦C, the aromatic moieties result as prevalent, likely indicating the formation of
graphite-like structures, with low amounts of oxygenated/hydrogenated groups. These
results agree with data of elemental analysis that indicate low H/C, O/C and (O + N)/C
atomic ratios, corresponding to the absence or limited presence of oxygenated functional
groups on the surface and high percentages of carbon content. The FTIR spectrum obtained
was similar to that of a char obtained from red cedar through gasification at 800 ◦C [34].
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Figure 3. FTIR spectrum of biochar.

3.2. Preliminary Adsorption Experiments

The sorption efficiency of biochar was investigated at five different solution/adsorbent
ratios. The amounts of the compounds adsorbed on the substrate unit, for each ratio, after
an equilibration time of 120 min are reported in Table 3 and Figure 4. The different solu-
tion/adsorbent ratios used are quite common in adsorption studies using biochar [37,38].
The determination coefficients, r2, obtained by the linear regression of equilibrium data of
each compound were very high, indicating the occurrence of a linear relationship between
the concentration of the adsorbed compound and the ratio adopted (Figure 4). Statistical
analysis of the concentrations of adsorbed compound at the different ratios evidenced
for all compounds highly significant increases (p ≤ 0.01) at each subsequent higher ra-
tio tested, with the only exception for BPA at the ratios of 500 and 1000 (Table 3). The
same trend was observed for the three compounds, despite their different hydrophobicity.
At the highest ratio (10,000), the percentages of OP, BPA and metribuzin adsorbed on
biochar at equilibrium were, respectively, 95.62, 95.88 and 89.03% of the initial compound
added (20 µg). Based on these results, the highest ratio was chosen for the subsequent
sorption experiments.
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Table 3. Amount of compound adsorbed (mg g−1) as a function of the solution/biochar ratio adopted.
One-way analysis of variance (ANOVA) and Duncan’s new multiple range test at p ≤ 0.01 (n = 3)
were used for statistical treatment of data.

Compound
Ratio

500 1000 2000 5000 10,000

OP 0.99 ± 0.002 E 2.00 ± 0.001 D 3.73 ± 0.021 C 9.35 ± 0.013 B 19.12 ± 0.006 A
BPA 0.99 ± 0.005 D 1.84 ± 0.024 D 3.80 ± 0.057 C 8.88 ± 0.629 B 19.18 ± 0.030 A

Metribuzin 0.79 ± 0.021 E 1.84 ± 0.001 D 3.66 ± 0.007 C 8.81 ± 0.078 B 17.81 ± 0.047 A

Note: different letters indicate statistically significant differences at p ≤ 0.01.
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Figure 4. Effects of the solution/biochar ratio on the adsorption of the compounds at the equilib-
rium condition.

It can be hypothesized that at higher solution/adsorbent ratios, more sorption sites of
biochar were accessible/available for the solute, including the innermost ones, compared
to lower ratios. In a very recent work, Islam et al. [39] investigated the effects of biochar
dosage on the adsorption capacity of methyl orange and found that by increasing the
dosage of the adsorbent, for the same volume of solution, the removal of the dye from
water significantly decreased, thus suggesting an optimal dosage of 0.5 g L−1, which corre-
sponded to a solution/biochar ratio of 2000. Considering the physicochemical properties
of the compounds, as expected, the affinity for biochar was higher for the two phenols than
for the less hydrophobic and much more water-soluble metribuzin. A negative correlation
was previously demonstrated between the sorption efficiency of biochar and the water
solubility of some EDCs and pesticides [40].

3.3. Adsorption Kinetics

Adsorption kinetics were performed to estimate the retention rate of the three com-
pounds onto biochar and to investigate the prevalent type of interaction. Adsorption
kinetics data are shown in Table 4 and Figure 5. All compounds reached the steady state
in a very short time, i.e., a few minutes for OP and BPA and about 30 min for metribuzin
(Figure 5). At equilibrium time, the concentrations of adsorbed OP and BPA were al-
most identical and equal to about 19 mg g−1, whereas the metribuzin concentration was
about 17 mg g−1 (Figure 5 and Table 3). The longer equilibrium time and lower concentra-
tion of adsorbed metribuzin, compared to the phenolic EDCs, indicated a lower affinity of
this molecule for biochar, which probably depends on its lower hydrophobicity. Differently
from that observed for other wood biochars [38], the adsorption of metribuzin by this
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biochar was relevant and quantitatively similar to that of OP and BPA. This discrepancy
most likely depends on the production temperature of the material, which was much lower
in that study (550 ◦C). An equilibrium time of 120 min was adopted in the adsorption
isotherms experiments.

Table 4. Kinetic pseudo-first order and pseudo-second order parameters obtained through the
non-linear regression for the adsorption of the compounds onto the biochar.

Compound
Pseudo-First Order Pseudo-Second Order

qe, exp
(mg g−1) r SSR qe,1

(mg g−1)
k1

(h−1) r SSR qe2
(mg g−1)

k2
(g mg−1 h−1)

OP 19.12 0.622 0.03 19.05 281.37 0.750 0.02 19.07 287.86
BPA 19.18 0.839 0.02 19.11 264.92 0.910 0.01 19.13 240.16

Metribuzin 17.51 0.758 9.35 16.64 82.52 0.895 4.59 17.18 8.34
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Figure 5. Adsorption kinetics data and plots of predicted PFO and PSO kinetics of the compounds
onto biochar. Standard error is reported as vertical bar on each point (n = 3).

Based on the shape of the kinetic curve, we can assume that the adsorption of OP
and BPA was almost instantaneous, while that of metribuzin was a multi-step process
consisting in an initial rapid adsorption on the most accessible external sites of biochar,
followed by a slower adsorption on the innermost active sites. The greatest removals were
observed for the more hydrophobic OP and BPA (Table 4 and Figure 5).

Information on the adsorption mechanisms of the compounds onto biochar were
obtained by fitting kinetic data into the non-linear PFO and PSO equations. Both models
are commonly adopted in this type of study [29,30]. The PFO model of Lagergren [28]
highlights the relevant role of the adsorbent surface, as it theorizes the occurrence of a linear
relationship between the number of sites available on the adsorbent and the speed of their
occupation by the solute [29]. The PFO equation is well suited to describe a physisorption
process. Differently, the PSO kinetic model considers in particular the type of adsorption
at equilibrium and theorizes the formation of chemical bonds between the solute and the
adsorbent [30]. Then, the PSO model is appropriate when the solute binds to the adsorbent
through covalent bonds (chemisorption), which is the rate-limiting step of the process.

Table 4 shows the values of the kinetics parameters obtained for the three compounds
according to the PFO and PSO models, along with the correlation coefficients, r, and the
sum of squared residuals, SSR. Based on the values of r and SSR, the PSO model was the
preferential fit for all compounds (Table 4). The experimental kinetics data and plots of the
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predicted PFO and PSO kinetics are shown in Figure 5. These results suggest that strong
covalent bonds were formed during the sorption process, possibly coexisting with weak
bonds, such as van der Waal forces and hydrogen bonding that are typical of physisorption.
In a previous study, OP adsorption onto a red spruce biochar followed the PSO equation
very well [40]. Kinetic sorption data of BPA on a grapefruit peel biochar fitted the PSO
model well, being the adsorption mechanism controlled by forces such as π-π electron
donor-acceptor bond, H-bond and others, of which chemisorption was the rate control
step [41]. A prevalent π-π electron donor-acceptor binding between BPA and biochar
was found by Xu et al. [42]. Hydrogen bonds and Coulombic forces were reported by
Essandoh et al. [43] as the main mechanisms of metribuzin adsorption on biochar, along
with weaker bonds, such as van der Waal and dipole-dipole interactions. The adsorption of
metribuzin onto two biochars produced from wood residues was better interpreted by the
PSO equation [38].

3.4. Adsorption Isotherms

Adsorption isotherm study allows estimating the adsorption parameters and provides
information on the type of allocation of a compound onto biochar. To investigate the effects
of temperature on adsorption, slurry-type experiments were conducted at temperatures
of 10 and 30 ◦C. Isotherm data obtained for each compound and each temperature were
interpreted with the equations of Henry, Freundlich, Langmuir and Temkin. Modeling of
isotherm data provides indication of the adsorption mode of the solute on the substrate.
The non-linear Freundlich model is appropriate for solutes that form multilayer adsorption
on a heterogeneous substrate and does not assume substrate saturation. Conversely,
the Langmuir model is proper for homogeneous materials and when there is negligible
molecular interaction between the adsorbed molecules that form a monolayer on the
adsorbent. The Temkin isotherm predicts a logarithmic reduction of available sites and
sorptive energy involved and is best applied at intermediate concentrations of the solute.

The isotherm parameters obtained by fitting the equilibrium data in all models are
given in Table 5, while the experimental data, along with the plots of the predicted Fre-
undlich model, are depicted in Figure 6. Based on both r and SSR values, in general, at
both temperatures, the best fit for the compounds was the Freundlich model (Table 5).
In particular, at the temperature of 10 ◦C, all three compounds followed the Freundlich
equation (lowest SSR values) very well, although OP data were also well described by
the Henry and the Temkin equations (Table 5). This finding is confirmed by the values
of the Freundlich exponent (1/n), which indicate that, according to Giles et al. [44], the
isotherm of OP was nearly C-type (1/n~1), that of BPA was S-shaped (1/n > 1) and that
of metribuzin was L-shaped (1/n < 1) (Table 5). A linear C-type isotherm assumes a con-
stant partitioning of the solute between the solution and the adsorbent, without reaching
saturation in the concentration range adopted. A S-type isotherm indicates an increase
in the rate of adsorption, with increasing solute concentration in the aqueous medium.
Finally, an L-type isotherm describes the adsorption of a compound having high affinity
for the adsorbent at low solute concentration, and in the initial stage of adsorption, while
successively, as the surface sites are occupied, the rate of the process decreases without
reaching the saturation of the adsorbent. The L-shaped isotherm is typical of low hy-
drophobicity solutes, such as metribuzin (log Kow = 1.70), on heterogeneous substrates,
such as biochar. The adsorption of metribuzin onto a wood biochar was well interpreted
by L-shaped Freundlich isotherms [34]. The Freundlich exponent 1/n is a non-linearity
index and expresses the strength of adsorption, while its reciprocal n is the heterogeneity
factor. The 1/n values can also give information on the mechanism of adsorption. When
1/n < 1, the solute is mainly adsorbed by physical interaction, while when 1/n > 1, the
chemical bond prevails [40]. Thus, we can assume that an important role was played by
chemical bonding in BPA (1/n > 1) adsorption, physical interaction in metribuzin (1/n < 1)
adsorption and both types of bonding in OP (1/n~1) adsorption.
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Table 5. Adsorption parameters of the three compounds onto biochar.

10 ◦C 30 ◦C

Model OP BPA Metribuzin OP BPA Metribuzin

Henry

r 0.987 0.975 0.973 0.999 0.998 0.959
SSR 12.9 22.2 2.1 0.7 2.3 29.5

Kd (L g−1) 314.3 144.6 3.7 298.1 163.7 45.2
KOC (L g−1) 422.5 194.5 4.9 589.04 220.1 60.8

Freundlich

r 0.976 0.991 0.993 0.998 0.996 0.991
SSR 10.4 4.5 0.1 0.7 0.6 2.8

KF (L g−1) 217.7 138.2 3.9 295.0 242.7 225.3
1/n 0.88 1.86 0.58 1.00 1.16 2.17

Langmuir

r 0.943 0.974 0.941 0.996 0.994 0.833
SSR 7.0 22.4 2.1 1.8 2.3 29.6

b (mg g−1) 6562.4 3372.0 2.3 1149.9 4106.4 252.2
KL (L g−1) 0.06 0.02 1.11 2.30 0.04 0.01

Temkin

r 0.988 0.804 0.971 0.973 0.893 0.946
SSR 5.7 95.7 0.5 28.5 43.2 44.6

AT (L g−1) 178.7 230.1 16.2 246.6 140.7 16.4
B (J mol−1) 7.60 3.32 1.45 5.77 5.33 7.99

bT 309.5 696.3 1618.1 436.4 472.5 315.1

When the sorption isotherms were performed at a temperature of 30 ◦C, once again, all
compounds showed high r values and low SSR values for the Freundlich model. Hence, the
adsorption of each compound occurred through the formation of a multilayer of molecules
on the heterogeneous surface of biochar. At this temperature, both for OP and for BPA,
high correlation coefficients were obtained also for the Henry equation, which agrees with
their 1/n values equal or close to the unit (C-type isotherm).

Therefore, it is plausible that a constant partitioning of OP and BPA occurred between
the adsorbent and the solution as the solution concentration increased (Table 4). The highest
discrepancy between theoretical and experimental data was observed for BPA and the
Temkin equation at both temperatures tested.

The adsorption of organic compounds onto C-rich material, such as biochar, occurs
through physical (physisorption) and chemical (chemisorption) interaction mechanisms
and forces of various strength. Physisorption is a low-enthalpy and reversible process that
occurs when the solute binds to the adsorbent through weak interactions, such as van der
Waals forces and H bonding. Differently, chemisorption is a high-enthalpy and almost
irreversible process, as it includes strong interaction between the solute and the adsorbent
through valence forces, such as covalent or ionic bonds. Adsorption of EDCs onto C-rich
materials is most likely to occur through various mechanisms that depend on the extent
and type of functionalities of the adsorbent, which, in turn, are dictated by the operating
parameters adopted in the production process [45]. Low process temperatures allow the
formation of O-containing groups on biochar, while high temperatures favor carbonization
and aromatization reactions with a consequent high degree of hydrophobicity and preva-
lent hydrophobic interaction with organic compounds [45]. The high temperature of the
gasification process originating the biochar sample of this study favoured the formation
of a very great number of sorption sites on the material, which allowed high efficiency
of retention of a wide range of molecules with contrasting properties, such as the ones
tested in this study. Therefore, the three EDCs can be adsorbed on both hydrophilic and
hydrophobic active sites, depending on their specific chemico-structural characteristics
(Figure 7). As is well known, the pH value chosen in the experimental conditions strongly
influences the adsorption mechanisms, as it induces important modifications of the physic-
ochemical properties of the molecules, and, consequently, of their ability to interact with the
adsorbent surface. In our study, the pH value of the suspension biochar-solution was equal
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to 8.3 and, consequently, BPA and OP, which are weak organic acids (pKa, respectively,
9.78/10.39 and about 10), were mostly undissociated.
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Figure 6. Adsorption isotherms of the compounds onto biochar conducted at temperatures
of 10 ◦C (A) and 30 ◦C (B). Experimental points are shown along with plot (dashed lines) of the
Freundlich model. Standard error is reported as vertical bar on each point (n = 3).

Likely, charge-transfer bonds (π-π) via electron donor-acceptor mechanisms are formed
between activated electron-donor molecules, such as the phenolic units of BPA and OP, and
deactivated electron-acceptor moieties occurring on the biochar surface, such as quinone-
like structures (Figure 7) [46,47]. Furthermore, as in phenols the OH group is linked to
an sp2 hybridized carbon, an equilibrium is created between the alcoholic form and the
respective carbonyl form, i.e., in aqueous solution, both the alcoholic form and the quinoid
form are present. In this case, the charge-transfer bond would take place between electron-
acceptor-deactivated quinoide rings of BPA/OP and activated electron-donor molecules,
such as syringyl and guaiacyl units occurring on the biochar surface. Hydrogen bonds are
likely involved in the adsorption of BPA and OP, as both molecules are characterized by
the presence of hydrogen donors and acceptors (Figure 7) [47]. Furthermore, considering
the hydrophobic skeleton of BPA and OP molecules and the carbonaceous aromatic units
present on biochar surface, it is reasonable that an adsorption on the biochar occurred
through non-specific hydrophobic bonds (Figure 7) [48]. In general, the higher degree of
adsorption of OP compared to that of BPA, as evidenced by equilibrium data, is probably
due to a higher contribution of non-specific hydrophobic bonds due to the larger alkyl
side chain. Likely, the molecules tend to enter the biochar as a result of their small sizes
(e.g., molecular size of BPA 4.36 Å), and the match between the pore size of biochar and the
molecular size of the adsorbates plays a key role in the adsorption [45,49]. Covalent and
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H bonds were reported as the prevalent bonds occurring in the adsorption of OP onto a
wood biochar [40].
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The adsorption of metribuzin onto a switchgrass biochar was mainly ascribed to
H bonds and Coulombic forces and, to a lesser extent, to van der Waal and dipole-dipole
interactions [43]. The presence of O-containing sites on the surface of biochar, although
limited in number due to the conditions of biochar production, allowed the formation
of H bonds with metribuzin, mainly involving the guaiacyl and syringyl units of the
biochar and the amino group present on the triazine ring (Figure 7). Further adsorption
mechanisms may be hydrophobic bonding between the alkyl side chains of metribuzin
and the hydrophobic sites on biochar surface. Finally, it should be taken into consideration
the formation of charge-transfer bonds between the electron-donor ring of metribuzin and
electron-accepting units present on the biochar surface, e.g., quinones (Figure 7).
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In this study, a remarkable adsorption of all compounds, especially the more hy-
drophobic OP and BPA, was shown by biochar. Using the Henry equation, it was possible
to calculate the distribution coefficient, Kd, that expresses the sorption efficiency of a sub-
strate, and the organic-carbon-partition coefficient, KOC, that is a measure of the amount of
compound adsorbed per unit of organic carbon of the substrate. Based on the KF values
obtained in the experiments conducted at 10 ◦C, the adsorption capacity of biochar for the
three molecules followed the order: OP > BPA > metribuzin (Table 5). The same order was
observed for Kd and KOC values. As expected, the most hydrophobic OP and BPA were
the most adsorbed by biochar, which confirms the general high affinity of this material for
low polar molecules. At this temperature, the KF and KOC values of OP were two orders of
magnitude higher than those of the more water-soluble metribuzin (Table 5). The maximum
adsorptions, expressed by the parameter b of the Langmuir equation, followed the same
order as the Henry and Freundlich constants (Table 5). The estimated parameters of the
Temkin equation are AT, B and bT (Table 5). Considering the r values, only the experimental
data of OP matched the Temkin equation (r = 0.988) quite well, while those of the other
compounds differed noticeably from this model. Parameter B gives an indication of the
heat of adsorption. For each molecule, especially the most hydrophobic OP, the B value
was relatively high and always higher than the unit suggesting exothermic adsorption of
the molecules on biochar [50].

When the experiments were conducted at a temperature of 30 ◦C, the adsorption
constants Kd, KF and KOC followed the same order, OP > BPA > metribuzin, already
observed at the lower temperature, although at 30 ◦C, the KF values were only slightly
different from each other, indicating a similar behavior of the three compounds (Table 5).
The Langmuir b values (maximum adsorption) showed the trend BPA > OP > metribuzin,
but the r values for this equation were not sufficiently high for all compounds. The Temkin
B values were all greater than the unit, indicating, also at 30 ◦C, the occurrence of an
exothermic interaction between biochar and the compounds (Table 5).

The values of the adsorption parameters obtained in this study at both temperatures
tested were generally comparable to or higher than those reported in the scientific literature
for biochar produced by pyrolysis or gasification at temperatures between 750 and 850 ◦C.
As the production temperature noticeably influences the physicochemical properties and
sorption efficiency of biochar, a comparison between this biochar and other biochars
obtained at very different temperatures does not seem appropriate. The kF value reported
by Del Bubba et al. [51] for OP adsorption on a sawdust biochar produced at 850 ◦C
(0.63 L g−1) is much lower than that observed in our study (about 218 and 295 L g−1 at,
respectively, 10 and 30 ◦C). The kF values observed in this work for BPA (about 138 and
243 L g−1 at, respectively, 10 and 30 ◦C) were higher than those found for BPA on biochars
produced at 800 ◦C from pine chips (9.2 L g−1) [46] and from sawdust (6.5 L g−1) [42].
On the contrary, a kF value as high as 1,408 L g−1 was reported for BPA adsorption on
Argan nut shell biochar [52]. The relevant metribuzin adsorption demonstrated in this
study is in agreement with what observed by Essandoh et al. [43] using a plant-derived
biochar. Studying metribuzin adsorption onto sugarcane bagasse biochar produced at
700 ◦C, White et al. [53] obtained KF (47.2 L kg−1) and Kd values (15.9 L kg−1) that were
intermediate between those found here at the two temperatures tested. The 1/n value
obtained at 10 ◦C for metribuzin was similar to that found by White et al. [53] using a
sugarcane biochar (0.61) and by Loffredo et al. [38] using two wood biochars (0.55 and
0.65), which suggests similar surface heterogeneity of the materials.

At the two selected temperatures, the biochar showed the significantly different sorp-
tion capacities of the compounds (Table 5). In general, the values of the sorption constants
were higher at 30 ◦C than at 10 ◦C, and this was particularly evident for metribuzin (Table 5).
Compared to the KF values of OP, BPA and metribuzin obtained at 10 ◦C, those obtained
at 30 ◦C were, respectively, 1.3, 1.7 and 57.8 times higher. A positive influence of tempera-
ture on metribuzin adsorption on biochar was observed by Essandoh et al. [43] between
25 and 35 ◦C, but not between 35 and 45 ◦C. Irrelevant effects of temperature on BPA
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adsorption were reported by Xu et al. [42] in a temperature range of 25–45 ◦C. Conversely,
Wang and Zhang [41] found a decrease of BPA adsorption when the temperature increased
from 25 to 45 ◦C.

The level of correlation between the coefficients Kd and KF and the corresponding
Log Kow or water solubility of the compounds was explored through linear regression
(Figure 8). At both temperatures tested, significant correlations (p ≤ 0.05) were found only
between Kd and Log Kow values, while KF values seemed less correlated with compound
hydrophobicity (Figure 8A). Similarly, at both temperatures, only slight correlations were
observed between Kd and KF and water solubility (Figure 8B). These findings confirm the
importance of hydrophobicity in the adsorption of organic chemicals on biochar.
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Figure 8. Plots of the correlations between the distribution coefficient, Kd, and the Freundlich
constant, KF, and the corresponding log Kow (A) and water solubility (B) of the compounds.

Finally, desorption data of the compounds are shown in Figure 9. After four desorp-
tion steps, approximately 5, 5 and 23% of adsorbed OP, BPA and metribuzin were desorbed
from biochar, respectively. Therefore, biochar showed an excellent ability to retain all com-
pounds that were released very slowly and only negligibly (Figure 9). This was expected
considering the physicochemical properties of the compounds and the high hydrophobicity
of biochar. The occurrence of strong chemical interactions between biochar and the two phe-
nolic EDCs could be the reason for the very low desorption rate and hysteresis phenomenon
observed. The slightly higher desorption of metribuzin suggests a weaker interaction of
this molecule with biochar, reasonably due to the formation of lower-energy bonds. Very
little information is available in the literature on the desorption of these molecules from
biochar, and most of the works concern regeneration studies. Choi and Kan [54] measured
very low BPA desorption from an alfalfa biochar.
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4. Conclusions

This study evaluated the potential of a biochar from poplar wood gasification to
adsorb three EDCs, the xenoestrogens BPA and OP and the herbicide metribuzin. Biochar
demonstrated excellent efficiency in removing all compounds, especially the more hy-
drophobic OP and BPA, from water. The quantity of compound removed was positively
correlated with the solution/biochar ratio adopted. Adsorption kinetics study evidenced
a very rapid sorption of all molecules, especially the two phenols that were retained al-
most instantaneously, according to a preferential pseudo-second order kinetic model. At
both temperatures investigated (10 and 30 ◦C), the degree of adsorption followed the
order: OP > BPA > metribuzin. The Freundlich model was the best at interpreting the equi-
librium data and describing the sorption of each compound, although, in some cases, the
Henry and the Temkin equations were also well suited. Compared to the results obtained
in previous similar studies, the adsorption constants observed in the present work were
one or two orders of magnitude higher, indicating an extraordinary retention efficacy of
the biochar. The desorption rates of OP and BPA were very low, and much lower than
that of metribuzin, denoting strong retention of the compounds on this material and the
occurrence of hysteretic effects. A significant positive correlation was observed between the
values of the distribution coefficient, Kd, of the three compounds and the corresponding
Log Kow values, thus confirming the prominent role of hydrophobicity in the sorption
process. The overall results of this study encourage the use of biochar as a biosorbent of
toxic organic chemicals in both agricultural and environmental contexts.
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