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3 Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska, 15-351 Bialystok, Poland;
l.derpenski@pb.edu.pl (Ł.D.); b.bartoszewicz@pb.edu.pl (B.B.)

* Correspondence: rprzekop@amu.edu.pl

Abstract: This article presents the development of an automated three-point bending testing system
using a robot to increase the efficiency and precision of measurements for PLA/TPU polymer blends
as implementation high-throughput measurement methods. The system operates continuously and
characterizes the flexural properties of PLA/TPU blends with varying TPU concentrations. This
study aimed to determine the effect of TPU concentration on the strength and flexural stiffness,
surface properties (WCA), thermal properties (TGA, DSC), and microscopic characterization of the
studied blends.
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robotics; flexural properties; thermal analysis; optical microscopy (MO); AI feeding data

1. Introduction

As science and the economy continue to advance, researchers in both academic and
industry settings are turning to increasingly sophisticated tools to keep pace with the
demands of the field. In this environment, effective management of human resources and
the ability to adapt quickly are critical. Research process automation is an approach that
utilizes technology to streamline and improve the efficiency of research and experimenta-
tion. There are many examples of the use of machines, computer technology, and software
to support workflow management, data collecting, simulations, or decision making [1–4].
This approach can be applied across a variety of scientific fields, from engineering [5] and
biology [6] to social sciences [7]. A considerable amount of emphasis is being placed on the
creation of novel algorithms that can be conveniently stored in the cloud, which is easy to
implement in open networking systems [8]. Networking plays a crucial role in Industry
4.0, serving as a means of connecting physical machines in cyber-physical production
systems (CPS) [9]. By doing so, it enhances the flexibility and intelligence of production
processes, while facilitating machine-to-machine (M2M) communication [10]. This inno-
vative approach to networking has proven effective in optimizing production processes
and fostering the growth of the manufacturing industry through the incorporation of smart
technology. However, there are lots of challenges, and ensuring open-source systems’ safety
from potential hacker attacks is a significant challenge that needs to be addressed [11,12].
While often associated with industrial production, the automation and robotization of
research processes are gaining attention as a way to drive scientific progress and improve
research outcomes. The automation of experiments is motivated by several benefits. By
automating routine tasks, researchers can focus on more complex work that requires critical
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thinking. Automation can also reduce human error which depends on several factors, such
as skills, habits, operator attention, and understanding of procedures, and increases the
accuracy and speed of research processes, resulting in faster access to results by minimizing
manual work. Kraber and Endsley analyzed how the level of process automation affects
operator behavior and interaction and described the effects of the level of automation
(LOA) and adaptive automation (AA) on human performance, situation answers, and
workload in a dynamic control task. They exhibited intricate interdependencies between
the operator and the automated systems [13]. In this paper, a novel approach is presented
for the material fabrication and preparation for mechanical testing. The automation of
mechanical tests can be useful for anisotropic materials and objects produced by technolo-
gies such as 3D printing, where many properties depend on the unique structure created
during manufacturing [14–16].

Table 1 and Figure 1 provide a comparison between traditional approaches and the
proposed method, which involves automated robotic tools for continuous material char-
acterization. Automation eliminates redundant operations in the complex testing process
and reduces the need for staff involvement, resulting in more efficient and accurate results.

Table 1. Comparison of the time performance of high-throughput (robot-operated) and traditional
three-point bending measurements.

Operator Type Weekly Working
Time 1,2 [h]

Single Measuring
Time [h]

Number of Samples
Tested per Hour [pcs]

Sample Mounting
Time [h]

human 30 0.10 250 0.02
robot 138 0.10 1340 0.003

1 Maintenance time of the robot = 6 h per week. 2 Daily man–machine time/5 days per week.
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Through the utilization of high-throughput measurements, it can ascertain changes
in measured parameters with greater precision than traditional measurement techniques
and is able to prepare a materials database useful at higher levels of research process au-
tomation, which can be useful for machine learning in material science. High-throughput
measurement methods are a collection of techniques frequently utilized across a wide range
of scientific and industrial disciplines to rapidly gather data or analyze a significant volume
of samples or data points in order to enhance the speed and effectiveness of data acquisition
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or analysis, making them exceptionally valuable in situations where a sizable amount of
data must be processed promptly. Usually, research methods in polymer science rely on
a few selected measurement points to estimate a general trend in global changes in material
properties, which is vulnerable to measurement uncertainty. Estimating a trend curve based
on a limited number of data points can be achieved through various means, and referring
to a global change in a parameter within a specific range may not always precisely reflect
the actual changes in properties (refer to Figure 2). The design of plastic products requires
a thoughtful selection of materials for their function. This choice is not straightforward,
requiring many factors to be taken into account, so, to meet the expectations of designers,
researchers are proposing and testing various decision-making models to facilitate the
selection of suitable materials. In their discussion, Muhammed Ordu and Oguzhan Der
proposed a simple and efficient hybrid multi-criteria decision-making (MCDM) model of
material selection for flexible pulsating heat pipe manufacturing [17]. Mastura M. T. et al.
studied the material selection of thermoplastic matrices for naturally reinforced green
composites dedicated to the automotive industry using Quality Function Deployment for
the Environment (QFDE) [18]. The approaches presented in both studies exhibit a better
understanding of new perspectives in sustainable material selection by providing mathe-
matical methods for material evaluation. High-throughput experiments can be widely used
to explore materials’ parameters across the endless number of composition combinations
to support mathematical calculation.
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The approach to materials research presented here is well suited for the study of
polymeric materials. In recent years, there has been a focus on developing new materials
from renewable sources to address the raw material crisis in engineering materials and
move toward sustainable solutions for the circular economy [19–21]. An increasing number
of products in the market are being developed using materials obtained from renewable
sources [22]. These materials can be categorized into four distinct groups based on their
source and the techniques used to acquire them. These groups include polymers derived
from agro-cultural sources (starch-, soy-, and cellulose-based materials), those of animal
origin (chitin-based materials), those produced by bacteria (PHA), and polymers obtained
through biotechnology (PCL, PLA, PHB) [23,24]. Of particular interest is polylactide (PLA),
a biodegradable thermoplastic polyester derived from renewable starch raw materials
obtained conventionally by biotechnology methods which are constantly being improved
to convert production processes to low- or zero-carbon and to be independent of fossil
energy sources [25]. PLA has many advantages and is similar to conventional petrochemical
materials in terms of transparency and ease of processing. However, it is often too brittle
and stiff, with low strain at break, which limits its use in many applications [26–28]. Despite
this, PLA is a potential alternative to current petroleum-based polymers, the production
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of which is closely linked to depleting oil reserves and should be restricted in the future.
One solution is to blend PLA with other polymers that have higher flexibility. This is
a simple and economically beneficial way to shape the properties of polymeric materials.

Thermoplastic polyurethanes are a type of thermoplastic multi-block copolymers that
combine the properties of rubber and traditional thermoplastics. TPUs were introduced
by Lubrizol Engineered Polymers to the global polymer materials market in the late
1950s and early 1960s, representing a stage in the evolution of polyurethane material
technology [29]. TPUs have unique properties that are a direct result of their chemical
structure. TPUs consist of both rigid diisocyanine segments (hard segments, HS) that
can organize themselves and act as cross-linking agents, as well as amorphous domains
that are derivatives of polyesters and polyester-based polyols, responsible for their elastic
behavior (soft segments, SS) [30]. With the ability to control the ratio, structure, or molecular
weight of the reaction compounds during the production of thermoplastic polyurethanes,
an extensive array of unique TPUs can be synthesized. This allows for precise tailoring
of the polymer structure to obtain the desired final properties of the composition [31–33].
They can be also produced from bio-based components, which make them more suitable
for the future perspective [34,35]. TPUs are widely used due to their physicochemical
characteristics, such as flexibility, abrasion resistance, tensile strength, chemical resistance,
and good adhesion to various surfaces (coatings, electronics, sensors, textile, adhesives, 3D
printing) [36–40]. Due to its unconventional properties including highly elasticity, TPUs
can be used to modify other polymeric materials [41]. There has been significant attention
in the literature on using thermoplastic polyurethanes as flexible phases in blends with
other polymeric materials such as PS [42], PP [43], PMMA [44], and PBT [45]. PLA/TPU
blends rheological, mechanical, and thermal properties, as well as shape–memory behavior,
and its compatibilization methods were briefly studied by other researchers [46–50].

The use of high-throughput methods has enabled accurate tracing of the process of
changing specific material characteristics, representing a new and different approach to the
characterization of polymer properties. It sheds new light on issues related to the evaluation
of polymer blends. The present study reports the continuous preparation of PLA/TPU poly-
mer blends, varying TPU concentration from 0–100%, and their characterization using high-
throughput methods. The study utilized an automated robotic three-point bending mea-
surement rig, specifically developed for these tests. The approach enabled a comprehensive
tracing of the formation of blend properties during bending loading (three-point bending).
It also determined the nature of the change in hydrophobic–hydrophilic properties of the
blends obtained, carried out the microscopic evaluation of the changes in blend structure
(MO), and performed TGA analysis.

2. Materials and Methods
2.1. Materials

Polylactide (PLA) Ingeo 2003D type was purchased from NatureWorks (Minnetonka,
Minneapolis, MN, USA). Thermoplastic polyurethane (TPU) Ravathane 130 D55 type was
produced by Ravago Petrokimya Üretim A.Ş. (İzmir, Türkiye).

2.2. Preparation of PLA/TPU Blends

The PLA/TPU blends were prepared by mixing PLA and TPU pelts directly on
an Engel e-victory170/80 injection molding machine. Table 2 shows the injection
molding parameters.

The mold temperature was maintained at room temperature. A holding pressure with
a linear increment over time was applied. Standardized specimens for flexural testing in
accordance with PN-EN ISO 20753:2019-01 [51] were fabricated. Beams for automated
robotic flexural tests were injected in a continuous feed system with a dosage accuracy of
1% in order to obtain a comprehensive characterization of the material over a range of TPU
concentrations from 0 to 100%.
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Table 2. Injection molding parameters.

Temperature (◦C)
Nozzle Zone 3 Zone 2 Zone 1 Feed

210 205 205 200 40

Mold temperature (◦C) 25

Holding pressure t (s) 0 11
p (bar) 700 1100

Clamping force (kN) Holding
pressure time (s) Cooling time (s) Screw diameter (mm)

800 11 60 25

2.3. Characterization Methods

For automatized robotic flexural tests, standardized type B specimens were used. Tests
were performed using an MTS Insight testing machine. The servo-mechanical testing ma-
chine allows experimental testing under axial loads of up to 1 kN and an elongation/flexural
range of up to 750 mm. The traverse speed for measurements was set at 2 mm/min. The
measurement was carried out until a deflection arrow of 15 mm was achieved or the speci-
men broke. The automatic test was conducted continuously over a concentration range of
0 to 100% TPU content in the polymer blends. A total of 628 samples were fluently tested.

Thermogravimetry (TG) was performed using a NETZSCH 209 F1 Libra gravimetric
analyzer (Selb, Germany). Samples of 5 ± 0.2 mg were cut from each granulate and placed
in Al2O3 crucibles. Measurements were conducted under nitrogen (flow of 20 mL/min) in
the range of 20–1000 ◦C and at a 10 ◦C/min heating rate.

Differential scanning calorimetry (DSC) was performed using a NETZSCH204 F1
Phoenix calorimeter. Samples of 6 ± 0.2 mg were placed in an aluminum crucible with
a punctured lid. The measurements were performed under nitrogen in the temperature
range of −50–200 ◦C and at a 10 ◦C/min heating rate.

Surface topography was analyzed under Digital Light Microscope Keyence VHX 7000
with a 100× to 1000× VH-Z100T lens (Osaka, Japan). All of the pictures were recorded
with a VHX 7020 camera.

Contact angle analyses were performed by the sessile drop technique at room tem-
perature and atmospheric pressure, with a Krüss DSA100 goniometer. Three independent
measurements were performed for each sample, each with a 5 µL water drop, and the
obtained results were averaged to reduce the impact of surface nonuniformity.

The statistical methods used for three-point bending and water contact angle measure-
ments involved fitting trend curves and determining the coefficient of determination R2,
using OriginPro v2016 software’s analytical tools. The software was used to enter data
obtained from the measurements. A polynomial regression model was selected for three-
point bending, and a linear regression model was chosen for WCA measurements. The
software automatically fitted the regression model to the data entered, finding the values
of the slope coefficient of the curve (slope) and the Y-axis intersection point (intercept)
that best matched the data entered. After fitting the model, the program calculated the
values predicted by the model for all points, and the differences between the actual data
values and the values predicted by the model. Subsequently, the sum of the squares of
these differences was calculated, which is called the Sum of Squares of Errors (SSE), as
well as the Sum of Total Squares (SST), which is the sum of the squares of the differences
between the actual data values and their mean. From the SSE and SST values, Origin Pro
calculated the coefficient of determination R2 using the formula:

R2 = 1 − (SSE/SST), (1)

2.4. Experimental Workstation Setup Design for Automated Robotic Flexural Tests

A special test ring was set up to automate flexural tests. The test stand is built with
four main components (Figure 3): Dobot Magician manipulator (1), linear slide (2), sample
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magazine (3), and MTS Insight testing machine (4). The Dobot Magician manipulator’s
task is to take a sample from the magazine equipped with an automatic feeder and transfer
it to the testing machine. After taking the sample from the magazine, the manipulator
positions itself near the grip of the testing machine and waits for a ready signal. When it
receives the signal, it feeds the sample into the machine chuck and withdraws the gripper.
It then sends a signal to initiate the start of the testing by the testing machine. During
the test, the robot takes another sample. The automatic feeder that is part of the sample
magazine constantly monitors the cell from which the sample is taken so that it is filled all
the time. In addition, during the stage of feeding the sample to the testing machine holder,
the sample already used is pushed by the robot through an appropriately shaped gripper.
Such a solution greatly improves the process of automating the exchange of samples during
testing. The above-described process is performed automatically until the sample magazine
is completely emptied (see in Supplementary Materials Videos S1 and S2).
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2—linear slide, 3—sample magazine, 4—testing machine), (B–D)—robot positioning, (E,F)—fixing the
sample in the measuring holder/removal of the tested sample, (G)—end step, taking a new sample.

3. Results and Discussion
3.1. Flexural Behavior Analysis

Figure 4 presents an analysis of the behavior of PLA/TPU blends under three-point
bending. This study involved collecting 628 data points to determine the trend of bending
properties as they relate to changes in TPU mass content. Polynomial trend curves were
created to evaluate the strength parameters, and both mechanical properties assessed had
a coefficient of determination R2 ≈ 1, indicating a correct fit of the regression model to the
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actual data. The flexural strength (Figure 4) and modulus of stiffness (Figure 5) are shown
in separate graphs. Both parameters decrease, which can be attributed to the change in the
material’s nature from a typical thermoplast to an elastomer.
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3.2. Thermal Analysis Results

Thermogravimetric analysis is a widely recognized technique that offers insight into
the thermal degradation of polymeric materials across a wide temperature spectrum. As
part of this study, TGA was employed to monitor the pyrolysis process (decomposition
within a nitrogen environment) of PLA/TPU blends for a range of representative samples.
This approach enabled the researchers to ascertain the materials’ thermal stability, with
the findings presented in both Figure 6 and Table 3. The thermal decomposition of PLA
proceeds in one stage, while the decomposition of TPU is more complex and consists of
two stages; the first stage involves the decomposition of hard segments of TPU, while the
second stage involves the decomposition of soft segments.
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Table 3. Results of thermogravimetric analysis (N2).

T5% [◦C]
1st Stage 2nd Stage

T1onset [◦C] [◦C] T2onset [◦C] T2max [◦C]

PLA 309.0 330.5 343.0 - -
25% TPU 301.5 301.8 333.2 - 353.0
40% TPU 300.8 309.3 326.5 356.8 366.1
70% TPU 296.0 301.7 315.9 343.0 370.3

TPU 293.5 309.9 338.7 382.8 398.4

The results obtained are in agreement with the literature data [52], which indicate the
good quality of the blends obtained and the preservation of compositional constancy in the
continuous dosing process carried out. However, the blends are less thermally stable than
PLA, as evidenced by the shift in the DTG curves’ extremes to lower temperatures. Exposure
to high temperatures can cause transesterification reactions, leading to the weakening of
TPU areas in the blends and acceleration of thermal degradation. For blends with 25% TPU,
there is a peak dilution phenomenon due to overlapping thermal effects associated with
the degradation of both PLA and TPU. This phenomenon disrupts the degradation peak of
PLA, leading to its lower intensity due to the division of the energy required to degrade
both polymers.

The DTG curves indicate various temperatures related to the decomposition process,
including the temperature at which 5% of the mass is lost (T5%), the temperature at which
the decomposition starts (T1onset, T2onset), and the temperature at which the maximum mass
loss rate occurs for each stage of decomposition (T1max, T2max). As the proportion of TPU
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in the sample increased, the temperature of 5% mass loss (T5%) decreased by around 10 ◦C.
The addition of TPU into PLA makes the blends more vulnerable to thermal decomposition,
as evidenced by the significant reduction in T1onset observed in all biphasic systems. In
samples containing 40% and 70% TPU, two decomposition stages were recorded with
a similar course to that of pure TPU but with a shift to lower temperatures, indicating
accelerated decomposition of soft segments of TPU in the presence of PLA (T2onset, T2max).

3.3. PLA/TPU Blends Microstructure Evaluation—Optical Microscopy Observations (MO)

The images displayed in Figure 7 were captured for a representative range of test
specimens after the bending test.
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Figure 7. Changes in the surface appearance (1) and structure of the samples (2) as a result of
interaction shearing forces under flexure, from the brittle failure of PLA to the elastic deformation of
TPU; (A)—PLA, (B)—25% TPU, (C)—40% TPU, (D)—70% TPU, (E)—TPU (magnification 100×).

The pictures illustrate the change in surface morphology (Figure 7(A1–E1)) with re-
spect to the TPU content in the specimen composition and the effect of bending stresses,
showing the change in the nature of the material failure pattern during bending in the stress
concentration area (Figure 7(A2–E2)). The test material’s characteristics change from the
typically brittle failure, due to the effects of bending stresses observed in PLA (complete fail-
ure of the specimen), to an elastic response, due to stress relaxation after force subtraction,
and return to the original form for test objects made of TPU. The PLA breakthrough exhibits
characteristic sharp edges and numerous delaminations and microcracks, while the TPU
sample shows no signs of stress-induced damage. The dotted line indicates the depth of the
area of microstructural changes at the point of force application for the PLA/TPU blends.
As previously discussed, the addition of TPU to PLA positively impacts the material’s
elasticity, resulting in a smaller area of permanent microstructural changes in the imaged
specimens after the bending test. When the material is bent, cracks occur in the upper
layers of the specimen, and rounded-edge microcracks may appear due to a loss of fluidity
between the PLA and TPU microareas. The damage caused by bending the PLA/TPU
blends is indicated by the red arrows. The rough texture of specimens made from the



Materials 2023, 16, 6927 10 of 15

PLA/TPU blends is due to microheterogeneities caused by the limited miscibility of the
polymer phases. It appears that the presence of TPU has a consistent effect on the surface
appearance of all blends, regardless of its concentration in the polymer system. The surface
of the PLA and TPU samples is significantly smoother than that of the blends, allowing the
lines of the direction of filling of the molding cavity by the plasticized material to be seen.
Macroscopic images of the chosen samples are presented in Figure 8.
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3.4. Contact Angle Analysis Results

The results of the surface wetting measurements by water, determined using the
sessile drop method, for selected measurement samples made from PLA/TPU blends and
natural PLA and TPU polymers are presented in Figure 9. The purpose of the measurement
was to determine the effect of TPU content in the blends on the hydrophobic–hydrophilic
character of the surfaces of the measurement samples. The trend curve and the coefficient
of determination R2 were also determined. The WCA changes significantly with an increase
in the mass content of TPU in the blend, signifying a change in the surface character of
the developed materials. The TPU grade used to modify PLA increases the hydrophobic
character of the blends with respect to PLA due to the inherent properties of TPU [53]. TPU
is composed of polyurethane segments, which are often hydrophobic or have limited ability
to form hydrogen bonds with water molecules [54], while PLA has carbonyl hydrophilic
groups (C=O) and also hydroxyl groups (-OH) in its structure, which can form hydrogen
bonds with water. These promote interactions between PLA and water molecules, making
it a more hydrophilic material than TPU.
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3.5. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry analysis was conducted on reference samples of PLA
and TPU, as well as blends with varying amounts of TPU (10%, 25%, 40%, 55%, 70%, and
90%). Based on the DSC curves, the glass transition temperature (Tg), cold crystallization
temperature (Tcc), and melting temperature (Tm) were calculated for both the first and
second measurement cycles (Table 4). Figure 10 illustrates the thermograms of the samples
during the second heating cycle. The results indicate that the majority of changes occur
during the crystallization stage. For pure PLA, the glass transition, crystallization, and
melting temperatures are Tg = 61.9 ◦C, Tcc = 127.6 ◦C, and Tm = 153.8 ◦C, respectively. The
DSC curves for pure TPU do not exhibit any transitions in the second heating cycle. The DSC
measurements conducted during the second cycle indicate that the presence of dispersed
TPU phases has an impact on the PLA crystallization process. The Tcc value decreased from
almost 128 ◦C (neat PLA) to around 110 ◦C (PLA/TPU blend). The thermograms illustrate
that the cold crystallization peak is more pronounced for the blends, especially for those
containing 10% and 25% TPU. According to the literature, this effect can be attributed to
TPU, which acts as a crystallization nucleation agent by providing nucleation spots [55]. In
blends that contain 90% TPU, the Tg, Tcc, and Tm signals are barely discernible.

Table 4. DSC analysis results.

Tg [◦C] Tcc [◦C] Tm [◦C]

Cycle First Second First Second First Second

PLA 59.9 61.9 115.9 127.6 154.9 153.8
10% TPU 59.9 61.5 107.6 110.6 155.4 149.9/154.8
25% TPU 60.7 61.6 106.8 109.7 150.9 149.3
40% TPU 60.7 61.6 109.5 111.5 151.3 149.7
55% TPU 60.5 62.0 107.2 112.6 149.8 151.0
70% TPU 59.4 61.4 107.4 111.6 150.3 150.0
90% TPU - - - - - -

TPU - - - - - -
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4. Conclusions

Our study delves into the intricacies of polymeric materials utilizing high-throughput
methods. We have utilized PLA/TPU blends as a case study to showcase the potential
of automated robotic measurements in gauging bending properties. Our research has
devised a simple measuring station construction that drastically enhances the efficiency
of the three-point bending measurement method, introducing a novel way of analyzing
materials. Furthermore, we have verified the feasibility of continuous fabrication and
characterization of polymeric multi-component materials. Through thermal analysis, we
have established that the compositional consistency of PLA/TPU blends produced through
continuous dosage methods was upheld. Additionally, we have gathered evidence of
the compositional stability of the materials, obtained by tracing the change in the angle
of surface wetting by water. Our microscopic analysis of the failure areas of the speci-
mens during mechanical testing allowed us to determine the effect of TPU content on
microstructural transformations in standard components made from PLA/TPU blends.
The presence of TPU in the composition of the blends significantly increases the ability
of the systems to relax stresses, reducing the negative aspects of their influence on the
formation of permanent material damage. Our methods provide a solid foundation for the
development of a new approach to high-throughput polymer-based material methods.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16216927/s1, Video S1: Robotized measurements 1, Video S2:
Robotized measurements 2.
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