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Abstract: Fiber reinforced polymer (FRP) strengthening in circular columns is known to be more
effective than in rectangular and square columns because of the uniform distribution of confining pres-
sure. This study explores the effectiveness of using carbon-FRP anchors to improve the confinement
of square reinforced concrete (RC) columns strengthened with FRP. Sharp corners in non-circular
columns cause stress concentration on the corners, reducing the effectiveness of strengthening. To
address this, the study examines the impact of three different anchor configurations on two sizes of
FRP-strengthened square columns. The results show that the proposed anchors distribute stresses
to a greater extent, resulting in a more uniform distribution of stresses and better confinement. For
the best performance, it is proposed that the anchor fans surround the corners of the cross section.
Experimental findings and finite element analysis results using the Concrete Damage Plasticity model
in the ABAQUS material library match.

Keywords: confinement; composite materials; reinforced concrete; FRP anchors

1. Introduction

It is widely recognized that concrete buildings constructed in the past do not perform
satisfactorily under extreme loading conditions [1]. In addition, the use of low-quality
materials [2] and poor workmanship have significantly impacted the structural perfor-
mance of concrete buildings. Consequently, different techniques have been proposed to
improve the structural capacity and strengthen existing concrete structures [3]. In this
context, reinforced concrete columns are the primary structural elements that assure stabil-
ity, as their collapse can cause the entire concrete structure to fail [4]. Various techniques
have been used to enhance the overall capacity of reinforced concrete columns, including
ferrocement, steel jacketing, and FRP strengthening [5–9] using composite sheets and plates.
FRP sheet wrapping is the most recent and preferred strengthening system, offering a
combination of desired mechanical characteristics achieved at a reasonable cost and ease
of application [3]. Though FRP sheet wrapping could already achieve good results, FRP
column strengthening may have further potential for improvement by introducing better
confinement schemas. For improving column capacity, it is important to consider the
concrete strength that controls the curvature demand and the axial capacity of the column.
Providing lateral confinement can significantly increase the compressive strength and
ductility of concrete. This allows the concrete core to carry additional compressive stress
and increase its compressive capacity.

Concrete column confinement with FRP sheets has provided a considerable increase in
axial [10–18], flexural strength [19], and deformation capacity. Previous research has shown
that the increase in axial load capacity of columns varied between 6% and 177% [20]. The
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tensile strain capacity of FRP fibers is not fully occupied, thus the circumferential ultimate
strain of the column to the ultimate strain capacity of FRP ranges from 0.55 to 0.62 [21].
This is further compounded by the aspect ratio factor in rectangular or square columns,
where stress concentrates in the corners [14]. As a result, the effective strain coefficient is
substantially reduced, leading to lower strength enhancement despite the use of the same
confinement ratio [22].

Various parameters of FRP strengthening systems were tested in previous research,
such as the amount and orientation of the composite fibers [23], the concrete compres-
sive strength, and the corner radius (for non-circular columns) on the effectiveness of
confinement [19,24]. Also, the type and mechanical properties of the FRPs have been inves-
tigated; carbon, glass, aramid, and basalt fibers are the main types of composites used to
confine concrete columns [25].

Typically, circular sections result in confining forces or pressure producing a uniform
stress distribution along the concrete section perimeter, while non-circular sections have
different stress profiles due to the inability of the confining material to restrict displacement
outside the central region of the concrete material. To reduce the problem of non-uniform
stress distribution in non-circular columns, researchers have focused on modifying the con-
crete cross section. This can be achieved by chamfering the corners to a desired radius [19]
or by adding material to change the rectangular shape to a circular or elliptical one, using
expansive cement grout. The most common method for strengthening these columns is to
chamfer the corners with radii of 20 mm to 30 mm before applying FRP sheets. In order
to achieve a greater capacity increase, larger chamfer radiuses (from 35 to 45 mm) or high
confinement ratios (up to 1.5 mm layer thickness) have been used [13,26,27].

Though increasing the corner radius provides better FRP confinement, it is limited by
the presence of existing reinforcement, as early code provisions call for smaller concrete
covers. In addition, FRP usage is restricted for lower-grade concrete (typically C12/15 and
C16/20 strength classes) according to design codes, respectively [28,29]. An alternative ap-
proach is needed to confine non-circular columns effectively and achieve a more even stress
distribution while keeping the corner radii and confinement ratio within acceptable limits.

This study proposes carbon fiber reinforced polymers (CFRP) anchors in low con-
finement areas to enhance the efficiency of FRP strengthening in non-circular columns.
The system evenly distributes stresses across the column, improving confinement during
concrete core dilation and increasing axial capacity. Bonding between anchors and concrete
using epoxy offers significant tensile capacity and redistributes forces within the section.
This study investigates the effects of three anchor configurations on FRP-strengthened
square-section columns of varying sizes through experiments and finite element (FE) mod-
eling with ABAQUS, version 2016.

2. Experimental Program
2.1. Specimen Details

The experimental program aims to investigate the effects of varying parameters on
the behavior of confined concrete columns. The parameters include the specimen size,
anchor layout, and number of anchors (Table 1). One CFRP unidirectional sheet is applied
to the surface of all strengthened specimens. To establish a solid reference, the selection of
specimen sizes is based on findings from the existing literature. A comprehensive database
was used to set up the research objectives and the variables to consider in the experimental
work [13,26,30]. The dimensions of the concrete specimens were 150 × 150 × 300 mm and
200 × 200 × 300 mm, where 300 mm is the height of the square specimens. The specimens’
size of 200 × 200 × 300 mm was tested to evaluate the potential influence of the sectional
area to height ratio [30]. A total of 20 specimens were tested within the scope of this study.
According to the European norms [31] and the ISO 1920-4 standard [32], a nominal length-
to-diameter ratio equal to 2 is recommended. The height of the 15 cm square columns was
30 cm. To study the effect on less slender columns and to better compare test results by
reducing the test variables, the height of 20 cm square columns was also 30 cm. When a
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nominal length-to-diameter ratio smaller than 2 is used, the compression test overestimates
the concrete compressive strength by about 10–12%. However, since comparison is made
within the same batch of samples (15 cm or 20 length concrete samples) in reinforced and
unreinforced configurations, the length-to-diameter ratio does not significantly affect the
results in terms of the increase in compressive strength due to reinforcement.

Table 1. Test matrix.

Sample
Dimensions (cm) Series No. of Tested

Samples
FRP Anchor

Type
No. of Anchors

per Face

15 × 15 × 30 A-0 1 Unreinforced
15 × 15 × 30 A-1 1 Reinforced without anchorage
15 × 15 × 30 A-S-1 1 Simple 1
15 × 15 × 30 A-C-1 2 Corner 1
15 × 15 × 30 A-S-2 1 Simple 2
15 × 15 × 30 A-C-2 2 Corner 2
15 × 15 × 30 A-F-2 2 Fan 2

20 × 20 × 30 B-0 1 Unreinforced
20 × 20 × 30 B-1 1 Reinforced without anchorage
20 × 20 × 30 B-S-1 1 Simple 1
20 × 20 × 30 B-C-1 2 Corner 1
20 × 20 × 30 B-S-2 1 Simple 2
20 × 20 × 30 B-C-2 2 Corner 2
20 × 20 × 30 B-F-2 2 Fan 2

An increase in the corner radius of the concrete specimens is known to enhance the
efficiency of confinement. Literature data suggest that the minimum corner radius for
full-scale concrete columns should be 13 mm [28]. In this study, a conservative approach is
taken, and a corner radius of 15 mm was used to represent a worst-case scenario.

The anchors consist of a dowel, which transfers stress to the concrete core, and a
fan that accumulates fiber stresses within the embedment depth and transfers them to
the concrete core. The dowel part of the FRP anchor effectively simulates the confining
behavior exhibited by steel hoops in reinforced concrete. Three types of FRP anchors were
used in this study: simple anchorage (SA), corner anchorage (CA), and fan anchorage
(FA) [33,34]. SA and CA aim at providing better confinement to the concrete core, whereas
FA generates minimum disturbance to the column’s concrete core, which is the main part
to carry the axial load. Hypothetical stress distribution aimed at being achieved through
FRP anchors is visually depicted in Figure 1.
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Figure 1. Pressure distribution in the confined section, without (a) and with (b) anchorage.

To prepare the anchors, FRP sheets of different lengths and 10 mm width were rolled,
and the fibers were separated for better distribution along the surface. For dry anchor
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dowels, thin copper wires were wound around the fibers and secured with plastic clips to
create a tube-like structure that can be inserted into the drilled holes (Figure 2).
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Figure 2. Detail of the CFRP anchors.

The general properties of the anchors are given in Table 2. Simple anchors were
just covering the corresponding surface; however, fan and corner anchors surrounded the
corners. Therefore, fan lengths and corner anchors are selected accordingly. The typical hole
angle for corners and simple anchors are selected as perpendicular to the surface, where
openings are grained with a router bit to avoid a sharp corner. The finished applications of
the three anchor types are shown in Figure 3. On the other hand, the drilling angle for fan
anchors is 42◦ where no graining was applied (Figure 3c).

Table 2. Sizes and dimensions of the anchorages.

Simple Anchorage Corner Anchorage Fan Anchorage

Concrete Sample
Dimensions (cm) 15 × 15 × 30 20 × 20 × 30 15 × 15 × 30 20 × 20 × 30 15 × 15 × 30 20 × 20 × 30

Fan Length (cm) 6.5 7.5 15 20 8 12
Hole Depth (cm) 4 5 4 5 7 7
Hole Diam. (cm) 1.2 1.2 1.2 1.2 1.2 1.2

Hole Angle to
Concrete Face (◦) 90 90 90 90 42 42Materials 2023, 16, 6973 5 of 17 
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Figure 3. Anchorage layouts: (a) Simple; (b) Corner; (c) Fan.

2.2. Materials

To minimize the scattering of test results due to the variation in concrete strength, a
cubic compressive strength of 25 MPa was selected, and ready-made concrete was used to
cast the specimens, all of which were made using the same batch and mix design (Table 3).
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Table 3. Concrete mix design.

Water (kg/m3) 200
Portland cement (kg/m3) 290
Cement Type CEM II/A-L 32.5R
Fine aggregate (kg/m3) 930
Coarse aggregate (kg/m3) 940

To achieve the desired rounded corners, modified plywood molds were used (Figure 4).
Gypsum was used to fill the corners and provide a smooth surface. The specimens were
cured for one week and then placed in a water tank for the remainder of the time. Then the
specimens were confined with woven unidirectional SikaWrap-230 C fabric, which had an
equivalent thickness of 0.129 mm and was impregnated with epoxy resin (Sikadur 330),
produced by Sika Company, (Baar, Switzerland)
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Figure 4. Plywood mold with rounded corners.

The adhesive used was a thixotropic, solvent-free, two-component impregnation resin
based on epoxy with a tensile Young’s modulus of 4500 MPa (from the producer data sheet).
Three concrete cubes (15 × 15 × 15 cm) and cylinders (15 cm in diameter, 30 cm in height)
were tested on the same day as the FRP-wrapped specimens to compare the unconfined
and confined compressive strengths. After 28 days, the mean compressive strength of the
confined concrete cubes was 29.1 MPa. Table 4 lists the mechanical properties of the CFRP
sheet provided by the manufacturer.

Table 4. Mechanical properties of CFRP sheet (from producer data sheet, SikaWrap-230 C).

Fiber type Carbon
Orientation unidirectional sheet
Fiber dry weight density (g/m2) 230
Fiber tensile strength (MPa) 4300 *
Fiber Young’s modulus (GPa) 238 *
Fiber elongation at break (%) 1.8

* These mechanical values were calculated using an “equivalent thickness” of the unidirectional carbon sheet
(0.129 mm).

2.3. Specimen Preparation and Test Setup

Initially, the surface of concrete samples was treated with a concrete grinding machine
to improve the adhesion of epoxy to the concrete. After grinding, the aggregate surface was
visible, revealing the underlying voids, which were filled with epoxy. Holes were drilled
on every specimen with a particular layout to place the anchors. The holes were chamfered
with a needle scaler to avoid 90◦ bending of FRP anchors. The anchorages were placed in
the center of the concrete column cross-section in order to evenly distribute the stresses
from the FRP throughout the column. This helps to prevent the column from cracking or
failing under load. The reinforcement procedure is shown in Figure 5.
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Figure 5. FRP and anchorage application method: (a) Drilling, (b) Grinding, (c) Filling holes with
epoxy, (d) Apply FRP layer over epoxy, (e) Anchorage application.

The shaded area shown in Figure 6 is confined, with a maximum confinement depth of
3 cm and 4.25 cm [(a − 2r)/4] for 15 × 15 cm and 20 × 20 cm specimens, respectively. After
drilling the holes, dust was removed from the hole before filling the epoxy with compressed
air. A resin gun was used for epoxy application. The FRP anchors were embedded, and the
anchors on the neighboring surfaces completely overlapped each other [34].
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Figure 6. Effectively confined area (core section) of the square cross section.

The FRP sheet was placed over epoxy using the hand layup method. The dowel
was inserted through the FRP sheet and epoxy hole with minimal disruption to the fibers
(Figure 5). The anchor fan was split in half with a dowel in the hole, then spread at a
30 ◦ angle from the anchor center towards the column’s sides.

All specimens were tested under uniaxial compression until failure (Figure 7). The
loading rate was 15± 3 MPa/min. Two linear variable displacement transducers were used
to measure axial strains, placed 180◦ apart between the upper and lower loading plates.
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3. Test Results

The tests showed that all three-anchor schemas increased the axial capacity and
improved the ductility of the confined concrete column samples. The results followed the
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same path for both small- and large-size specimens. Results in terms of stress and strain
values are summarized in Table 5 and shown in Figure 8.

Table 5. Experimental results of compression testing.

Series εco
(-)

fcc
(MPa)

εcu
(-)

fcu
(MPa)

(fcc − fco)/fco
(%)

(fcc − fo)/fo
(%)

fcu/fcc
(%)

A-0 0.0022 28.5 (fo) 0.0025 18.1 _ _ 63.2
A-1 0.006 34.1 (fco) 0.0115 24.1 _ 23.15 70.6

A-S-1 0.012 37.2 0.0166 35.7 9.41 30.52 95.9
A-S-2 0.0087 35.0 0.0135 32.9 2.94 26.31 94.2

A-C-1 * 0.010 39.0 0.0167 36.1 14.7 36.85 92.3
A-C-2 * 0.010 36.0 0.0137 32.0 5.88 24.56 88.9
A-F-2 * 0.012 39.5 0.0163 36.8 16.17 38.50 93.2

B-0 0.00255 28.1 (fo) 0.0064 19.1 _ _ 67.9
B-1 0.0048 31.9 (fco) 0.0910 24.0 _ 14.3 75.0

B-S-1 0.0062 34.1 0.0117 31.2 6.56 21.8 91.5
B-S-2 0.0089 32.7 0.0150 29.5 2.19 16.8 90.2

B-C-1 * 0.0074 34.9 0.0165 32.8 9.06 24.6 94.0
B-C-2 * 0.0095 37.3 0.0167 34.1 16.6 36.3 91.4
B-F-2 * 0.0080 37.6 0.0135 30.0 17.5 36.6 79.8

εco Strain at Peak Load, fcc Stress at Peak Load, εcu Ultimate Strain, fo Stress of unconfined specimen, fcu Ultimate
stress, fco Stress of un-anchored FRP confined specimen. * average values.
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Figure 8. Stress–strain of anchored, un-anchored, and plain concrete specimens.

3.1. Compressive Load Capacity

The experimental results demonstrated that CFRP-confined columns exhibited supe-
rior capacity performance compared to unconfined ones. Specifically, the axial capacity
increased by 23.15% and 14.29% for specimens A-1 and B-1, with corresponding axial
strain increases of 2.7 and 2 times, respectively. Further enhancement of compressive
capacity was achieved by using additional anchors with CFRP wrap, with improvements
ranging from 2.94% to 17.5%. Among all the specimens tested, those where the anchorage
extended beyond the corner displayed the highest contribution to compressive capacity.
Notably, fan anchorages demonstrated better confinement for square columns and exhib-
ited a larger axial load-carrying capacity than corner anchorages. For the B and A test
series, the capacity of the fan-anchored confined column showed a 17.5% and a 16.17%
increase, respectively, in comparison to their un-anchored counterparts. Detailed results
are presented in Tables 4 and 5. A-C-2 had a lower capacity than A-C-1 due to the eight
anchor holes weakening the limited core section of the specimen. The performance of fan
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anchors being better than corner anchors, which fully cover the corner from both sides,
was unexpected. This probably depends on two reasons: (1) an inclined drilling angle
providing no corner effect at hole opening; and (2) no disturbance of the concrete core by
the inclined hole schema.

The reduction in compression capacity in double-anchored specimens revealed that
disproportionate disturbance resulted in lower levels of capacity improvement. On the
other hand, A-F-2 and B-F-2 samples had eight anchor holes as well. However, the inclined
orientation of the anchors did not disturb the core section of the specimen (Figure 3),
resulting in better compression capacity.

3.2. Failure Modes

The CFRP jacket fractured mostly near the corner due to stress concentration in un-
anchored specimens (A-1/B-1). Confined specimens had CFRP tension failure at mid-height
of corners (Figures 9 and 10), causing bulging of the concrete core at the least confined
section. The core retained the shape of the confined area prescribed by the parabolic lines
(Figure 11). This explains the non-uniform confining pressure distribution. This strain, stress,
and failure mode scenario can explain the non-uniform confining pressure distribution.
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Figure 9. Experimental results: failure mode for specimen series 15 × 15 × 30 cm.

The smaller samples (A) failed in the middle, above or below the anchor dowel.
The larger samples (B) had different failure modes depending on the type of anchorage.
Samples strengthened with single and double simple anchorage (B-S-1 and B-S-2) failed at
the corners, while samples strengthened with corner (B-C-1, B-C-2) or fan (B-F) anchorage
failed in the middle. The different failure modes were due to the different fan lengths of the
two sets of specimens. The simple anchorage contributed more to the failure mode for the
A series, as it acted partially as a corner anchorage for the smaller specimens. In summary,
the uniformity of the confining pressure increased with the anchorages, and it was more
significant for the specimens strengthened with the corner anchorage for both test series.
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All anchored specimens in this experimental study exhibited little or no strain-softening
behavior (fcu/fcc > 90%). In contrast, un-anchored specimens showed considerably lower
ultimate loads when compared to their peak strength (fcu/fcc = 68.4% for a small specimen).
Table 5 summarizes the results in terms of strain-softening behavior from the experimental
work. The performance of the anchored specimens provides evidence that the existence of
an anchor enhances the uniform distribution of confining pressure.

4. Numerical Analysis
4.1. Modeling

This study used finite element analysis with the ABAQUS package to model the
nonlinear behavior of un-anchored and single-corner anchor (A-C-1) 15 × 15 × 30 cm
column specimens. To reduce model size, only one-quarter of each column section was
modeled along its longitudinal axis. Symmetrical boundary conditions were assigned, and
axial loads were applied using a displacement control method. Experimental results in
this study show that the anchors were firmly attached to the concrete core and did not
separate from it under any failure behavior. Therefore, it was concluded that they were
rigidly attached to the concrete core.
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Previous research has shown that actively confined and FRP-confined concrete have
different plastic behaviors. FRP-confined non-circular sections have complex and non-
uniform stress variations, but experimental and FE results agree on the general behavior
and stress–strain curves of FRP-confined columns [35]. This study found that FRP-confined
square columns with anchors achieve a more uniformly distributed stress than those
without. The ABAQUS material library’s Concrete Damage Plasticity model, which can
represent both tension cracking and compression crushing, was used to model confined
concrete. This study assumed a Poisson’s ratio of 0.2 for concrete.

The Young’s modulus was calculated using the ACI formula [24,28] as shown in
Equation (1), and compressive strength ( f ′c) was found experimentally in MPa.

E0 = 4734
√

f ′c (1)

The uniaxial tensile strength ft of the concrete was taken as in Equation (2)

ft = 0.33
√

f ′c (2)

The concrete under uniaxial compression is described by the stress–strain relationship
proposed by Saenz [36] and given in Equation (3):

σc =
E0εc

1 +
(

E0εp
σp
− 2
)(

εc
εp

)
+
(

εc
εp

)2 (3)

where σc and εc are the compressive stress and strain, respectively, and σp and εp are
the experimentally determined maximum stress and its corresponding strain, which are
obtained from standard cylinder tests.

The interface between concrete and CFRP was modeled using the cohesive zone model
representation. A traction-separation model was used to represent the interface, assuming
an initial linear elastic behavior with a stiffness K evolution of damage (Equation (4)). The
model was interpreted in ABAQUS using a bilinear traction separation constitutive curve
(Figure 12) in terms of effective traction (τ) and effective separation (δ). Elasticity is defined
by nominal strain and tractions, using an elastic constitutive matrix (Equation (5)) to show
the behavior of each traction component.

τmax = 1.46Gepoxy
0.165 f 1.033

ct (4)

where Gepoxy is the shear modulus of adhesive in GPa and fct is the tensile strength of
concrete in MPa.

{tn ts tt } = [Knn 0 0 0 Kss 0 0 0 Ktt ]{εn εs εt } (5)

where
Knn =

1
tc
Ec

+
tepoxy
Eepoxy

(6)

Kss = Ktt =
1

tc
Gc

+
tepoxy
Gepoxy

(7)

Gc is the shear modulus of concrete in MPa, Gepoxy is the shear modulus of epoxy in MPa,
tepoxy is the epoxy thickness (1 mm), tc is the concrete thickness (5 mm), Ec is the Young’s
modulus of concrete in MPa, and Eepoxy is the Young’s modulus of the adhesive in MPa.
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4.2. Analysis Results

Figure 13 shows the stress concentration near the corners of the square concrete
samples. This is a well-known problem, highly reducing the effectiveness of FRP wrapping
on concrete columns. FRPs exhibit very low shear strength, and FRP fractures often develop
from the corners. By rounding the corners, it is possible to reduce the negative effect of
the corners.
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Figure 13. Detail of the well-known problem of stress concentration at corners. To reduce this, corners
were rounded in this experimental work.

Stress–strain curves obtained by FE analysis were plotted together with the experimen-
tal results in Figure 14 to validate the FE model. The figure shows the axial stress–strain
relationship of non-anchored, single-anchored, and single-anchored with double-layer
FRP-wrapped columns, along with the experimental results of single-anchored columns
(A-C-1). Additionally, the axial stress–strain relationship of a column with double-layer
FRP and single anchorage was also added to check the effects of thicker FRP layers on
the curves.

Overall, the FE analysis approach used in this study is in good agreement with the
experimental results of anchored and un-anchored specimens. The damaged plasticity
model shows better agreement with FRP-confined columns where anchorages were used.

The influence of confining pressure and anchorage on axial stress capacity and stress
distribution was investigated, with hydrostatic pressure playing a significant role. It was
observed that failure occurred on the plane above the anchorage, which was analyzed
subsequently. The sectional distribution of confining pressure in un-anchored and single-
anchored specimens is shown in Figure 15. The un-anchored specimen showed the highest
level of confining pressure in the corner of the column, whereas the anchored specimen
had pressure distributed all around the section’s perimeter. These findings have important
implications for the design and construction of FRP-confined columns.
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Figure 14. Compressive axial stress vs. axial strain of the A-C-1 and A-0 specimens: experimental
vs. ABAQUS model.
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The S33 values in the legend box in Figure 15 are the axial compressive stresses on the
concrete. A notable change in the axial stress over the section is shown. The anchorage
provides a higher axial stress capacity and a more uniform stress distribution over the
section. The anchored specimens’ performance shows that an anchor generates a uniform
distribution of confining pressure.

This study aimed to reduce confining stress concentration in corners of FRP-confined
prismatic column sections. To achieve this, FRP anchors were positioned on the faces with
the least confinement and extended to the corners to distribute the stress more uniformly.
This study evaluated three distinct anchorage layouts on two sizes of square column
samples. The anchors improved the load-bearing capacity of the columns and prevented
premature failures of the corners.

Compared to columns without anchorage, the axial compression capacity of confined
column specimens was increased by up to 17.5% when FRP anchorage was used. It is
noteworthy that a significant increase in compressive strength was observed in the areas
where the anchorages surrounded the corner, such as with the fan and corner anchorage.
This figure clearly shows that simple FRP anchor application does not improve axial
capacity, nor does confinement like steel crossties in reinforced concrete. Rather, FRP
anchors should surround the corners of the member.
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Only a slight increase in axial strength was observed for double simple anchorage
samples. This result may have been affected by the presence of eight anchor holes in a
small cross-sectional area, which produced a weaker concrete core. To better understand
the confining mechanism of multi-anchorages, a larger-scale specimen should be tested.

The use of anchors resulted in a reduction in strain-softening behavior. The column
specimens anchored with different anchorage layouts showed almost no strain-softening
behavior. The confinement kept the concrete core intact beyond the peak load until rupture.
The majority of the anchored FRP-confined specimens failed in the mid-face, indicating
that the failure mode was directly influenced by the stress distribution mechanism of the
anchor. This mechanism redistributed stress and provided a uniform confining pressure
around the section.

The finite element analysis approach used in this study is in good agreement with the
experimental results of both anchored and un-anchored specimens. The analysis results
indicate that the anchorage provided a higher axial stress capacity and a more uniform
stress distribution over the section. These findings are in line with the experimental data.
It can be highlighted that the results of this study have a number of implications for
practice. First, this study shows that FRP anchors can be used to improve the confinement
of FRP-strengthened square columns, where chamfering on corners is limited by rebar.
Additionally, the required number of confining layers can also be reduced by introducing
FRP anchors.

5. Conclusions

This study explores the effectiveness of using CFRP anchors to improve the confine-
ment of square RC columns strengthened with CFRP sheets by wrapping. Sharp corners in
non-circular columns cause stress concentration on the corners, reducing the effectiveness
of strengthening. To address this, the study examines the impact of three different anchor
configurations on two sizes of FRP-strengthened square columns. Three types of CFRP
anchors were used in this study: simple, corner, and fan anchorage. Simple and corner
types aim at providing better confinement to the concrete core, whereas fans generate
minimum disturbance to the column’s concrete core, which is the main part to carry the
axial load. An increase in axial load capacity ranging between 14% and 20% was recorded
for concrete samples reinforced without anchors (only CFRP wrapping). The application of
a fan anchorage improved further the axial load capacity of the concrete samples, up to
39% compared to the control unreinforced specimens.

Another interesting effect of the application of CFRP reinforcement is the improved
post-elastic residual capacity after cracking. While the axial load capacity of unreinforced
concrete specimens reduced dramatically after the peak load, reinforced ones were able
to sustain a residual capacity up to 90% of the maximum compressive load. This was
particularly noted for concrete specimens where anchors were in place.

The results also show that the proposed anchors distribute stresses to a greater extent,
resulting in a more uniform distribution of stresses and better confinement. For the best
performance, it is proposed that the anchor fans surround the corners of the cross section.
To achieve this, CFRP anchors were positioned on the faces with the least confinement and
extended to the corners to distribute the stress more uniformly. On the other hand, it should
be avoided to disturb core concrete. In order to achieve that, inclined drilling of anchor
holes is a good practice. The authors suggest extending the study to rectangular columns,
in which confinement by FRP wrapping is less effective with respect to square columns.

On the other hand, this study has a few limitations. Only one or two concrete samples
were tested for each reinforcement and a control. This makes conclusions difficult. Concrete
is variable, and a difference in the control and treatment can be attributed to this variability
and not necessarily to the reinforcement. However, several similar reinforcement layouts
have been tested, for a total of 20 compression tests, and all of them produced an improve-
ment in the axial load capacity of the concrete columns. This is a clear indication of the
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effectiveness of the reinforcement methods. More tests will be necessary to assess the effect
of the anchors.

The finite element analysis conducted in ABAQUS solidified our understanding of the
anchors’ impact in FRP-confined square columns, aligning well with experimental findings.
The results from the numerical simulations played a crucial role in validating the enhanced
load-bearing capacity and more uniform stress distribution achieved through the use of
anchors. This validation was paramount in illustrating the reduction in stress concentra-
tions around corners, an inherent issue in non-circular columns. The integration of these
findings into our conclusions strengthens the case for implementing anchors in practical
applications, ensuring a robust and well-supported set of design recommendations.

In addition, the investigation only involved FRP-strengthened square columns. It
would be interesting to investigate the effectiveness of FRP anchors on rectangular columns.
Second, this study only tested two sizes of columns as well. It would be interesting to
consider the effect of FRP anchors on real-scale columns. Despite these limitations, this
study provides valuable insights into the effectiveness of using FRP anchors to improve the
confinement of FRP-strengthened square columns. The results of this study suggest that
FRP anchors are promising for further improving the performance of FRP-strengthened
columns. Future research should focus on investigating the effectiveness of FRP anchors on
different shapes and sizes of columns, as well as the long-term performance of FRP anchors.
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