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Abstract: This paper presents results from experimental and numerical studies of the skew rolling
process used to shape axisymmetric products made of C60-grade steel. An experimental study was
carried out to investigate the effect of process parameters described by the forming angle α, the skew
angle θ, the reduction ratio δ, and the jaw chuck velocity Vu on the surface roughness Ra of the
forgings. Stepped forgings made of C60-grade steel were rolled. Based on numerical calculations, a
machine learning regression model was developed that uses process parameters to predict the surface
roughness of produced parts. The random forest model was found to be the most effective based on
the determined metrics (MAE, RMSE, R2). A more detailed analysis of this model was performed
using the SHAP library. The application of ML methods will enable optimization of skew rolling
through appropriate selection of process parameters affecting improvement in product quality.

Keywords: skew rolling; C60 steel; roughness; CNC rolling mill; stepped axles and shafts; metal
forming; machine learning models

1. Introduction

The skew rolling method is used to produce elongated axisymmetric parts. They can
be formed either from steel or from nonferrous metal alloys [1]. A schematic design of
this process is shown in Figure 1. The process is conducted with the use of three tapered
rollers. They are located on the circumference of the billet, every 120◦. Each roller is rotated
in the same direction with the same rotational speed n. The rollers (each having the same
diameter D) are described by a forming angle α and a calibrating section with a length a.
They are all set askew at an angle θ to the rolling axis. They can diverge and converge,
as a result of which the initial billet diameter d0 is reduced to the desired diameter d1. In
addition to that, their velocity Vr is synchronized with the chuck’s velocity Vu. One end of
the billet is mounted in the chuck jaws. Synchronized movements of the tapered rollers
and the chuck allow for rolling parts with variable cross-sections.

Early studies were numerical analyses based on FEM. Among other things, the rolling
of a shaft with a length of about 605 mm and a diameter of 56 mm (for the largest dimeter
section) [2] and of a rail car axle with a length of about 2150 mm and a diameter of 202 mm
(for the largest diameter section) [3] were simulated. The possibility of rolling a stepped
crankshaft with a length of 491 mm and a diameter of 75 mm (for the largest diameter
section) was also investigated [4]. All these parts were made of the C45-grade steel. A
novel concept was developed by rolling hollow axles on a mandrel to maintain the inside
diameter of the rolled part [5]. Rolling processes for solid [6,7] and hollow parts [8] made of
nonferrous metal alloys were also simulated. The numerical results showed that the process
was characterized by moderate force parameters in relation to rolled part dimensions. In
addition, the forming time is much shorter compared to alternative manufacturing methods,
which also means reduced energy consumption of this process. A major advantage of this
process is that it can be used to form products with variable cross-sections using a single
set of working tools.
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Figure 1. Schematic design of a skew rolling process conducted with three tapered rollers.

Later studies also included experiments on producing parts by skew rolling conducted
with three tapered rollers. One of these studies investigated rolling of two types of rail car
axles, i.e., according to American and European standards at a scale of 1:5 [9]. The billet
was a 42CrMo4 steel bar. The experimental results showed high dimensional accuracy of
the rolled parts. Surface defects in the form of small helical grooves over the circumference
of the rolled parts were observed. The experiments were also conducted on rolling hollow
axles (made of LZ50 and 30CrMoA grades of steel), which led to the determination of
optimal process parameters, ensuring the required microstructure quality [10,11]. Hollow
parts were also rolled (made of 42CrMo4-grade steel) with the use of a mandrel in order to
maintain their inside diameter constant [12].

Studies [13,14] presented a modification of the three-roller skew rolling method, called
tandem flexible skew rolling. In this method, two-roller skew rolling is used to hollow the
billet with the Mannesmann method first, and then the billet is placed on a mandrel. After
that, rolling is conducted with three tapered rollers that shape the workpiece as desired.
The proposed solution reduces, among other things, the area needed for the rolling mill
setup, rolling forces, as well as tool manufacturing costs.

Studies also investigated the effect of skew rolling process parameters on the dimen-
sional accuracy of cross-sections and on the surface quality of rolled parts. According
to these studies, the surface roughness of tapered parts of products could be improved,
among other things, by increasing the rotational speed of the working tools [15] or by
modifying tool geometry [16]. These would include introducing a tapered exit zone of
the rollers or increasing the rounding radius of the rollers in the exit zone. In addition,
the effects of parameter combinations on the surface quality and product roundness devi-
ations [17] were determined via ANOVA analysis. This made it possible to estimate the
recommended rotational speeds and radial feeds of tapered rollers to minimize failure
modes in the process.

The surface quality of rolled parts depends on the initial conditions of the rolling
process. Surface quality may also have impact on further processing of preforms. This
means that the initial parameters of rolling must be appropriately selected in order to
produce parts with a satisfactory surface quality. This is described, among other things, by
the roughness profile. The most widely used parameters describing material roughness
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profile are Ra and Rz. Achieving the desired roughness of a material is a complex task,
one that depends on many factors. This aspect is all the more important when this rolling
process is employed in forging plants, where it is used for fabricating semifinished parts
for further processing. One of the effective ways to predict the final roughness value is to
simulate the process using artificial intelligence-based models. They have the ability to
learn and adapt to a set of input data.

In subtractive manufacturing, turning and milling machine learning methods are
predominantly used to select process parameters to achieve a satisfactory material surface.
The Ra value of parts produced by turning was predicted using artificial neural network
techniques, as described in a study [18]. Multivariate regression models were also used,
yielding a high value of the coefficient of determination R2 [19].

Similar studies were also conducted for the milling process using regression models
and artificial neural networks. The developed models were validated, showing their high fit
to real values [18,20]. The Ra roughness was also predicted using classification methods [21].
A continuous variable (which is a result of regression) was replaced by discrete variables,
enabling Ra parameter categorization into several value ranges. Support vector machine
(SVM), k-nearest neighbours (kNN), decision tree, and random forest models were used.

In metal forming, the quality of obtained products is also analysed. Machine learning
methods make it possible to automate this process. The methods have been used to predict
the surface quality of sheet metal parts produced using incremental forming (specifically,
single-point incremental forming, SPIF). One way involved using a classification method
with the SVM model [22]. Three roughness classes were distinguished for Ti6A14V surfaces.
To increase the effectiveness of the model, the training data additionally included waviness
parameter values. The other solution was to use regression with, among others, artificial
neural network (ANN), and support vector regression models. They were used to predict
the roughness parameters Ra and Rz for parts made of the extra deep drawing (EDD)-grade
steel that is widely used in the automotive industry [23]. Based on the calculated coefficient
of determination R2, it was found that SVR showed higher efficiency.

Machine learning models were also applied in the extrusion of U-channel and square
cup parts [24]. Failure modes, including the spring-back effect (U-Channel) and product
wall thickness reduction (U-channel and square cup), were classified for three grades of
steel: DC06, HSLA340, and DP600. Seven models were used: multilayer perceptron (MLP),
decision tree, random forests, support vector machine, k-nearest neighbours, and logistic
regression. Classification was performed using both single models and ensembles created
from several models. For the former, the accuracy, as expressed by the F-score, was 85%.
The ensemble models achieved slightly higher F-score values (about 90%) compared to the
single models, yet they showed a better bias–variance trade-off.

Another example of machine learning use is the analysis of defects on the hot-rolled
sheet metal surface induced due to scale formation [25,26]. Different types of material
defects were classified using several models, including artificial neural networks, SVM
(due to their popularity in defect analysis), and decision trees. Each of these models yielded
a high value of accuracy.

Multiclass classification models, including multiclass SVM, were applied for the eval-
uation of hot-rolled bar surface quality [27]. Input data in the form of a set of images of
five different materials additionally contained five predominant surface defects obtained
with an imaging system. Initial model runs correctly detected two of the five defects. A
much lower degree of recognition was obtained with the remaining three. Subsequent
modifications, including those of the input data, led to increasing the SVM model’s effec-
tiveness. This resulted in the detection of all five material defects with a satisfactory degree
of accuracy.

This study presents experimental and numerical results. It was proposed to use
machine learning methods to predict the quality of cylindrical parts produced using skew
rolling. The literature review shows that there is a lack of comprehensive studies that
employ machine learning methods to investigate metal forming processes. The objective
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of this study was to select a regression model that effectively predicts the Ra roughness
value of parts made of C60-grade steel. The reason for taking up this research problem
is to select parameters of this forming process that ensure the lowest possible roughness
on the product surface. The obtained material surface quality can affect further forming
operations, including forging. This, in turn, can be a cause of internal defect formation in
forged parts, as a result of which they are classified as waste. The results make it possible to
enhance the efficiency of the rolling process by reducing the time required for determining
the optimal parameters of this process.

The dataset used for training the machine learning models was taken from the exper-
imental studies on skew rolling conducted at the Lublin University of Technology. This
paper describes this forming method, the scope of the study, and discusses the obtained
results. It goes on to present the proposed models and the metrics used for evaluating their
accuracy. The final part of this paper offers a summary and conclusions.

2. Materials and Methods

Experiments on skew rolling process were conducted in compliance with the setup
provided in Table 1. Three sets of tapered rollers were used with variable forming angles
α of 15◦, 20◦, and 25◦ (each having the same length of the calibrating section a equal to
13 mm). Each toolset was described using an angle θ with respect to the rolling axis. Three
tool angles θ were used, i.e., 2.5◦, 5◦, and 7.5◦. In addition, for each angle setting, the
test specimen was rolled using three different values of Vu, i.e., 10 mm/s, 20 mm/s, and
40 mm/s. Variable cross-sectional reductions of the specimens were applied, expressed
by the reduction ratio δ with values of 1.13, 1.3, 1.53. This quantity is described by the
following equation:

δ =
d0

d1
(1)

where d0 is the initial billet diameter, d1 is the reduced diameter. The tapered rollers were
rotated at a constant speed n, equal to 60 rpm. Samples of C60-grade steel with a diameter
of 52 mm and a length of 330 mm were rolled. The chemical composition and mechanical
properties of the material are provided in Tables 2 and 3.

Table 1. Parameter settings used in the experiments.

α (◦) θ (◦) Vu (mm/s) δ (-)

15
or
20
or
25

2.5

10
1.13
1.3
1.53

20
1.13
1.3
1.53

40
1.13
1.3
1.53

5

10
1.13
1.3
1.53

20
1.13
1.3
1.53

40
1.13
1.3
1.53
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Table 1. Cont.

α (◦) θ (◦) Vu (mm/s) δ (-)

7.5

10
1.13
1.3
1.53

20
1.13
1.3
1.53

40
1.13
1.3
1.53

Table 2. Chemical composition of the C60-grade steel.

C Mn Si P S Cr Ni Cu Mo

0.59 0.66 0.23 0.013 0.027 0.1 0.09 0.2 0.02

V Al. Ti Sn

0.003 0.029 0.02 0.029

Table 3. Mechanical properties of the C60-grade steel.

Re (MPa) Rm (MPa) A5 (%) Hardness (HB)

427 777 17.2 215

2.1. Test Stand and Experimental Tests

The experimental test stand used in this study is shown in Figure 2. The design require-
ments of the rolling mill were based on the results of numerical simulations for stepped
axes and shafts, as described in the previous section. These were used in combination with
FEM analysis results [28], which provided data about force parameters during rolling for
variable setting parameters.
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The laboratory skew rolling mill consisted of segments [29]. It consisted of a support
frame (1), mill stand (2), drive unit (3), power transmission system (4), billet support (5)
and finished product support units (6), jaw chuck unit (7), and axial cylinder unit (8). The
test stand was equipped with a measuring system and numerical control (9). The latter was
based on the PAC controller for controlling the drivers of individual electro-screw actuators,
i.e., 3 radial (working tools) and 1 axial (jaw chuck). The HMI panel was provided via a
portable computer. It allowed for ongoing analysis of the rolling mill parameters during
the forming process and was used to upload a program defining actuator motion. It was
necessary to upload a file with the specified envelope of the final product. Dedicated
software was used to convert it to a command line in the form of G-code, which was
already an execution file. As a result, the operation of the tapered rollers and the jaw chuck
could be synchronized.

The proposed numerical control makes it possible to roll axisymmetric products of
different shapes and lengths using the same set of tools. Consequently, the process can
already become cost-effective in the case of unit production. This method primarily reduces
the costs of manufacturing complex geometry tools.

Experiments were carried out on a laboratory skew rolling mill. Prior to rolling, the
billet (a rod made of C60 steel) was heated to 1200 ◦C in an electric chamber furnace. After
that, it was mounted in a jaw chuck and rolled (according to the setup provided in Table 1).
The stages of the process are shown in Figure 3.
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After that, the roughness of the outer surface of the rolled parts was measured. For
the evaluation of material surface quality, the parameter Ra was used. This parameter is
defined as the arithmetic mean of the ordinates of the y(x) profile inside the elementary
length l calculated according to Equation (2). It can also be presented in the form of an
approximate formula (3). The measurement was made with the contact method using
Hommel-Etamic’s 3D T8000 RC120-400 with a diamond measuring tip. The measuring
length was set to 48 mm and the measuring tip speed was 1 mm/s.

Ra =
1
l

∫ l

0
|y(x)| dx (2)

Ra =
1
n

n

∑
i=1
|yi| (3)

2.2. Numerical Modelling

Machine learning models were used to predict the Ra roughness parameter of the
steel samples. Based on previous studies, the following models were selected: linear and
polynomial regressors, random forest regressor, support vector regression, and XGBoost.
The first four were taken from the scikit-learn library [30], while the last one was obtained
from XGBoost [31]. Regression models were used to predict the continuous value.

A dataset was created based on the setting parameters of the rolling process (Table 1)
and the experimental material roughness results. The input variables for the model were
the forming angle α (15◦, 20◦, 25◦), the tool angle θ (2.5◦, 5◦, 7.5◦), the axial velocity of the
chuck Vu (10 mm/s, 20 mm/s, 40 mm/s), and the reduction ratio δ (1.13, 1.3, 1.53). The
predicted value was the Ra parameter (continuous value) expressed in µm. The dataset
was divided into a training set (containing 75% of the entire set) and a test set (25% of the
entire set). Calculations were carried out in the Google Colaboratory environment.

For the determination of model effectiveness, the following model evaluation metrics
were employed: coefficient of determination (R2), mean absolute error (MAE), root mean
square error (RMSE). They are described by the following equations:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (5)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(6)

where:

yi—i-th observation of the y variable;
ŷi—theoretical value of the variable based on a model;
y—arithmetic mean of the experimental values of the variable;
n—number of the samples of the variable.

The input variables were standardised to ensure data uniformity using StandardScaler
from the scikit-learn library. The standardisation was conducted in compliance with the
formula below:

z =
x− µ

σ
(7)

x—experimental value of the input variable;
µ—arithmetic mean of the input data for a given parameter;
σ—standard deviation of the input data for a given parameter.
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The GridSearchCV method (from the scikit-learn library) was used to select the hyper-
parameters of selected regression models. The method allows for increasing the degree of
fit of predicted values to measured values. A cross-validation method was employed to
verify that there was no overtraining of the models. This involved dividing the training set
into smaller subsets. After that, one of these subsets was selected and treated as a test set.
By repeating the process k-times (depending on the number of subsets), it was possible to
calculate the selected model evaluation metric each time.

3. Results and Discussion
3.1. Surface Roughness

Based on the material surface layer examination, it was determined that increasing
the forming angle α, predominantly for θ = 5◦ and 7.5◦, resulted in an increase in the Ra
roughness of samples made of C60-grade steel. When the α angle was increased from 15◦

to 20◦, the Ra value increased by more than 25% on average and by 18% when the α angle
was increased from 15◦ to 25◦. In addition to that, an increase in the tool angle θ resulted in
increased surface roughness. When the θ angle was increased from 2.5◦ to 5◦, the Ra value
increased by 56% on average. When the angle was increased from 5◦ to 7.5◦, the parameter
value increased by 23%. Selected results of roughness versus Vu are shown in Figure 4. For
a more accurate visualization of the changes, dot diagrams connected by lines were plotted
(intermediate values are not shown). They only refer to the tapered rollers that were set
askew to the rolling axis at an angle θ equal to 5◦.
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It was observed that Vu affected the roughness parameter. In the process conducted
with the lowest speed, i.e., 10 mm/s, the Ra values were the highest. An increase in Vu led
to reduced roughness, which resulted in a higher quality of the outer surface of the rolled
parts. In addition, an increase in the reduction ratio resulted in reduced roughness values.
The highest values were obtained with δ = 1.13. The results demonstrated that higher
velocities Vu should be used for smaller reduction ratios, i.e., when δ ≤ 1.13. For higher
reduction ratios (δ ≥ 1.3), the chuck velocity Vu should be at least twice lower than the
axial speed of the roll resulting from the askew positioning of the working tools. Figure 5
also shows the obtained outer surfaces of the rolled parts for the abovementioned setting
parameters.
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3.2. Numerical Modelling

The prepared dataset was used to generate dot diagrams (Figure 6) illustrating the
relationship between individual parameters of the skew rolling process and the roughness
Ra value.
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The experimental results shown in the diagrams provide more insight into the effects
of the input data on the Ra parameter. An increase in the forming angle α causes an increase
in the surface roughness of products. A similar relationship can be observed for the tool
angle θ. The use of the θ angle of 5◦ and 7.5◦ results in higher Ra values. An increase in
the chuck velocity Vu led to reduced surface roughness of the samples. The use of a higher
diameter reduction (higher δ) also improved their surface quality of the products. The
diagrams also contain histograms (of one-sided type) with a frequency distribution of the
roughness values.

The calculations made for the test set made it possible to evaluate the effectiveness of
the selected machine learning models. The following metrics were used to that end: mean
absolute error (MAE), root mean square error (RMSE), and the coefficient of determination
(R2). Obtained results are listed in Table 4.

Table 4. Comparison of the metrics for regression model evaluation.

Model MAE (µm) RMSE (µm) R2

Random Forest 2.29 2.98 0.84
Support Vector Regression 3.25 4.08 0.69

XGBoost 3.35 4.16 0.68
Linear Regression 3.17 4.37 0.65

Polynomial Regression 3.36 4.36 0.64

The random forest model showed the highest fit of the predicted results to the mea-
sured values of Ra, yielding the R2 coefficient value of 0.84. This can also be observed in
the diagram in Figure 7a, where these values are located the closest to the straight line that
cuts the diagram into two parts. The model is also characterized by the lowest MAE value
of 2.29 µm and the RMSE value of 2.98 µm. The other models showed lower fit, ranging
from R2 = 0.69 for the SVM model to R2 = 0.64 for the polynomial regression model. The
roughness values predicted using the models differ by at least 4 µm on average from the
measured values.

Figure 7b–e show the diagrams illustrating the fit between predicted and measured
values (from the test set) for the four other models. The divergence between these val-
ues is shown by their wide alignment from the straight line, as reflected by a lower R2

coefficient value.
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For the visualization of the predicted values obtained with individual models, a
diagram was created, shown in Figure 8. The obtained results were compared with the test
set data. The quality of the models is visualized by the degree of their fit to the test values.
The metrics from Table 4 are represented graphically.

Given the high effectiveness of the random forest model, the effect of individual
input parameters on the roughness value predicted thereby was investigated. The SHAP
library [32] was used to make it possible to present the effect of input variables and their
values on the final result. Figure 9 shows, in descending order, the effect of the variables on
the random forest model. The results demonstrate that the model is the most affected by the
reduction ratio δ, whose Shapley value is more than twice as high as that of the successive
parameter, i.e., the tool angle θ. Other key parameters for the model are the chuck velocity
Vu (its significance being twice lower than that of the θ angle) and the forming angle α,
which describes the geometry of the tapered rollers.
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Another SHAP library-based diagram (Figure 10) shows the effect of input variables
on the obtained roughness of samples made of C60-grade steel. It can be observed that the
low reduction ratio, i.e., δ = 1.13, causes an increase in Ra. On the other hand, an increase
in the diameter reduction (higher δ) causes the Ra parameter to decrease, thus improving
the outer surface quality of the product. Setting the tools at an angle θ of 7.5◦ increases the
roughness parameter. A decrease in the θ angle leads to a lower Ra value. Increasing the
chuck velocity Vu from 10 mm/s to 40 mm/s also results in improved surface quality. As
far as the forming angle is concerned, the use of the tapered rollers with α equal to 15◦ or
20◦ can ensure reduced product surface roughness.
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Figure 10. Effect of variables on roughness parameter for a random forest model.

4. Conclusions

This study demonstrated that an increase in the forming angle α caused an increase in
the material roughness Ra. In effect, the external surface quality of products was reduced.
In addition to that, the use of a higher tool angle θ relative to the rolling axis led to an
increased surface roughness of the C60 steel samples. The use of a low axial velocity Vu of
the jaw chuck (10 mm/s) resulted in higher values of the roughness parameter Ra. With
increasing the velocity, the roughness decreased. A similar relationship was observed when
the reduction ratio δ was changed. An increase in the reduction ratio value (up to 1.53) led
to a higher surface quality of produced parts.

The results made it possible to determine the optimal machine learning model for
predicting the roughness of skew-rolled steel parts. A dataset consisting of the process
setting parameters and target variable, i.e., the Ra parameter, was used. The data used
for the models were obtained from experiments conducted with different settings, as well
as from profilometric surface analysis. The models were based on regression in order to
predict the continuous variable value. Based on the evaluation of the metrics, the random
forest model was found to have the highest degree of fit (R2 = 0.84) for the training set.
Also, it showed the lowest RMSE value of 2.98 µm. The other models, i.e., support vector
regression, XGBoost, linear regression, and polynomial regression, yielded slightly lower
fit values, ranging from 0.64 to 0.69. In addition, the effects of individual input variables
and their interpretation using the random forest model on the final result were determined.
For this purpose, the SHAP library was used.

The use of machine learning algorithms allows for more thorough interpretation of
the phenomena occurring in skew rolling. The algorithms can be used to predict roughness
values of steel parts, which will lead to increased efficiency of this rolling process because
rolling parameters can be preselected, thus reducing the time required for preparatory
work. This will have a positive effect on the final quality of the product surface, which can
be important in the case of preforms because internal defects in forged parts can thus be
prevented. The results of this study can be used to build a model with a high level of fit that
can be implemented in a manufacturing environment. Nevertheless, it is recommended
that the dataset be expanded by extending the experimental work. It is necessary to later
verify the additionally introduced modifications on the prediction quality of machine
learning models.
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Institutional Review Board Statement: Not applicable.
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