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Abstract: Biochar could be a brilliant additive supporting the anaerobic fermentation process. How-
ever, it should be taken into account that in some cases it could also be harmful to microorganisms
responsible for biogas production. The negative impact of carbon materials could be a result of an
overdose of biochar, high biochar pH, increased arsenic mobility in the methane fermentation solu-
tion caused by the carbon material, and low porosity of some carbon materials for microorganisms.
Moreover, when biochar is affected by an anaerobic digest solution, it could reduce the biodiversity of
microorganisms. The purpose of the article is not to reject the idea of biochar additives to increase the
efficiency of biogas production, but to draw attention to the properties and ways of adding these ma-
terials that could reduce biogas production. These findings have practical relevance for organizations
seeking to implement such systems in industrial or local-scale biogas plants and provide valuable
insights for future research. Needless to say, this study will also support the implementation of
biogas technologies and waste management in implementing the idea of a circular economy, further
emphasizing the significance of the research.

Keywords: biochar; hydrochar; biogas; anaerobic digestion; carbon material

1. Introduction

The energy demand has been rising significantly since the Industrial Revolution, and
our civilization still needs energy to develop and keep a high living standard. The energy
demand may increase in the future, but it highly depends on social trends [1]. Needless
to say, even if worldwide society reduces energy consumption, they still need to provide
energy to prosper [2].

Generally, since the Industrial Revolution, fossil fuels have started to be the main
sources of energy for human civilization [3,4]. Despite the wide use of these fuels and
the fact that thanks to the energy obtained from this type of fuel, humanity could afford
intensive development [5], they also have a negative impact on our environment and are
one of the main factors causing global warming [6,7].

To meet the requirements of global warming and to secure future generations with
sound and sustainable sources of energy, the reliance on fossil fuels must be reduced [8,9].
The use of finite resources in energy production puts energetic security at stake, making it
dependent on mining and oil/gas extraction (non-renewable energy sources) and some-
times external supply chains (international export of strategic energetic resources). More-
over, the influence of fossil fuel combustion has proven perilous for the environment [10,11].
Those aspects form a pressing need to provide energetic security and implement renewable
energy resources to a further extent [12].

One of the most promising concepts for a reduction in the reliance on fossil fuels is
renewable natural gas (later mentioned as RNG) [13,14], which can not only be included as
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a carbon-neutral source of energy but can be treated as an integrated part of the circular
economy [15–17]. However, some of the residual waste, i.e., sawdust from sawmills [18]
or wheat straw [19], can be used as a combustible fuel, and the waste itself can be trans-
formed into additives for fuel production. There is a substantial number of studies treating
the issue concerning biomass carbon additives and their influence on the anaerobic di-
gestion process [9,20,21]. Although they can catalyze and augment fuel production to a
certain extent, biogas production is far more perplexing, and every single aspect must be
analyzed explicitly.

Biogas is known as a product of anaerobic digestion, where microorganisms biode-
grade organic substrates under anaerobic conditions and biomass is transformed during
methane fermentation [12]. The process can be divided into four phases: hydrolysis, acido-
genesis, acetogenesis, and methanogenesis [22,23].

Needless to say, each of these phases has a crucial role during anaerobic digestion.
Thus, it is worth briefly describing every phase. Hydrolysis is an initial phase during
the decomposition of organic matter; microorganisms use their enzymes to decompose
macromolecules into smaller components, like carbohydrates, lipids, and proteins that are
assimilable for the acidogenic microbiota. In the second phase of acidogenesis, microbio-
cenosis, using the products obtained in the previous phase, synthesizes volatile fatty acids
and alcohols. The third phase is organogenesis, where the main process is the conversion of
higher volatile fatty acids and some other products obtained in the earlier phases to acetate.
Moreover, hydrogen is also synthesized during this phase. The final phase of biomethane
production is methanogenesis. In this particular phase, we can divide it into two paths of
methane formation [24,25]. The first is hydrogenotrophic methanogenesis, during which
hydrogen and carbon dioxide are used to synthesize methane [26]. The second path is the
decomposition of acetate to methane and carbon dioxide [27].

It is worth mentioning that the biogas production itself could also be dependent on
the AD treatment technology used; for example, the Up-flow anaerobic sludge blanket
technology can create better living conditions for Desulfobacterota microorganisms, which
can compete with methanogenic microbiocenosis for hydrogen and acetate, causing a
decrease in the efficiency of methane synthesis [28].

Biogas consists of various gasses, mainly methane, evaporated water, carbon dioxide,
and hydrogen sulfide. Since 2010, there has been a 4% increase in biomethane production
potential, and waste-derived fuels have gained much interest [8]. Over the last few years,
there have been multiple attempts to improve the processes of biogas production including
the use of biochar [29]. Moreover, digestate recirculation could also have a positive impact
on improving biogas yields [30].

When people hear about using biochar in energetics, quite often their first thought
is about using biochar, like normal coal in a coal power plant by combining it; of course,
that thought is correct. Biochar has multiple applications in the field of energy generation.
It can be utilized as a standalone fuel in power plants, where it demonstrates potential
as a greener alternative to conventional coal [31]. Furthermore, when combined with
coal, biochar can serve as an additive, enhancing the combustion efficiency and reducing
emissions [32]. The heat generated from biochar combustion can be harnessed not only
for electricity production but also for various industrial processes, such as iron forges [33].
Additionally, biochar offers a promising avenue as a substitute for pulverized coal [34],
contributing to lower greenhouse gas emissions.

Another use of biochar in energetics (and most important in this article) is its use as a
catalyst in biogas production, where it plays a crucial role in anaerobic digestion processes
and microbial activities [35]. This aspect will be explored in detail in the subsequent sections.

1.1. Background Information on Carbon Materials and Their Role in Biogas Production

Biochar is a material produced from organic matter, i.e., cellulose, lignin, and pro-
teins, during the pyrolysis process. Biochar production could be a brilliant way to utilize
biowaste and make that material useful, for example, could be used in agriculture and
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water purification [36], and the most important topic in this article is bioenergetics [37].
Needless to say that biochar additives could affect methane fermentation solution stability,
mainly to increase direct interspecies electron transfer (DIET) [38] and buffer capacity [39],
and it can be highly affected by microorganisms. Biochar additives could be an abundant
source of microelements and improve features of methane fermentation solutions, being
a habitat of microlife [40,41]. But, on the other hand, the biochar influence could be also
harmful [42,43]; therefore, the authors of this publication will focus on a critical view of
biochar additives to the methane fermentation solution.

1.2. Importance of Understanding Carbon Material Molecular Properties for Optimizing
Biogas Yields

Biogas plants could be an excellent part of the renewable energy mix in the worldwide
energy system [44], mostly in the regions abundant in agricultural residues and organic
waste [45]. Biogas could be used to produce not only electricity but also heat [46]. This is
because the optimization of biogas production yields is an important case in the implemen-
tation of a renewable energy energetic mix. Moreover, the technique of optimizing biogas
production should not only be cost-efficient, but also its production should have as little
impact on the environment as possible, considering that it is promising to investigate the
influence of biochar to enhance biogas production.

1.3. Purpose of the Critical Review

The beneficial influence of biochar on microbiocenosis in methane fermentation so-
lutions has been proven in many publications [47–49] and experiments, but some articles
bring some information about the possibilities of a negative influence [50–52]. The impor-
tance of this kind of critical review could be precious not only to properly understand the
mechanism of the influence of biochar on microorganisms but also could be useful for
industrial purposes. For example, information about the possibilities of a harmful influence
with the specific cause could help to avoid some mistakes during the inclusion of biochar
additives in biogas plants on an industrial scale.

2. Overview of Biochar Molecular Properties
2.1. Definition and Classification of Carbon Materials

Carbon is a material composed of carbon atoms and is known for its unique properties,
such as high electrical conductivity, as well as high strength resistance to chemicals [53,54].
Carbon materials are a diverse class of materials with various properties and applications.
They differ in their physicochemical characteristics, such as pore size and shape, surface
area, size, volume of pores, functionality of the surface, and chemical inertness. Carbon-
based materials for environmental applications may be classified into activated carbon,
graphitic carbon (including carbon nanodots, carbon nanotubes, graphene, and fullerenes),
biochar, carbon black, carbon-based nanomaterials (including carbon nanoparticles, carbon
nanotubes, fullerenes, and graphene), and carbon composite. Activated carbon (amor-
phous carbon, including carbon black) is a type of carbon material that has a disordered
atomic arrangement, which makes it non-crystalline, and is used in various applications,
including adsorption [55–57], gas storage [58,59], biogas production [60,61], and catalyst
support [62,63], due to its high reactivity. Activated carbon is a highly porous form of
carbon that is produced by treating carbon-rich materials, such as coconut shells, wood,
or coal, with steam or chemicals to create a network of small pores and a large surface
area. Similarly, biochar is also classified under the category of amorphous or non-graphitic
carbon due to its disordered and non-crystalline structure [64,65]. Biochars are produced
through the pyrolysis of organic materials, typically plant biomass, in a low-oxygen en-
vironment [66]. Graphitic carbon is a type of carbon material that has a layered atomic
arrangement, with strong covalent bonds within each layer and weak van der Waals forces
between the layers [67,68]. Graphitic carbon can exist in different forms, such as graphite,
graphene, carbon nanodots, and fullerenes and carbon nanotubes [69,70]. Graphitic carbon
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materials are used in various applications, including electronic devices, energy storage,
and reinforcement in composites [71], because of their high electrical conductivity, high
specific strength, and resistance to environmental degradation/oxidation [72]. Carbon
nanotubes are cage-like carbon molecules with unique electronic/mechanical/thermal
properties and excellent biocompatibility [73]; they are used in various applications, such
as drug delivery, nanoelectronics, cancer treatment, and tissue engineering [74]. Also,
we have carbon composites that combine carbon fibers or other carbon materials with
a matrix material, such as an epoxy resin. Carbon black is a finely divided form of car-
bon with a high surface area and particle size, usually employed as a reinforcing filler in
rubber and plastic products (composite preparation), as well as in inks and coatings [75].
Carbon-based nanomaterials include a broader range of carbon-based particles, which
can encompass both graphitic and non-graphitic structures at the nanoscale [76]; these
materials have gained significant attention due to their unique electronic, mechanical, and
thermal properties, leading to applications in fields, such as electronics, materials science,
medicine, and energy storage [77]. Carbon nanodots are tiny carbon-based structures,
usually less than 10 nanometers in size, that exhibit quantum confinement effects [78];
they are often used in various applications, including photocatalysis, bioimaging, and
sensing [79]. Fullerenes and their derivatives represent the initial class of carbon-based
nanostructures to be identified [80]. Graphene is a single layer of carbon atoms arranged in
a hexagonal lattice [81]. Graphene is considered a “wonder material” due to its unique and
promising characteristics, including high electrical and thermal conductivity, mechanical
strength, and flexibility [82]. Graphene has wide-ranging applications in electronics, energy,
materials, and medicine [83]. Carbon composites have high strength, thermal stability, and
stiffness [84] and are used in various applications, such as aerospace, sports equipment,
energy storage, and automotive industries [85]. The versatility of carbon materials makes
them one of the most important materials in modern science and technology [86,87].

2.2. Overview of the Properties of Biochar

Biochar is a charcoal-like substance that is produced by heating biomass, such as
wood, organic biomass, agricultural waste or crop residues, manure, and sludge, in the
absence of oxygen [88,89]. The process, called pyrolysis, converts the biomass into a
carbon-rich material. Biochar has gained significant attention in recent years due to its
potential uses, including improvements in soil fertility [90], carbon sequestration [91],
energy production [92], water treatment [93], livestock feed [94], biogas production [21],
and building materials [95]. However, more research is needed to fully realize the potential
of biochar in these and other applications.

The most important properties of carbon materials that make them good for appli-
cation in many processes include surface area, porosity, stability, functional groups, low
bulk density, high carbon content, particle size, higher cation exchange capacity (CEC), and
conductivity. Biochar has a highly porous structure, which makes it an excellent material
for water and nutrient retention [96]. The pores also provide a habitat for microorganisms,
which can improve soil health. The particle size can affect the biochar’s porosity and
surface area, as well as its ability to retain water and nutrients [97–99]. Biochar has a
large surface area, which can adsorb nutrients, pollutants, and organic compounds from
the soil, air, and water [100,101]. Biochar typically has a slightly alkaline pH, which can
help neutralize acidic soils and improve nutrient availability [96]. Biochar can contain
various plant nutrients, such as nitrogen, phosphorus, and potassium, depending on the
feedstock and pyrolysis conditions. The high carbon content (65% to 90%) makes biochar
a stable carbon sink, which can sequester carbon, treat water, etc. [102]. Biochar can have
a high cation exchange capacity (CEC) [103,104], which means (i) it can attract and retain
cations, such as calcium, magnesium, and potassium, in the soil [103,105] and (ii) bind
some pollutants, including carbon dioxide and heavy metals, by exchanging cations [106].
Biochar can be stable for long periods, but its stability and other properties can also depend
on the feedstock, biomass pretreatment, and pyrolysis conditions, such as the carbonization
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temperature and residence time [107,108]. Biochar produced at a high pyrolysis temper-
ature has low values of CEC and contents of volatile matter, but a high specific surface
area, porosity, pH, and ash and carbon content [89,104,109,110]. The breakdown of organic
materials on a massive scale is probably accountable for this [89]. Also, Tomczyk et al. [89]
found that even at higher pyrolysis temperatures, biochars made from animal litter and
solid waste feedstocks have decreased surface areas, carbon contents, and volatile matter
and greater CEC than biochars made from crop residue and wood biomass. The reasons
for this disparity include wide variations in the biomass’s lignin, cellulose, and water
content. Higher temperatures during pyrolysis are linked to an increase in the ash content
and oxygen functional groups [89,111]. Shariff et al. [112] observed that the production
of biochar will be increased with increased lignin content in feedstock. The higher lignin
content in plant biomass has been reported to promote carbonization and increase biochar
carbon content and ash content [89,113].

Overall, the high porosity, stable carbon content, and renewable energy potential of
biochar make it a promising material for improving the performance of anaerobic digestion
systems and increasing biogas production.

2.3. Method of Biochar Preparation

Biochar has been produced using various techniques. The method of biochar prepara-
tion can vary depending on the type of biomass, the scale of production, and the desired
properties of the biochar and its usage [114]. Biochar production has been produced by re-
searchers through pyrolysis [115], hydrothermal carbonization [116,117], gasification [118],
a microwave method [119], and torrefaction [120]. Pyrolysis is the most commonly used
technique for biochar production, which involves the heating of organic materials in the
absence of oxygen, thereby converting the organic matter into a stable form of carbon
that can be used for different applications, as well as gasses and liquid byproducts. It can
be used to convert a wide range of biomass feedstocks, including agricultural residues,
forestry waste, and municipal solid waste, into biochar. The temperature of pyrolysis can
range from 300 ◦C to 1000 ◦C [121], and the process can be carried out in different types
of reactors, such as fixed-bed, fluidized bed, and rotary kiln reactors [122]. Hydrothermal
carbonization (HTC) involves the conversion of biomass into biochar through the appli-
cation of high temperature and pressure in the presence of water [123]. The HTC process
typically involves heating the biomass in water at temperatures ranging from 180 ◦C to
250 ◦C and pressures of 1–5 MP for several hours [124]. However, the process also has
some limitations, including the high energy requirements for heating and pressurizing
the biomass, which can make the process expensive [125]. Gasification involves heating
the feedstock in a gasifier between 500 and 1000 ◦C [126], which converts the organic
matter into a combustible gas called syngas, and leaving behind a solid residue called
biochar [127]. However, gasification also has some limitations, including the high capital
and operating costs associated with the equipment and the complexity of the process [128].
The microwave-assisted pyrolysis involves heating the feedstock using microwaves in
the absence of oxygen, which can rapidly heat the organic matter and produce biochar,
including gasses and liquid byproducts. One advantage of microwave-assisted pyrolysis
is that it is energy-saving [129]. Torrefaction, also known as mild pyrolysis, is a thermal
conversion process that involves heating biomass to moderate temperatures (200–350 ◦C)
in the absence of oxygen, which results in the production of biochar [126,130].

While various methods, including pyrolysis, are employed for biochar production,
modeling pyrolysis processes has been a subject of significant interest in the literature.
Several studies have delved into mathematical models and simulations to better understand
and optimize the pyrolysis of different biomass feedstocks [131]. For instance, works by
Barr et al. [132] and Papadikis et al. [133] have explored the intricacies of pyrolysis kinetics
and the reactor design. These modeling efforts contribute to enhancing the efficiency and
sustainability of biochar production processes.
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2.4. Relationship between Biochar Properties and Their Impact on Biogas Yields

The properties of biochar impact biogas yields. Biochar acts as a substrate for the
growth of microorganisms that produce biogas, such as methane [134]. The properties of
biochar, such as porosity, surface area, pH, nutrient content, and CEC, can impact biogas
yields, as biochar with high values of these properties can enhance biogas production
by providing a larger surface for microorganisms to grow, neutralizing acidic conditions,
supplying essential nutrients, and attracting and retaining cations [20]. The porosity and
surface area of biochar is an important factor that affects the biogas yield. Biochar with high
porosity can provide a larger surface area for microorganisms to grow, which can provide
a large area for gas production to occur, thereby increasing biogas production [135,136].
The pores can also help to retain moisture and nutrients, which can further enhance the
biogas yield. Studies have shown that biochar with a higher mesoporosity can significantly
increase biogas production [137–139]. In addition, the high surface area of biochar can help
to adsorb and reduce the concentration of inhibitory compounds, such as ammonia and
volatile fatty acid organic compounds, that can hinder the growth of microorganisms and
reduce biogas production [48,50].

The pH of biochar can also impact biogas yields. Biochar with a high pH can help
to neutralize acidic conditions in the anaerobic digester, which can improve the growth
of biomethane-producing microorganisms [140]. Functional groups in biochar can affect
biogas production through their impact on the physical and chemical properties of the
biochar. The type and number of functional groups present in the biochar can affect its
surface area, porosity, and chemical reactivity, which can influence its ability to act as a
substrate for microbial activity in biogas production. Functional groups, such as carboxyl
(-COOH), hydroxyl (-OH), and amino (-NH2) groups can act as binding sites for nutrients
and microorganisms, increasing their availability for biogas production [141,142]. Addi-
tionally, functional groups can interact with other components in the digestive system,
such as metals and organic compounds, which can affect the efficiency of biogas produc-
tion [143,144]. Generally, the effect of functional groups on biogas production will depend
on the specific type and number of functional groups present in the biochar, as well as the
composition of the microbial community involved in the process [35].

Biochar with a high nutrient content, such as nitrogen, phosphorus, and potassium, can
provide essential nutrients to the microorganisms, which can enhance the biogas yield [145].
Even the cation exchange capacity (CEC) of biochar can also impact the biogas yield.
Biochar with a high CEC can attract and retain cations, such as calcium and magnesium,
which can improve the growth of methane-producing microorganisms [146]. In addition to
its properties, biochar can also improve the performance of a biogas digester by improving
the quality of the feedstock [147].

The addition of appropriate additives can help to optimize biogas production and
improve the efficiency of the anaerobic digestion process. Various other materials can be
used as additives in anaerobic digestion for biogas production, aside from biochar; they
include metal oxide nanoparticles [148–150] and chitosan biopolymer [151,152]. Biochar
has several advantages over these materials in terms of cost, stability, adsorption capacity,
habitats for microorganisms, and sustainability. However, the choice of material ultimately
depends on the specific conditions of the anaerobic digestion process, the characteristics of
the substrate being used, and the desired outcome [153].

2.5. Review of the Experimental Methods Used for Characterizing Biochar Molecular Properties

To understand the properties of biochar and how they affect its performance in various
applications, a wide range of experimental methods have been developed to characterize
its molecular properties. Some of the commonly used experimental methods for char-
acterizing biochar molecular properties and their limitations are discussed below. The
characterization methods can be divided into physicochemical and spectral techniques,
as seen in Figure 1. Some techniques, such as Scanning Electron Microscopy (SEM) and
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Thermogravimetric Analysis (TGA), can also provide spectral information, in addition to
physical and chemical properties.
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Fourier Transform Infrared Spectroscopy (FTIR) is a widely used technique for charac-
terizing biochar’s molecular properties [154]. This technique measures the absorbance of
infrared radiation by functional groups in the biochar [155], providing information about
the chemical composition or functional groups within the biochar of the material, such
as hydroxyl, carboxyl, amine, and lactonic and amide groups which are important for
its reactivity and interaction with the environment [122,156]. However, FTIR has some
limitations, including the fact that it only provides a qualitative analysis of functional
groups [157] and cannot provide information about the spatial distribution of functional
groups within biochar [158].

SEM is a technique that is commonly used to study the surface morphology and
pore structure of biochars. This technique can provide information about the size, shape,
texture, and distribution of pores within the biochar particles [159], which is important
for understanding its properties and performance. However, SEM has some limitations,
including the fact that it requires a high vacuum environment for optimal operation, which
can affect the structure and composition of the biochar [160].

Brunauer-Emmett-Teller (BET) analysis is a widely used method for determining
the specific surface area of biochars. The specific surface area is an important property
of biochar, as it affects its ability to adsorb and retain nutrients, metals, and organic
compounds. BET analysis is based on the measurement of the adsorption and desorption
of a gas (usually nitrogen) on the surface of the biochar. The resulting isotherm can be
used to calculate the specific surface area of the biochar. However, BET analysis has
some limitations, including the fact that it assumes that the biochar has a uniform pore-
size distribution, which may not always be the case [161]. For the adsorption of gas
molecules to take place, this method takes a long time [162]. Pore size distribution (PSD)
analysis is a method used to determine the size and distribution of pores in biochar.
The pore size and PSD are important properties of biochar because they affect its ability
to retain water and nutrients [163], as well as its gas exchange properties [164]. Gas
adsorption/desorption is a widely used and powerful technique for determining the pore
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size distribution of a wide range of materials, including porous solids, such as zeolites,
activated carbons, and metal-organic frameworks [165]. Gas adsorption/desorption is a
technique similar to BET analysis but provides information on the distribution of pore
sizes in biochar. Gas adsorption involves exposing a sample to a gas, typically nitrogen or
argon, and measuring the amount of gas that is adsorbed onto the surface of the sample
as a function of pressure. By analyzing the adsorption isotherm, which is a plot of the
amount of gas adsorbed as a function of pressure, the pore size distribution of the sample
can be determined. Several models can be used to analyze the gas adsorption isotherm,
including the BET (Brunauer-Emmett-Teller), Langmuir, and DFT (Density Functional
Theory) models [166,167]. However, this method of characterization has some limitations,
including the fact that it only provides information about the size and distribution of pores,
and not their shape or connectivity.

X-ray diffraction (XRD) is a technique that provides information on the degree of
graphitization, crystal phase, and crystallinity of biochar [168,169], which is the advantage
that it has over FTIR. XRD provides an understanding of the properties and behavior of
biochar in various applications [170]. This method’s requirement for access to a standard-
ized reference file of inorganic compounds (d-spacings, hkls) is one of its limitations [171].

TGA is a technique used to study the thermal stability and decomposition behavior of
biochar [172]. TGA can provide information on the thermal properties of biochar, including
the onset and completion temperatures of the different decomposition stages [173]. TGA’s
main drawback is that degradant production does not always correlate with the mass loss
of volatiles [174]. TGA instrumentation is more expensive than Loss of Ignition equipment
by a factor of roughly four [175].

Gas Chromatography/Mass Spectrometry (GC/MS) is a technique used to identify
and quantify the chemical compounds present in biochar [176]. GC is a physicochemical
technique and MS, on the other hand, is a spectral technique. GC-MS can provide informa-
tion on volatile and semi-volatile compounds, including polycyclic aromatic hydrocarbons
(PAHs) and other organic compounds [177,178].

The amount of the elements contained in a material is usually determined as per-
centage content of total hydrogen, nitrogen, carbon, oxygen, and sulfur using elemental
analyzers [179,180].

Nuclear Magnetic Resonance (NMR) is another commonly used powerful technique
for characterizing biochar molecular properties. This technique provides information
about the structure of organic molecules within the biochar, including the composition of
biochar [181]. It can provide information on the distribution of carbon species in biochar,
including the types of functional groups, the degree of aromaticity, and the extent of cross-
linking (spatial distribution) [182]. However, NMR has some limitations, including the fact
that it is a relatively expensive and time-consuming technique that requires specialized
equipment [183].

X-ray Photoelectron Spectroscopy (XPS) is a surface-sensitive analytical technique used
to obtain information about the chemical composition of a biochar’s surface layers [184].
XPS is an essential tool for characterizing and understanding materials at the atomic and
molecular level [185]. XPS typically measures up to 1–10 nanometers in depth and may not
provide information about the bulk properties or deeper layers of a sample [185,186].

These methods can provide a comprehensive understanding of the molecular properties
of a biochar, which can be useful for optimizing their performance in various applications.

3. Negative Influence of Additive Carbon Material on Microorganisms in the
Biogas Yield

A discussion of the negative influence of additive carbon materials on the performance
of anaerobic digestion systems for biogas yields, such as reduced biogas yields, the inhibi-
tion of microbial activity, changes in the microbial community composition, and alterations
to fermentation pathways, will be approximated in the following subsections. The authors
of this publication will mainly focus on three carbon materials, biochar, hydrochar, and



Materials 2023, 16, 7250 9 of 30

activated carbon. Examples of the possible adverse effects of biochar on anaerobic digestion
are given in Figure 2.
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3.1. Influence of Biochar on Changes in the Microbiocenosis Habitat and Colony Growth

The efficiency of adding biochar to anaerobic digestion microorganisms is highly
dependent on the substrate used to make the biochar. For example, experiments conducted
by [136,187], and [188] have proven that the use of different substrates of biochar highly
changes the composition of microorganism species and even the phylum. It is worth
adding that even the mineral particle ratio in biochar structures could be highly affected
by the species composition during anaerobic digestion [189]. The influence of biochar on
microbiomes was proven by [190]; moreover, [191] proved that biochar and carbon felt
could increase the microbiome ratio of Methanosaetaceae.

The high sorption features of biochar could be positive because of pollutants absorbed
during anaerobic digestion [192], but this feature could also be problematic. For example,
when a methane fermentation solution has a low nitrogen ratio, an excessively large
amount of biochar additives could lead to a deficiency it nitrogen and make it inaccessible
to microorganisms [140,193]; moreover, a high pH of biochar could also be harmful for
microbiocenosis [140]. Needless to say, the highly porous structure has some advantages,
but, on the other hand, the small pores could trap some nutrients or elements inside, and



Materials 2023, 16, 7250 10 of 30

because of their dimensions, prevent microorganisms from adsorbing those kinds of crucial
elements [43]. In this case, the golden mean should be kept when designing the conditions
for creating biochar to ensure the appropriate pore size for adsorbing pollutants and such
that microorganisms have possible access to any nutrients that may be present in the
pores. However, this could be a very difficult task, and perhaps it will be easier to control
the content of the nutrients taking into account the possible “losses” of the nutrients in
the pores.

The high pH of biochar could influence the pH level of the methane fermentation
solution, and hence, the alkaline solution could start converting NH4 ions into toxic NH3,
which could pose a potential threat to microbial communities [194]. Interestingly, some
studies have found no connection between the influence of the physical properties (like
electrical conductivity and surface area) of the biochar and an increase in the biogas yield,
although it could increase the rate of anaerobic digestion [195].

That change could have a beneficial effect on biogas production because it could allow
for the development of microorganism’s abundant species, but it could also disturb a
microorganism balance in the methane fermentation solution habitat; for example, it could
decrease beneficial microorganisms in the microbiome mix and/or increase the amount
of unnecessary microorganisms. Moreover, changing the habitat features could force
beneficial microorganisms to use some amount of energy to adapt to new environmental
conditions [196]. Solutions with low concentrations of nickel generally promote two types
in microbial communities, Methanosarcina and Methanosaeta [197]. Biochar itself could
also have more negative effects on eubacteria (like Firmicutes and Proteobacteria) than
archons [50].

Pyrochar produced in high-temperature pyrolysis (like 700 ◦C) could decrease the
bacterial community from Methanosaeta species [198]. Biochar could also present a harmful
influence on microorganisms by releasing toxic elements directly into an anaerobic digestion
solution; for example, biochar modified by KH2PO4 could increase arsenic mobility in
swine manure used as a biogas substrate [52]. This property of biochar, despite the quite
good stabilization of heavy metals, such as Cr, Cu, Pb, and Zn, should be taken into
account when trying to use waste containing high concentrations of heavy metals for
energy purposes [199]. Further, it is worth paying attention to the feedstock used for the
production of biochar, because if we want to use waste material by turning it into biochar
directly created for carbon material additives, there may be a risk of releasing heavy metals
from the biochar into the methane fermentation solution. This can be a significant challenge
in the use of carbon additives to increase biogas yields in a circular economy.

It is worth noting that the very important aspects during the use of biochar-like
additives in biogas production increase, as is commonly known “only the dose makes the
poison”, and this sentence could also be accurate in this case. The overdose of biochar in an
anaerobic digestion solution could negatively affect methanogenic efficiency and extend
the lag phase [42].

3.2. Hydrochar Influence of Microbiocenosis during Methane Production

Hydrochar is a type of carbon material that could be produced from wet material,
like fruit pomace [200], kitchen waste [201], or sewage sediment [202], with the use of a
hydrothermal carbonization process. Needless to say, that kind of process could help to
utilize high-moisture waste and transform it into useful fuel. This kind of material could be
used similarly to biochar (sometimes even with better results [42], and also as an additive
for improving the biogas yield [202,203].

In general, hydrochar additives could improve biogas yields by promoting DIET and
selecting microbiocenosis into a more productive mix with an increase in the Methanobac-
terium percentage [203]. Another noteworthy study [204] explores the use of hydrochar
as an adsorbent for ammonia, a compound with potential biogas production benefits,
in anaerobic digestion. However, the results indicate that the adsorption of ammonia
by hydrochar may not significantly enhance biogas production. Moreover, hydrochar
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could enrich some microorganism species, like Methanobacterium, Methanosaeta, Clostridium,
and Methanosarcina [205]. Unfortunately, hydrochar additives, of course, could enrich
species, like Methanosaeta or Syntrophomonas, but also, at the same time, it could be harmful
to the population of acidogenic and hydrolytic groups of microbiocenosis, for example,
Acinetobacter [51].

But, adding hydrochar to an anaerobic digestion solution does not always improve
biogas production [204,206]; the properly chosen ratio of hydrochar promotion is crucial
for improving biogas production and supporting microbiomes. Another important factor
during the use of hydrochar in improving biogas production yields could be the tempera-
ture during the HTC process, as in an experiment provided by Choe et al. [204]. Hydrochar
usually improves the biogas yield, except in the case when a tofu residue was caused by
hydrothermal pretreatment at a temperature of more than 140 ◦C when the biogas yield
starts to decrease linearly [204]. Needless to say, the negative influence of hydrochar on
microbiocenosis requires further research.

3.3. Influence of Activated Carbon on Microbiocenosis during Methane Production

Activated carbon is a carbon material characterized by strong porosity, due to the large
surface area [207]. That area is crucial for the most important feature; it could be a great
chemical adsorbent. Using activated carbon during the anaerobic digestion process could
increase biomethane production, very similar to adding biochar and hydrochar, which were
described in previous acts. Moreover, adding activated carbon to a methane fermentation
solution could increase a population of similar groups for example; Methanosaeta [61] and
Methanosarcina [208]. Moreover, activated carbon could be used as an adsorbent to remove
H2S from the biogas mix [209].

Activated carbon could reduce pathogenic microorganisms even by 18%, but on
the other hand, this additive could harm microorganism biodiversity in the methane
fermentation solution habitat [210]. It could be worth taking a closer look at the influence
of decreasing biodiversity and its effect on the biogas production ratio. Quality and safety
of the fertilizer from the biogas production process with activated carbon additives could
be also interesting for further research.

3.4. Impact of Nanoparticles

Nanoparticles are particles that do not exceed 100 nanometers but are larger than
1 nanometer [211]. Despite their small size, their influence on microorganisms is very signif-
icant; thus, metal nanomaterials from biochar have high levels of reactivity, a widespread
surface area, and strong surface energy. Moreover, it is possible to modify the surface
properties of biochar by using nanometal materials [54], that feature could be helpful
in the adsorption of pollutants from a biogas tank solution. Needless to say, not even
nanoparticles, like a part of the biochar component, could influence microbiocenosis, and
even changing the size of biochar could change its properties. For example, the features of
macro-size biochars are different from nano biochars [212].

Silver nanoparticles are strongly harmful to microorganisms [22], so it is very impor-
tant to alleviate that impact. This kind of nanoparticle could be adsorbed by biochar [213]
and allow microorganism colonies to grow in the easiest habitat.

It is worth saying that not only non-organic nanoparticles could affect the biogas
yield. Nanographen could also have a harmful effect on microbiocenosis (for example,
Methanosaeta, Lactococcus, and Anaerolinea) during long-term exposition in 120 mg/L concen-
tration of nanographene in a methane fermentation solution [214]. That graphene additive,
but on a macro-scale, could also decrease the population of Methanosaeta [215]. Moreover,
too high of a concentration of graphene in the methane fermentation solution could be
harmful to anaerobic digestion [215].

The summary of some examples of the negative impacts of carbon material additives
on microbiocenosis in an anaerobic digestion habitat is presented in Table 1.
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Table 1. Summary of some of the negative impacts of individual carbon material additives on
microbiocenosis in an anaerobic digestion habitat.

Type of Carbon
Material

Physicochemical
Properties of

Carbon Material
Potential Problem Type of Negative

Influence References Solution Proposal

Biochar

Strong porosity
structure and

adsorption
capacity

Overdose of
biochar

Scarcity of
nitrogen supply for

microbiocenosis
when the ammonia

nitrogen
concentration is

low

[42,140]

Care should be taken
to choose the right
dose for the biogas

plant and remember
that the dose should

always be adjusted to
the substrate used

Biochar High biochar pH

High biochar pH
that could promote
the transformation
of NH4

+ into NH3

A high pH of
biochar could
promote the

conversion of
NH4

+ to NH3,
which could be
harmful to the

microbiocenosis
during anaerobic
digestion because
NH3 is more toxic

than NH4
+

[140]

Monitor the pH level
of the solution on an
ongoing basis before

and after adding
biochar and correct the

pH if necessary,
depending on the

possibilities

Biochar Strong porosity
structure

Pores of carbon
materials are too

narrow for
microorganisms,

preventing uptake
by microorganisms

Too narrow pores
could prevent

absorbing
nutrients and

crucial chemical
compounds for
microbiocenosis

[43]

Preventing the
formation of

micropores that are
inaccessible to

microorganisms could
be a difficult challenge.

In this case, it is
proposed to adjust the

amount of medium,
taking into account
that some will be

retained in the pores

Biochar/Hydrochar/
Activated

carbon/Graphene

Strong porosity
structure and

adsorption
capacity, high
biochar pH, a

chemical
component of the
carbon material,

and the content of
heavy metals in the
biochar. And any
other properties

that can affect the
habitat of AD

microbiocenosis.

Reducing the
biodiversity of

microorganisms in
methane

fermentation
solution

Changing the
properties of the

anaerobic
digestion solution
that is a habitat for

microbiocenosis
may cause some

groups of
microorganisms to

tolerate
environmental

change worse than
others, which may
disturb the original

species
composition.

[50,51]

Actions should
depend on which

bacterial species do
not tolerate biochar
additions. If these

species do not
participate directly or

indirectly in the
production of methane
and the installation is

industrial, this
problem can probably

be omitted or try to
select biochar with

other properties. Just
remember to take the

risk into account when
modifying natural
ecosystems with

biocarbon additives
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Table 1. Cont.

Type of Carbon
Material

Physicochemical
Properties of

Carbon Material
Potential Problem Type of Negative

Influence References Solution Proposal

Biochar/probably
most Carbon

Material

Strong porosity
structure and

adsorption
capacity, high
biochar pH, a

chemical
component of the
carbon material,

and the content of
heavy metals in the
biochar. And any
physicochemical

property that may
influence the

change of the AD
solution that is the

habitat of the
microbiocenosis

Necessity to invest
energy by

microorganisms to
adapt to a new

habitat enriched
with biochar

Habitat changes
may force

microbiocenosis,
part of energy
expenditure, to

adapt

[196]

The risk of whether
biochar with given
properties will be

beneficial for
microorganisms

should be determined

Biochar
Adsorption

properties of
biochar

Could increase
arsenic mobility in

methane
fermentation

solution

Arsenic as a heavy
metal could be

harmful to
methanogenic

microorganisms

[51]

Choose a substrate
with as few heavy

metals as possible or
try to use biochar with

other properties. In
addition, it is worth

paying attention to the
feature of feedstock
from which it was
used to create the

biochar

4. Strategies for Mitigating the Negative Influence of Additive Carbon Materials
4.1. Mitigation of Negative Effects of Carbon Additives

There are several methods revised in the current literature that enable the mitigation
of the negative effects of carbon additives. Processes are listed among those with a pivotal
impact on the concern of monitoring and optimizing the anaerobic digestion process, with
a significant emphasis on the optimal balance of nutrients and microbial viability. Overall,
the key to mitigating the negative influence of carbon additives on the biogas yield is to
carefully monitor and optimize the digestion process to maintain an optimal balance of
nutrients and microbial activity.

4.1.1. Optimal Dosage of Biochar Additives

The dosage of carbon additives has been proven to play a significant role in the
process of anaerobic digestion [151]. Generally, it has been observed that biochar additions
act in favor of biogas production, where treated samples have higher cumulative biogas
generation than untreated ones. Digestion paths suggest that organic loads and reaction
stability provided by an alkaline pH can positively alter biogas generation.

However, when it comes to the biogas yield itself, the amount of added carbon is
thought to be far more important than the listed aspects. Rasapoor et al. [195] proved
that the amount of biochar add-ons that are out of a certain scope can massively affect
the methane potential. Biochar add-ons tested on the Organic Fraction of Municipal Solid
Waste (OFMSW) were shown to be effective only within a certain scope of dosage. The
k-value, which refers to the first-order model rate constant of biogas production of the
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control group was higher compared to some of the samples with added biochar. Ten
grams per liter of poultry waste biochar additive, together with 10 g/L and 30 g/L of pine
sawdust, decreased the k value. Moreover, among all tested samples, the k value decreased
when the concentration of added biochar reached 30 g/L, compared to lower doses.

Fagbohungbe et al. [216] showed that infusions of biochar add-ons did not increase
the total methane production. The dosage tested in the study (35 g of biochar per 1 liter of
citrus peel used as a substrate) has shown no statistically significant difference between
the control and non-control groups. The optimum dosage of carbon additives depends
on the type of substrate, size, capacity of the digester, and other characteristics. The
dosage of biochar should be determined through experimentation conditions and should
be thoroughly reviewed.

Y. Shen et al. [217] showed that an unoptimized dosage of biochar addition paired with
the effect of time digestion can negatively influence the CH4% in the anaerobic digestion
process. The results of a statistical analysis disclosed that high dosages of biochar enhanced
the process stability, but may have caused inhibitory effects. Microbial activity and process
kinetics were described as suppressed, and the cumulative volume of biogas was lower
than the control group.

In Sunyoto et al. [218], the cumulative methane production with the addition of biochar
equal to 33.3 g/L was significantly lower (931.7 mL/L) than the cumulative methane
production without any addition of biochar (1070.0). The highest noted methane production
occurred at 8.3 g/L and equaled 1136.6 mL/L, but was not statistically significant from
the control group. According to [219] and [220], where similar test results were attained,
the reason behind this was high amounts of propionic acid. The energy needed to oxidize
propionic acid to acetate was high, and its accumulation in the reactor resulted in a slower
conversion of propionic acid at the acetogenic rate.

Optimize the dosage of carbon additives: The optimal dosage of carbon additives
should be determined through experimentation to avoid overloading the system with
carbon, which can lead to a decrease in the biogas yield. It is important to ensure that
the ratio of carbon to organic matter in the feedstock is within a suitable range. Select
appropriate carbon sources: The choice of carbon sources should be carefully considered to
avoid the introduction of contaminants that could negatively impact the biogas yield. The
carbon sources should be pre-treated or screened to remove any unwanted materials that
could inhibit the digestion process.

4.1.2. Pretreatment of Biochar (Surface Modification)

The concept of pre-treating biochar to obtain higher biogas yields has been extensively
studied and discussed for the past 20 years. It has been proven that pre-treated biochar can
positively affect the biogas output [210,221,222]. In Zhang et al. [210] biochar pretreated
with zinc chloride, phosphoric acid, and potassium hydroxide exhibited more pores on the
surface structure. Compared to the untreated sample, which had fewer well-developed
pores and an overall smoother structure, pre-treated samples had a larger surface area due
to high porosity.

The choice of pretreatment method depends on the specific characteristics of the
biochar. The pretreatment of biochar can refer to a process used to modify its physi-
cal/chemical or biological properties to acquire additional features. Modifications can be
particularly ascribed to surface modification, and those treatments can be divided into four
main categories:

• Physical treatment;
• Thermal treatment;
• Chemical treatment;

Physical pretreatment involves grinding, sieving, or activating, and chemical treatment
involves the direct use of chemical agents or substances to initiate oxidation, reduction, or
impregnation. Thermal treatment relies directly on the use of temperature, and it is possible
to perform it before and after biochar production. Microbial (or biological) treatment
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involves the use of microorganisms and can potentially enhance the biological activity
and nutrient availability of microorganisms in the anaerobic digestion process. Proper
pretreatment can improve the efficiency of the anaerobic digestion process and increase the
yield of biogas.

Physical Treatment

There are physical methods that focus on biochar modification to obtain a material
that is capable of removing contaminants, which can have an indirect impact on increas-
ing biogas.

Carbon Dioxide Activation: Biochar is pyrolyzed and activated using carbon dioxide
(CO2). The CO2 reacts on the surface of the biochar, forming surface oxides and increasing
the physicochemical properties, like the microporosity, specific surface area, hydrophobicity,
and aromaticity. Carbon dioxide treatment can adsorb sulfamethazine [223], copper [224]
and a hypochlorite solution [225].

During the microwave modification, electromagnetic waves of a specific frequency are
used to activate the biochar. This activation technique provides uniform and quick internal
heating with the help of three mechanisms, which are ionic conduction, dipole polarization,
and interfacial polarization. This process is different from conventional methods where
heat is transferred from the surface to the material causing variations in the temperature
and conduction phenomena. Microwave heating generates microplasma spots throughout
the reaction mixture, which results in enhancing the process of the chemical reaction and
its local temperature, leading to the activation of biochar [226].

Thermal Treatment/Thermal Activation

Biomass is thermally decomposed at high temperatures in a low-oxygen environment.
This process involves the dehydration of biomass, followed by the decomposition of organic
molecules, such as cellulose, hemicellulose, and lignin. The result is the transformation
and rearrangement of the molecular structure of the biomass. There are various examples
of the removal of contaminants with the use of biochar materials, i.e., the removal of
molybdenum [227], polyaromatic hydrocarbons [228], and organic compounds [229].

Chemical Treatment

The solution proposed by M. Zhang et al. [230] was adding biochar-supported nanoscale
zerovalent iron during anaerobic digestion at a mesophilic temperature. Enhancement
effects were investigated for methane production and its impact on the microbial structure.
The biochar and nanoscale zerovalent iron composite was effective in terms of enhancing
process stability. Intermediate organic acids were generated and degraded more efficiently.
Compared to the biochar composite with nanoscale zerovalent iron, pristine biochar had
a higher carbon content and a lower O/C ratio. The composite contained more oxygen
functional groups; hence, its adsorption abilities were positively altered [231]. In addition,
nanoscale zerovalent iron can improve methane production, where Fe+ serves as an electron
donor for reduction as it oxidizes under anoxic conditions [232,233].

Pairing nanoscale zerovalent iron with biochar is a relatively recent concept, although
Fe add-ons have been already tested a few years back and gained popularity due to their
influence. Results presented by [116] showed a novel strategy for accelerating hydrolysis.
Acidogenic performances during chemical oxygen demand removal were not prone to
the hydraulic retention time. Methanogenesis and acidogenesis were optimized as the
propionate production was decreased [234].

Apart from nanoscale zerovalent iron, [192] proposed another solution to mitigate
the negative effects of biochar add-ons and compared the results of pristine biochar
and MnFe2O4-modified biochar. The study investigated the anaerobic digestion perfor-
mance and CH4 production with the addition of corn straw biochar and manganese oxide
oxide-modified biochar (MnFe2O4-biochar). The highest cumulative methane production
occurred at 1.5 g of MnFe2O4-biochar per 1 g of dry matter of substrate and equaled
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211.57 mL/g. The 0.5 g of pristine biochar per 1 g of dry matter of substrate resulted in
141.4957 mL/g, whereas the cumulative methane production for 0.5 g of MnFe2O4-biochar
per 1 g of dry matter of substrate equaled 147.09 mL/g. In addition, the surface area of
the biochar increased from 2.39 m2g−1 to 30.37 after modification with MnFe2O4. This
can indicate that a more porous structure favored pollutant adsorption. It is important to
note that further research and experimentation are needed to better understand the mecha-
nisms behind this improvement and to assess its applicability under various conditions.
Nevertheless, these findings suggest that modified biochar has the potential to be a more
effective additive in anaerobic digestion processes than pristine biochar. Apart from that,
an increased amount of Methanosarcina bacteria could potentially enhance the conversion
of organic compounds, i.e., acetate into CH4.

An evaluation of the effects of modified biochar with ammonium hydroxide (NH4OH)
and hematite nanoparticles (α-Fe2O3 NPs) proved that this carbon material could be an ef-
fective way to increase the methane yield [10]. The major positive effect was noted when the
substrate was treated with 100 mg of sawdust biochar combined with 10 mg of α-Fe2O3 NPs,
compared to the group treated with manure itself (219 mL/g vs. 138 mL/g). Although the
biogas yield was higher when the substrate was treated with 100 mg of unmodified biochar,
the yield was lower compared to that with modified biochar (205 mL/g vs. 219 mL/g).

Research by [235] on the addition of cerium chloride along with biochar resulted in
a higher cumulative yield of CH4.The addition of both Ce3+ and biochar to the substrate
caused the highest yield among all tested add-ons (biochar, Ce3+, and group with no
add-on). The yield was higher by 4.4%, 5.7%, and 22.3%, respectively. Biochar and cerium
chloride synergistically increased the production of methane. It was clear that biochar
and cerium chloride did not reach the same cumulative yield as they did simultaneously.
However, only the combination of both reduced the time required for hydrolysis and
accelerated the degradation of organic compounds.

Palniandy et al. [222] showed that sodium hydroxide treatment altered the surface
area, decreasing the porosity of biochar materials. Though the ash was removed from the
biochar, the decomposed organic matter entered pores and blocked them, which resulted
in a lower surface area.

Choudhury and Lansing [236] checked the influence of iron-impregnated biochar on
H2S production during anaerobic digestion. Compared to the same dose of corn stover
non-impregnated biochar, where removal efficiency was at 52%, Fe-biochar led to complete
hydrogen sulfide removal.

The proper choice of the pretreatment method depends on the specific characteristics
of biochar and the requirements of the anaerobic digestion, reactor, type of substrate,
pH, and temperature. Selecting a pretreatment method must effectively augment biochar
accessibility to microorganisms and minimize the energy requirement.

4.1.3. Adsorbent Addition

Adsorbents can act as a medium that adheres to unfavorable compounds present
during the anaerobic digestion process [237]. As biochar can act as an adsorbent itself, the
mitigation of inhibitors of different origins can be carried out by zeolites, activated carbon,
silica gel, and activated alumina [140,238]. Adsorbents can effectively mitigate heavy
metals (Na+, K+, Ca+, Al+3, Cu+2, Zn+2, Cr+3, and Ni), organic compounds (chlorophenols,
halogenated aliphatics), volatile fatty acids (VFAC), and ammonia [218,220,239].

Zeolites have been mainly used to remove ammonium and mitigate the negative
effects of high nitrogen levels in reactors [240]. Zeolites are capable of exchanging cations
(Ca+ and Mg2+) and the absorption of impurities and have catalytic abilities [241]. In
Achi et al. [242], zeolite addition during anaerobic digestion resulted in the highest volatile
solids (VSs) and chemical oxygen demand (COD) reduction. Moreover, the highest reduc-
tion in VSs and COD was in sync with the highest cumulative methane production [243,244].
Amalia et al. [245] showed that the longer zeolite purification of biogas resulted in higher
methane contents in biogas.
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Modified biochar can be used to remove compounds and immobilize CuO for effi-
cient adsorption [246]. Biochar modified with potassium hydroxide (KOH) has a larger
surface area and higher adsorption capacity than unmodified biochar [247,248] and pristine
biochar [249].

4.1.4. Appropriate Carbon Sources

To mitigate the negative effects of biochar during anaerobic digestion, it is essential to
focus on materials that can balance the carbon-to-nitrogen (C/N) ratio [16,197,250]. Suitable
carbon sources that are commonly used in anaerobic digestion systems are as follows:

• Food waste;
• Manure;
• Crop (agricultural) residues;
• Energy crops; and
• Microalgae biomass [16].

Rodriguez et al. [251] showed that biochar made of polyvinyl chlorine had higher
ash and higher electric conductivity and could enhance methane production. Biochar
prepared at 500 ◦C had a more suitable cation exchange capacity than the ones prepared
at 600 ◦C and 700 ◦C. Poultry litter biochar had higher amounts of trace minerals, such as
quartz and sylvite, and swine manure biochar had higher amounts of dolomite and sylvite,
construction wood—dolomite and calcite, and pyrite and anhydrite.

Kizito et al. [252] showed that biochar adsorption efficiency is dependent on the
material from which it was obtained. The adsorption of rice-husk-derived biochar was
lower (39.8 mg/g) than biochar of wood origin (44.64 mg/g).

In Shanmugam et al. [253], among carbons of different origins, granular activated
carbon resulted in the highest increase in CH4 (78%). Switchgrass biochar and Ashe Juniper
biochar resulted in a 72% and 71% increase, respectively. Biochar made of holm oak residues
resulted in only a 5% increase in the methane yield, and straw digestate biochar resulted
in a 32% increase. On the other hand, granular activated carbon increased the chemical
oxygen demand removal by 47%, whereas powdered activated carbon was about 108%
more effective.

4.1.5. Monitoring and Adjusting pH Levels

The effectiveness of an anaerobic digestion system predominantly depends on the pH
value [35]. The drops in pH can hinder microbial activity and the microbial functioning of
methanogenic bacteria [254]. To mitigate the negative effects of carbon additives during
anaerobic digestion, it is important to maintain the pH within an optimal range of 6.5 to 7.5.
This can be achieved by adding alkaline materials, such as sodium hydroxide or lime, or
by using buffering agents, such as bicarbonate or phosphate. The alkaline materials can
raise the pH by reacting with the acidic compounds in the digester, while buffering agents
can resist pH changes by absorbing excess hydrogen ions (H+) or releasing H+ as needed
to maintain a stable pH [255]. Alternative additives, such as trace minerals and enzymes,
can be used in place of carbon additives to enhance biogas production. These additives
can improve the activity of microorganisms and increase the breakdown of organic matter,
resulting in higher biogas yields and optimized stability [256].

Heitkamp et al. [257] underlined the importance of a suitable pH inside a reactor, where
the inhibition effect was reduced. The amount of propionic acid exceeding 1800 mg/L
could inhibit the whole process of biogas production if the pH drops below 6.5. Higher pH
corresponds to high NH4—4 contents, which provide buffering capacity and enable the
biogas production to continue.

Carbon additives can alter the pH of the digester, which can negatively affect the
activity of microorganisms responsible for biogas production. It is important to monitor
and adjust the pH levels to maintain an optimal range for microbial activity [258].

A vital part of monitoring pH levels is to perform it regularly and adjust the amount
of alkaline or buffering agents added as necessary to maintain the optimal pH range. By
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maintaining the proper pH levels, the negative effects of carbon additives can be minimized,
and the anaerobic digestion process can be more efficient and effective [10].

4.1.6. Use of Alternative Additives Blending Carbon with Other Materials

The reasons behind the lower methane yields during anaerobic digestion with biochar
addition are described as the limitation of nutrients available for bacteria present during the
anaerobic digestion process [8,259]. The absence of both macronutrients and micronutrients
alters microorganism functioning on a basic level. A lack of trace elements will result in
undernourished and starved bacteria that tend to be less effective in terms of digestion and
interactions between different species present in the reactor [25,260]. To sustain constantly
working bacterial groups through each pathway of the chemical reaction, additive materials
shall be considered.

Phosphorus-rich materials include materials, such as bone meal, slaughterhouse waste,
and microalgae. They provide phosphorus, which is an essential nutrient for microbial
growth, metabolism, and the mitigation of ammonia inhibition [140,240].

Trace minerals, such as iron, zinc, manganese, cobalt, or selenium, are proven to
positively alter the long-term digester stability, enhance organic matter degradation, and
maintain relatively low volatile fatty acid levels [261,262] pointed out that the addition of
TiO2 and ZnO/Ag powders can improve the biogas yield.

The choice of biochar additive depends on the specific requirements of the anaerobic
digestion system and the characteristics of the biochar being used. It is essential to select an
additive that is compatible with the anaerobic digestion system and provides the necessary
nutrients and minerals for microbial growth and metabolism [263]. Alternative biochar
additives can be used to enhance the performance of anaerobic digestion systems by
providing essential nutrients and minerals to microorganisms. The proper selection and
use of these additives can improve the efficiency of the anaerobic digestion process and
increase the yield of biogas [264].

4.2. Consortia Adaptation

In anaerobic digestion, consortia adaptation refers to the process by which microbial
communities adapt to changing environmental conditions and evolve during the process
of biogas production. Microbial consortia are essential for the efficient functioning of
anaerobic digestion systems. Alterations in the temperature, pH, and organic loading rates
can result in changes in microbial communities. Maintaining stable conditions is crucial for
optimizing continuous biogas production.

Although various aforementioned researchers have established that char additives
favoured biogas yields during anaerobic digestion, the processes and interactions between
microorganisms are complex, as are the possible ways to alter them. Some reports described
adaptation as a tool to increase microbial tolerance to shifts in conditions [201,265].

In Batta [266], tests between a previously adapted and non-adapted inoculum used
in anaerobic digestion showed differences in biogas yields. The shift between samples
showed that adapted microbial consortia produce more biogas than non-adapted consortia.
The adapted batch had higher CH4 concentrations (92% more methane content). The
adapted inoculum had a 106% increase in the methane content compared to the non-
adapted inoculum. It has been shown that for previously adapted inocula, the microbial
communities responsible for anaerobic digestion had different microbial communities than
the non-adapted inocula.

The adaptation of consortia during anaerobic digestion occurs in response to changes
in the feedstock or operational conditions [267]. For example, if the feedstock compo-
sition changes, the microbial community may adapt to utilize the new feedstock more
efficiently [268]. Similarly, changes in the temperature, pH, or hydraulic retention time can
also result in changes in the microbial community [269,270]. Overall, the adaptation of con-
sortia during anaerobic digestion is essential for maintaining the stability and efficiency of
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the process. Understanding the dynamics of microbial communities and how they respond
to changes in the environment is critical for optimizing anaerobic digestion systems.

5. Future Directions (Research Gaps) for Research and Applications

While there have been some reviews on the negative effects of biochar on biogas
production and possible strategies to mitigate these effects, there are still several gaps in
our understanding. The effect of functional groups on biogas production will depend
on the specific type and number of functional groups present in the biochar, as well
as the composition of the microbial community involved in the process. While there
is some evidence that certain functional groups in biochar can have negative effects on
biogas production, the mechanisms underlying these effects are not well understood.
Further research is needed to better understand the complex interactions among the biochar,
microorganisms, and environment in biogas production systems since there is a limited
understanding of the mechanisms underlying the negative effects of biochar. The surface
properties of biochar can be modified to improve its suitability for use in anaerobic digestion
systems. Future research could focus on developing new technologies for modifying
biochar properties, such as chemical treatments, thermal treatments, or nanotechnology-
based methods.

Even though the addition of biochar to anaerobic digestion systems can improve
biogas production, the optimal methods for adding biochar are not well understood.
Further research is needed to evaluate the effects of different methods of biochar addition,
such as mixing, layering, or co-digestion, on biogas production and system performance.
Improving the management of anaerobic digestion systems can also help to reduce the
negative impact of biochar on biogas production. This includes optimizing the feedstock
composition, temperature, pH, and retention time, as well as implementing strategies for
maintaining stable microbial communities.

The environmental impacts of using biochar in anaerobic digestion systems are not
well understood. Overall, addressing these research gaps will be critical to advancing our
understanding of the use of biochar in biogas production systems and developing effective
strategies to reduce its negative impact on biogas production. This will also require a multi-
disciplinary research approach that integrates knowledge from microbiology, engineering,
and environmental science.

6. Conclusions

Anaerobic digestion is a complex process influenced by various factors, and the
use of carbon materials, such as biochar, can have both positive and negative effects on
biogas production. It is crucial to consider each case individually, accounting for potential
interactions among different parameters. While many studies have shown that biochar can
enhance biogas production, some instances demonstrate its adverse impact. These negative
effects could be attributed to factors, like the release of heavy metals from certain types of
biochar. This raises concerns, especially when dealing with organic waste from heavily
polluted sources. To advance the implementation of a circular economy system, further
extensive research on the potential drawbacks of biochar in anaerobic digestion is needed.

In practice, maintaining pH control after adding carbon materials and optimizing the
dosage of additives appears to be crucial. Future research may pinpoint which carbon
materials and production conditions are unsuitable for specific substrates, offering valuable
guidance for biogas plant operations. In light of this review, there is a clear demand for
more research to optimize biogas production by understanding the molecular properties of
carbon materials and their interactions with microorganisms. Identifying and mitigating
factors that hinder biogas yields will improve the efficiency of anaerobic digestion processes.
This critical review underscores the significance of considering the molecular properties of
carbon materials and their influence on microorganisms, paving the way for more effective
biogas production.
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