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Abstract: The following research aims to investigate selected properties of three-layer plywood,
manufactured using dust from the milling of three-layer particleboard as a filler in the bonding
mass. Four types of fillers were considered in the study: commercial rye flour, wood dust naturally
occurring in the composition of particles used industrially for particleboard production, wood dust
from the first batch of shredded particleboard, and dust from the second round of milled particleboard.
The highest modulus of elasticity (MOE) values were observed for the reference samples. Notably, in
the samples containing filler sourced from the secondary milling of particleboard, the MOE exhibited
an upward trend in conjunction with increasing filler content. The modulus of rupture (MOR)
decreased with an elevated degree of filler milling from 73.1 N mm−2 for the native filler, through
to 68.9 N mm−2 for the filler after 1st milling, and to 54.5 N mm−2 for the filler after 2nd milling
(with 10 parts per weight (pbw) of filler used as an reference), though it increased slightly as the
filler content increased. The most favorable outcomes in shear strength were achieved in samples
containing filler material from the initial milling of particleboard. The thickness swelling peaked
in variants utilizing filler material from both the initial and secondary milling of particleboards
(20.1% and 16.6% after 24 h of soaking for samples with 10 pbw filler after the 1st and 2nd milling,
respectively, compared to 13.0% for the reference samples). Water absorption testing exhibited a more
pronounced response in the newly introduced variants, although the samples containing filler from
the initial and secondary milling processes eventually yielded results akin to the reference sample,
with naturally occurring dust displaying higher water absorption values. The highest density values
(about 1224 kg m−3) were observed in the reference samples. A similar density profile was recorded
for samples with five parts of wood flour as filler, although the density of the bonding line was
slightly lower in these instances (1130 kg m−3). This research confirms the feasibility of applying the
aforementioned dust as an alternative to conventional fillers in plywood technology. It also raises the
question of how to effectively remove glue residues from wood-based composite dust, which would
enhance their absorption properties.

Keywords: upcycling; particleboard; plywood; dust; circular economy; filler

1. Introduction

Plywood is one of the most widely used wood materials and is employed in airplane
construction, although nowadays it is not used so often in the furniture industry as 20 years
ago [1]. It is also applied in the production of marine components, although lighter and
more cost-effective alternatives are increasingly being sought [2].

In plywood technology, the components—not only veneers and adhesives, but also
fillers—are increasingly being subjected to modifications. The aim of this research was to
search for new potential applications of known raw materials that have not yet been fully
examined or whose potential has not yet been fully exploited. Attempts have already been
made to, among other things, modify the veneers through the utilization of environmentally
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friendly vacuum-assisted resin transfer molding (VARTM) technology, which has signifi-
cantly increased the strength properties of plywood and reduced water absorption [3]. The
impregnation of veneers can contribute to fire resistance properties if appropriate measures
are employed [4]. Expanding societal awareness is forcing the woodworking industry
to become increasingly environmentally friendly, which explains why various attempts
have already been undertaken to replace formaldehyde-based thermosetting resins with
adhesives of natural origin, e.g., glutaraldehyde-modified starch has been considered in
this regard [5]. Studies have confirmed that glutaraldehyde-modified starch can be utilized
as a binder substitute in plywood technology [6]. Other examples of plywood produced
with no formaldehyde include plywood glued with poly(vinyl alcohol)-tannin-hexamine
baize glue [7]. The plywood component modifications that have been investigated include
the addition of a silica filler to the adhesive in order to reduce the penetration of selected
chemicals. This type of plywood was developed for warfare purposes [8]. In turn, the
wood bark used as a filler in plywood technology has shown properties that minimize free
formaldehyde emissions [9–11]. Green tea also has the ability to decrease formaldehyde
emissions, as confirmed in a study making use of green tea leaves as a filler in plywood
technology [12]. Another raw material that enables the reduction of free formaldehyde
emissions is a powder derived from modified ground pine needles. This filler allows the
high strength parameters to be maintained, as well as contributing to the reduction of
formaldehyde emissions. Tests were carried out considering urea-formaldehyde resin at
a 1:10 weight ratio of modified needle powder to resin [13]. Research states that plants
containing polyphenols, especially tannins, are characterized by their ability to reduce
formaldehyde emissions [14]. Among such plants are thymus plants, which can be success-
fully applied as filler for plywood [15].

Rye flour is a commonly employed filler in plywood production due to its wide
availability and low cost. Regarding the potential food crisis, it is beneficial to be aware of
the alternative food raw materials that can be implemented interchangeably instead of rye
flour, which is conventionally used [16]. Increasingly, researchers are also investigating new
flours, as despite having a very similar texture, each new raw material can have slightly
different properties. Such experimental attempts include chestnut flour [17], rice starch [18],
biomass combustion fly ash [19], or soy flour [20–22]. These raw materials belong to the
group of active fillers and can therefore swell, absorbing moisture. The best solution in this
regard would be to replace the filler with dust, which is inedible. There are also known
passive fillers, which do not react as intensively to moisture as active fillers. Additionally,
a division of organic and inorganic fillers has been described [23]. This group includes
fillers obtained from chestnut shell flour [24], eggshells [25], or reused coffee grounds [26].
In plywood technology, another alternative filler employed is derived from cactus waste
seeds. These seeds have been successfully utilized as a filler in plywood panels bonded
with phenol-formaldehyde adhesive. The decision to consider cactus waste seeds as a filler
was encouraged by the substantially higher cellulose content they possess, which stands at
27%, in contrast to the previously employed olive seeds for this adhesive application. The
integration of cactus seed filler led to notable enhancements in the strength properties of the
plywood, yielding results that compare favorably with those of the benchmark plywood.
Furthermore, an observed reduction in formaldehyde emissions was a noteworthy outcome
associated with the use of cactus seed filler [27]. The use of fillers enables the viscosity
of the glue to be controlled and prevents excessive absorption of the glue into the veneer,
also allowing for the acceleration of dimensional stability [28,29]. Activated carbon, due to
its structure, holds significant potential as a filler in wood-based material technology. It
accelerates the curing of urea-formaldehyde (UF) resin and also has the ability to reduce
formaldehyde emissions [30].

The increasing amount of waste is forcing society to search for new solutions and
strategies for waste reuse. Another reason to expand research on this issue is the desire to
follow the guidelines according to the principles of a circular economy, maximizing the
use of raw materials before deciding to discard or dispose them. Following this statement,
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Russian scientists used Powdered Paper Resin Films (PRFs) consisting of melamine-urea-
formaldehyde resin and bleached resin pulp for their research [31]. When combined with
urea-formaldehyde resin, PRF increased the viscosity of the adhesive pulp up to 110%,
simultaneously extending the gel time of the adhesive. This problem has been solved using
the hardener MO-4CБ (Russian acronym). Ammonium chloride can also be applied for
this purpose; however, its effect is weaker compared to MO-4CБ. The present adhesive
mixture has been adapted for three-layer plywood, and the strength parameters with
such a mixture increased by 5% on average. The next example of an environmentally
friendly adhesive for plywood production is a binder created from polypropylene filters
from single-use face masks [32]. The use of plastic containers as a bonding agent also
aligns with the concept of a circular economy. Until now, such containers were properly
cut and utilized as adhesives in plywood production. The research included the selection
of pressing temperatures to ensure the best bonding quality and prevent degradation of
the containers [33]. Another example of obtaining eco-friendly adhesives for plywood
involves utilizing extracts derived from the bark of grey alder (Alnus incana) and black alder
(Alnus glutinosa), both rich in condensed tannins (CTs). Combined with polyethyleneimine
or ultra-low emitting formaldehyde resin, they achieve adhesive qualities comparable to
industrial resin, while reducing formaldehyde emissions up to 60%. Each of the adhesive
combinations produced met the requirements set by the EN 314-2:1993 [34] standards for
both indoor and outdoor applications. This study confirms that alder bark particles can
serve as a substitute for conventional fillers [35].

It is less challenging to find information on the use of the dust fraction generated
during the production of wood-based composites [36] than on the use of dust generated
from the recycling of wood-based composites, such as particleboard and plywood. An
intriguing approach for the development of an environmentally friendly adhesive involves
utilizing waste cottonseed protein and sawdust as key constituents. To enhance its ad-
hesive properties, a dual crosslinking modification process was employed, incorporating
Isophorone diisocyanate (IPDI) and oxidized cellulose (OC). The strength property results
obtained from testing remain in compliance with the applicable Chinese strength standards
for plywood, underscoring the considerable potential of this adhesive formulation as a
sustainable alternative to urea-formaldehyde (UF) resin [37].

This research aims to explore the potential use of wood dust derived from recycled
wood materials, such as particleboards, in an effort to identify new possibilities for their
utilization before considering their disposal. In the scope of this research, fine fractions
of recovered wood material with different contents were used as bonding mass fillers
in plywood production. Then, the selected mechanical and physical properties of the
manufactured plywood were evaluated to estimate the influence of the quality and quantity
of the tested filler on the plywood properties (Figure 1).

2. Materials and Methods
2.1. Materials

This research involved the production of three-layer plywood, manufactured using
birch veneers (Betula spp.). The veneers had a thickness of 1.8 mm, with a moisture content
(MC) of about 6% and dimensions of 360 × 360 mm2.

The binder used was an industrial urea-formaldehyde (UF) resin Silekol S-123 (Silekol
Sp. z o.o., Kędzierzyn, Koźle, Poland), containing about 66% dry content [38] with a
molar ratio of about 0.9. Additionally, an ammonium nitrate water solution was used as a
hardener, when subjected to a temperature of 100 ◦C reach the curing time about 86 s.

Rye starch was applied as a filler in the reference sample (producer: BioLife Sp. z o.o.
ul. Miodowa 17, 17-100 Bielsk Podlaski, Poland).

The remaining fillers employed included wood dust derived from sifting conventional
wood shavings utilized in the production of particleboard (native) and wood dust derived
from grinding particleboard with a nominal density of 650 kg m−3. Then, particleboards
with a density of 650 kg m−3 were produced again and ground. Dust was also obtained
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from this grinding, which served as the filler after 2nd milling. The size of the dust particles
remained lower than 0.125 mm, and the bulk density equaled about 270 kg m−3. The entire
procedure and characteristics have been described in [39]. Other studies have confirmed
that processing a wood composite made from already fragmented wood contributes to the
formation of smaller fractions compared to the processing of solid wood [40].
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2.2. Preparation of Panels

As part of this research, three-layer plywood was composed using the following
fillers: fine, native wood powder < 0.1 mm and wood powder, obtained from the 1st
and 2nd milling of three-layer laminated particleboard. For each type of filler, plywood
was manufactured with different proportions of the respective filler: reference, 1, 5, 10,
and 20%. The adhesive mixture was prepared in Parts By Weight (pbw): 100:4:10:5
(resin:hardener:filler:water). The adhesive mixture was applied to the veneers with a brush,
and each layer of adhesive amounted to 180 g m−2. The veneers were laid alternately and
then pressed in a hydraulic heated press for 7 min (AKE, Mariannelund, Sweden), with a
pressing temperature of 140 ◦C and a unit pressing pressure of 1 MPa. After pressing, the
samples were air-conditioned at 20 ± 1 ◦C and 65 ± 2% relative humidity for 7 days for
weight stabilization before testing.

2.3. Characterization of Panels

The mechanical tests were performed on a computer-controlled universal testing
machine (Research and Development Centre for Wood-Based Panels Sp. z o.o., Czarna
Woda, Poland). The following examinations were carried out: modulus of elasticity (MOE);
modulus of rupture (MOR), conducted in accordance with applicable standards [41]; and
bonding quality in a dry state, in accordance with the EN 314-1 standard [42]. Each test
was conducted with as many as eight repetitions. Using the testing procedure specified in
the standard for particleboards and fiberboards, swelling (in thickness) after immersion in
water was determined and an analysis was conducted for all variants [43]. Additionally,
the water absorption test was conducted. A density profile was also obtained for all the
variants (three repetitions) using a Grecon DAX 5000 device (Fagus-GreCon Greten GmbH
and Co. KG, ALfeld/Hannover, Germany), based on X-ray techniques, with a sampling
step of 0.02 mm and a measuring speed of 0.1 mm s−1.

2.4. Statistical Analysis

Analysis of variance (ANOVA) and t-test calculations were chosen to examine (α = 0.05)
significant differences between the factors and levels, where appropriate, using the IBM
SPSS statistics base (IBM, SPSS 20, Armonk, NY, USA).
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3. Results and Discussion
3.1. The Density Profile

Figure 2 shows the density profiles of samples with the native filler compared to the
reference variant. The veneers demonstrated a density of about 600–700 kg m−3, depending
on the sample. The bonding line exhibited a bonding density slightly above 1200 kg m−3

for the reference sample. Regarding the native samples, the greatest bonding line density
was observed for the 5% and 20% variants, reaching a maximum bonding line density of
approximately 1100 kg m−3. Differences in the bonding line densities within the same
variant were also observed, which may be explained by excessively high viscosity during
the glue application, resulting in uneven bonding.
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Figure 3 presents the density profiles of samples utilizing the dust derived from the
1st grinding of the particleboard as the filler, compared to the reference panel. For the
5%, 10%, and 20% variants, the maximum bonding line density remained in assemblance
and amounted to approximately 1000 kg m−3, whereas a lower density was observed
for the 1% variant, equaling around 900 kg m−3. As the level of filler contamination
increased, the quality of bonding deteriorated, resulting in reduced strength parameters.
It also contributed to the disintegration of most samples during the water absorption test.
Therefore, future research into these variants should consider modifying the process and
incorporating a coupling agent that enhances bonding quality, similar to the approach used
to produce five-layer panels using both primary and recycled high-density polyethylene
films with various loadings (0, 3, 6, 8, and 11% by weight) of maleic anhydride-grafted
polyethylene (PE-g-MA). This research confirmed the positive effectiveness of such an
approach [44].

Figure 4 illustrates the density profile of plywood, with the filler consisting of dust
derived from the 2nd milling of the boards. In the reference variant, the joint density
defaulted to approximately 1200 kg m−3. Plywood with a 1% filler exhibited a joint density
of approximately 900–1000 kg m−3, whereas plywood with 5% and 10% filler obtained
values of around 1000–1100 kg m−3. In these instances, the glue was absorbed into the
wood, as per standard procedures. The highest glue absorption into the wood was observed
for the variant with a filler content of 20%. Consequently, the joint density in this case
performed lower, ranging from 800–900 kg m−3. This phenomenon can be attributed to the
increased presence of impurities in the glue within the dust obtained after the 2nd milling.
The plywood samples with repeatedly ground filler were thicker. As a result, this particular
dust was less absorbent compared to the other fillers, facilitating easier absorption of the
glue mixture into the wood. Research has confirmed that every time the wood materials
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are milled, there is an increase in wood impurities [39] and a reduction in the size of the
wood particles [45].
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3.2. Bonding Quality

Figure 5 displays the results of the shear strength examination. The shear strength
value increased with increasing filler content. The highest values were observed for the
reference samples, with rye flour serving as the filler, obtaining a shear strength value of
1.83 N mm−2 when the filler content equaled 10%. Another variant affecting shear strength
is the utilization of dust obtained from the first grinding of three-layer particleboard as a
filler in the sample. The highest shear strength values were recorded for the samples with
20% filler content, with a shear strength value reaching 1.68 N mm−2. The panels with 5%
filler content were the weakest, with a shear strength value of 1.25 N mm−2. Regarding
shear strength, the weakest values were found for the samples with filler consisting of native
dust and dust from the second grinding of particleboard panels, although they were very
similar. The lowest values were 0.97 N mm−2 for the native filler and 1.08 N mm−2 for the
second grinding filler, whereas the highest values reached 1.30 N mm−2 and 1.39 N mm−2,
respectively. The difference between the fillers incorporated can occur due to the origin
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of the raw material. Flour and wood differ from one another and can absorb moisture
differently regarding their structure. To identify the key differences for consideration, a
chemical analysis of the raw materials, as in the case of red alder bark and walnut shell,
is required [46]. Additionally, some of the fillers used have already been modified and
contain adhesive additives, including dust obtained from grinding boards. Other studies
conducted on dust derived from wood sanding [47] confirmed that the particle size and its
pH remain significant factors in selecting a filler for UF resin-based binders. This research
confirmed that the smaller the particle size, the higher the strength results, reaching up
to 63% when considering particles smaller than 0.125 mm. Furthermore, the smaller the
particle size, the lower the filler consumption. The use of waste lignocellulosic fibers from
the fiberboard industry, pulp, and paper mills as a filler in plywood revealed that increasing
the proportion of this type of filler had a detrimental effect on the shear strength parameters.
Only smaller amounts slightly improved the strength, with approximately 1–3% of this
filler, whereas increasing the proportion of filler led to a deterioration of shear strength [48].
The statistically significant differences in shear strength within the same filler were found
exclusively for the highest and lowest amounts of native filler content. When analyzing all
the tested variants, the reference samples were statistically significantly distinct from all
the other variants, excluding 10 and 20 pbw 1st milling fillers and 20 pbw 2nd milling filler.
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3.3. Modulus of Rupture and Modulus of Elasticity

The chart below (Figure 6) depicts the modulus of rupture (MOR) for the manufactured
plywood samples. The highest MOR value was found for the reference samples, resulting
in a value of 147 N mm−2. The other variants performed less favorably compared to the
reference sample. For the native sample and the sample with filler obtained after the
second grinding of particleboard, the highest values were recorded for plywood with a
20% filler content, equaling 87.2 N mm−2 and 68.7 N mm−2, respectively. For plywood that
contained the filler obtained after the first grinding of particleboard, the highest value was
also achieved for the 20% variant, at 69.5 N mm−2. The chart also illustrates that increasing
the filler content in this case has a limited impact, as even with a 10% filler, the MOR result
was similar, at 68.9 N mm−2. For lower filler shares, the modulus of rupture (MOR) was
lower; however, in this instance it was the least dynamic compared to the other fillers.
The most significant differences in the applied filler amounts were observed for the native
filler. In comparing the obtained MOR results with data from the literature, considering
10–15% as the optimal filler content, we concluded that the presented results remain similar,
since increasing the amount of filler does not bring significant changes [49]. Statistically
significant differences in the MOR values within the same filler were found for the lowest
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native filler content when compared to 10 and 20 pbw, as well as for 20 pbw after 2nd
milling when compared to the remaining variants. When analyzing all the tested variants,
the reference samples were statistically significantly distinct from all the others. Similarly,
the samples containing 20 pbw native filler were statistically significantly distinct from the
remaining variants.
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The modulus of elasticity (MOE) values of the produced samples are displayed in
Figure 7. Again, the greatest MOE values were observed for the reference variant at
14,734 N mm−2. The second highest MOE result was recorded for the samples with filler
obtained after 2nd grinding, where the filler content was 20% (12,165 N mm−2). For this
variant, transitions in the filler content had the most significant impact in comparison
to the other variants. A similar trend was maintained for the native variant; however,
the final MOE parameter for 20% filler content was lower than that of filler obtained
after 2nd grinding (11,445 N mm−2). Analyzing the MOE results obtained for plywood
with filler obtained after 1st grinding, it can be concluded that the filler content did not
significantly affect the outcome of this study. The highest MOE value was recorded for a
filler content of 20%, reaching 13,166 N mm−2. This may also have been responsible for the
diminished strength parameters [50]. Evidence from previous research suggests that an
excessive proportion of filler can lead to excessive glue viscosity, making its application
more challenging [51]. Statistically significant differences in the MOE values within the
same filler samples were found for the lowest native filler content and filler obtained after
2nd milling (10 and 20 pbw). When analyzing all the tested variants, the reference samples
were statistically significantly distinct from all the others, excluding 20 pbw 1st milling
filler and 20 pbw 2nd milling filler.
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3.4. The Thickness Swelling and Water Absorption Tests

Figure 8 illustrates the results of thickness swelling of the samples manufactured
with the investigated alternative filler content of 20 pbw. The first numbers (0/20, 1/20,
and 2/20) indicate the type of filler used, respectively, native (0), after 1st milling (“1”),
and after second milling (“2”). In the initial phase, the specimens exhibited the most
dynamic swelling. After two hours, a large proportion of the test specimens disintegrated.
It should be noted that regular urea-formaldehyde resin (non-water resistant) was used in
this research. The greatest swelling was observed for the samples using dust obtained from
the first milling as a filler. Intermediate values were obtained from the samples with native
filler and after the second washing. The minimum swelling per thickness was detected for
samples containing rye flour as a filler.
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The water absorption results are shown in Figure 9. The highest water absorption was
recorded for the sample using native filler. After 24 h of soaking, water absorption was sim-
ilar for the reference sample and the sample using the 1st milled filler. Despite the initially
rapid absorption dynamics, the sample using filler dust obtained after the 2nd grinding
eventually showed the lowest water absorption value after 24 h. One area necessitating
enhancement in the conducted research is the adhesion quality, notably evident during the
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water absorption tests. A great portion of the samples exhibited disintegration under these
conditions. Consequently, given that a substantial rise in moisture content is adverse for
these wood composites, even slight fluctuations in moisture can lead to a decline in the
strength parameters [52].
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4. Conclusions

This series of studies is a continuation of research conducted under fully controlled
conditions and still remains a fairly new approach to recycling. Previous studies have
shown that the regrinding of raw materials leads to the formation of numerous amounts
of dust fractions. Therefore, this paper was devoted to one of the potential methods
for managing dust in lignocellulosic layered composite technology. The dust obtained
was distinct in its composition in terms of the number of chemical additives, with the
largest proportion of such fractions found in dust obtained from the second milling of
particleboard. An important aspect to consider when analyzing the results is the origin
of the raw material, since commercially used flour has a structure different to wood and
remains clean and contaminated. However, utilizing upcycled wood dust can enhance the
value of waste materials and is a promising outcome in terms of the principles of a circular
(closed-loop) economy, waste upcycling, and carbon capture and storage (CCS) policies.

According to the results achieved, the highest MOE values were observed for the
reference samples. Conversely, for samples featuring filler material from the initial milling
process, there were no substantial differences in filler content. Notably, in samples where the
filler was sourced from the secondary milling of particleboard, the MOE values exhibited
an upward trend in conjunction with increasing filler content. Meanwhile, the modulus
of rupture (MOR) decreased with an elevated degree of filler milling from 73.1 N mm−2

for native filler, through to 68.9 N mm−2 for filler after 1st milling, and to 54.5 N mm−2

for filler after 2nd milling (with 10 pbw of filler used as a reference), though it increased
slightly as the filler content increased. With regard to shear strength testing, the most
favorable outcomes were achieved in the samples incorporating filler material from the
initial milling of particleboard. The thickness swelling of the plywood reached its peak in
variants utilizing filler material from both the initial and secondary milling of particleboards
(20.1% and 16.6% after 24 h of soaking for samples with 10 pbw filler after 1st and 2nd
milling, respectively, compared to 13.0% for the reference samples). In contrast, water
absorption testing exhibited a more pronounced response in the newly introduced variants.
Although, samples incorporating filler from the initial and secondary milling processes
eventually yielded results akin to the reference samples, with naturally occurring dust
displaying higher water absorption values. In terms of the density profiles, the highest
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density values (about 1224 kg m−3) were observed in samples utilizing rye flour as the
filler material. A similar density profile was observed in samples with five parts of wood
flour used as a filler; however, the density of the bonding line was slightly lower in these
cases (1130 kg m−3).

The use of fillers in this form allows the substitution of conventionally utilized grain
flour, contributing a significant part of the food chain. Nevertheless, the parameters
obtained are not as high as expected. Based on the conducted tests, we conclude that it
would be advisable to chemically modify the recovered dust to accelerate its moisture
absorption capabilities. Also, the hygienic aspects, like volatile organic compounds (VOC)
or formaldehyde emissions of the composites produced using recycled wood dust, will be
the subject of further research in this field.
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Mixtures Used in Plywood and Its Effect on the Stability Associated with Material Systems. Materials 2019, 12, 1289. [CrossRef]
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