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Abstract: Superhydrophobic nickel surfaces have significant advantages in the field of corrosion pro-
tection compared with traditional nickel corrosion protection methods which need a toxic chemical
corrosion inhibitor. Electrochemical etching, an ideal method for fabricating superhydrophobic nickel
surfaces, was also limited by low current density, resulting in low processing efficiency. To overcome
this limitation, we proposed a new method to fabricate a superhydrophobic nickel surface using a
wire electrochemical etching method. The wire electrochemical etching method accomplished the
etching process by sweeping a controlled wire cathode across the surface of the anode nickel plate in
an environmentally friendly neutral electrolyte, NaCl. The superhydrophobic nickel sample with a
contact angle of 153◦ and a rolling angle of 10◦ could be fabricated by wire electrochemical etching
and modification. Additionally, the optimal parameters of the wire electrochemical etching and the
principle of superhydrophobic surface formation had also been systematically investigated, respec-
tively. Moreover, the superhydrophobic nickel surface had self-cleaning performance, antifouling
performance, corrosion protection, and abrasion resistance. Wire electrochemical etching improves
the current density of processing, which means that this method improves the processing efficiency
for fabricating a superhydrophobic nickel surface. This work is expected to enrich the theory and
technology for fabricating superhydrophobic nickel surfaces to improve the corrosion protection
of nickel.

Keywords: superhydrophobic; corrosion protection; wire electrochemical etching; nickel surface

1. Introduction

Nickel, as an industrial metal, has extremely important applications in many engineer-
ing fields, such as airplanes, radars, and batteries, due to its excellent ductility, magnetism,
and mechanical properties [1–4]. In addition, nickel itself is not easily corroded and is
widely used as a protective layer on device surfaces [5,6]. Although nickel can be used
as a protective metal, its corrosion protection is limited. If an object made of nickel or
containing a part with nickel as the outer protective layer is exposed to the natural environ-
ment for a long time, its surface often comes into contact with water, which can still cause
surface corrosion and cause parts to fail [7]. Therefore, methods of improving the corrosion
protection of nickel surfaces in natural environments have attracted widespread attention
from researchers.

Initially, people used paint or chemical corrosion inhibitors to protect metal surfaces
from corrosion [8,9]. However, these methods have some problems, such as the corrosion-
protective paint often emitting irritating and toxic odors, as well as the chemical corrosion
inhibitor’s high cost [10,11]. Many attempts have been made to improve the corrosion
protection of the nickel surface, but it was still difficult to realize a low-cost, non-toxic
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corrosion-protective method until 1999 [12]. In that year, Nakajima discovered that a su-
perhydrophobic surface made it difficult for water to penetrate due to an air film layer on
the surface. This revelation offered the potential to address the limitations of traditional
metal corrosion-protective technology [13–15]. Researchers have developed various meth-
ods to fabricate a superhydrophobic surface on the metal substrate, which can achieve
self-cleaning, corrosion protection, anti-icing, droplet manipulation, water collection, and
other functionalities [16–19]. However, compared with other metal materials, relatively
few studies have focused on fabricating a superhydrophobic nickel surface, with the main
fabrication methods being laser processing [20–22], electro-deposition [23–25], chemical
etching [26–28], and so on. However, these methods have some limitations: the laser fabrica-
tion demanded costly equipment and had low processing efficiency; the electro-deposition
formed superhydrophobic nickel coatings with poor mechanical strength; and the chemical
etching required strong oxidants to obtain desired structures, which was environmentally
unfriendly. In 2020, Ma proposed a method for fabricating a superhydrophobic nickel
surface using electrochemical etching [29]. This method used a non-toxic neutral electrolyte
of NaNO3 and NaCl to fabricate the nickel surface, and the surface was modified with
low surface energy to achieve superhydrophobicity. Although this method can fabricate
superhydrophobic nickel in a facile and green method, its cathode was a plate cathode,
which meant that the current density was low, resulting in low fabrication efficiency [30].
Therefore, to meet the practical fabrication requirement, a facile, environmentally friendly,
high current density electrochemical etching method needs to be proposed to achieve
efficient fabrication of a superhydrophobic nickel surface.

To overcome the limitations of plate electrochemical etching, we proposed a wire
electrochemical etching method that can be facile, environmentally friendly, and highly
efficient to fabricate a superhydrophobic nickel surface. We first demonstrated that the
wire electrochemical etching had higher potential and current density than the plate elec-
trochemical etching method using COMSOL Multiphysics 5.6 software. To investigate the
optimal parameters of wire electrochemical etching, we conducted a single factor experi-
ment to determine the optimal fabrication parameters for three factors: feed rate, electrolyte
concentration, and voltage. We obtained the superhydrophobic nickel samples with a
contact angle of 153◦ and a rolling angle of 10◦ and analyzed the reasons for the generation
of superhydrophobic surfaces. As a surface material, the superhydrophobic nickel surface
also had better performance in self-cleaning, antifouling, corrosion protection, and abrasion
resistance. This technology provided a new method to improve the corrosion protection of
nickel material.

2. Experimental
2.1. Materials

Nickel plates (N4 #, size of 10 mm × 10 mm × 2 mm, purity 99.99%) were purchased
from Rundle Metals Co., Ltd. (Yantai, China). Brass wire (diameter of 100 µm) was pur-
chased from Yue-blue Precision Hardware Co., Ltd. (Dongguan, China). Sandpapers
(1200 # and 2000 #) were purchased from Mercola Co., Ltd. (Shanghai, China). Fluoroalkyl-
silane [FAS, C8F13H4Si(OCH2CH3)3] was purchased from Degussa (Frankfurt, Germany).
Analytical grade NaCl and ethanol were purchased from Bono Chemical Reagents Co.,
Ltd. (Dalian, China). The HCl used to prepare the pH = 1 solution and the NaOH used
to prepare the pH = 14 solution were purchased from Bono Chemical Reagents Co., Ltd.
(Dalian, China).

2.2. Fabrication of Sample

The fabrication processes of electrochemically etching superhydrophobic nickel sam-
ples via the wire cathode are shown in Figure 1a. The roughness of the entire bare nickel
surface was 0.96 µm, and then it was polished with the 1200 # and 2000 # sandpaper; the
roughness of the polished surface reached up to 0.15 µm. Then, the polished sample was
etched via wire electrochemical etching with 30 µm/s feed rate, 30 g/L NaCl electrolyte
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concentrations, and 8 V voltage. Next, the etched sample was cleaned in the ultrasonic
cleaner (LT-05C, Longbiao Electric Co., Ltd., Jinan, China) and was immersed into the FAS-
ethanol solution at a concentration of 1 wt% for one hour. Finally, the superhydrophobic
nickel sample was obtained after drying in an oven at 70 ◦C for 20 min [31].
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Figure 1. Wire electrochemical etching process and simulation. (a) Flow chart of superhydrophobic
nickel sample for wire electrochemical etching. (b) Model for wire electrochemical etching. (c) Local
magnification for wire electrochemical etching. (d) Voltage for wire electrochemical etching. (e) Current
density for wire electrochemical etching. (f) Current density data on the surface of anode nickel plate.

2.3. Characterization

The surface microstructures of the samples were observed using a scanning electron
microscope (SEM, JSM-6360LV, Tokyo, Japan), which was equipped with energy-dispersive
spectroscopy (EDS, JSM-6360LV, Tokyo, Japan). The crystal structure and phase analysis
of the samples were determined by an X-ray diffractometer (XRD, Empyrean, Alemlo,
Netherlands). The XRD diffraction angles spanned from 20◦ to 100◦. The surface roughness
of the samples was measured using a 3D surface profilometer (Zygo, NewView9000,
Middletown, CT, USA). The contact angle (CA) and rolling angle (RA) were measured
using an optical contact angle meter (Solon, SL200KS, Boston, MA USA) by dropping a
5 µL water droplet on the sample surfaces at room temperature. We used the average of
five measurements for data processing.



Materials 2023, 16, 7472 4 of 14

2.4. Electrochemical Impedance Spectroscopy Tests

The electrochemical impedance spectroscopy tests were used to quantitatively charac-
terize the corrosion protection of the superhydrophobic nickel plate and the bare nickel
plate using an electrochemical workstation (Chenhua 760e, Shanghai, China). Two nickel
plates with the size of 10 mm × 10 mm × 2 mm were used in the electrochemical impedance
spectroscopy test. The electrolytic cell of the electrochemical workstation is a typical three-
electrode system. The working electrode was the nickel plate. The auxiliary electrode was a
graphite rod electrode, and the reference electrode was a saturated silver chloride electrode.
The test solution is 3.5 wt% of NaCl solution. The high frequency was 10,000 Hz and the
low frequency was 0.01 Hz. The amplitude was 5 mV.

3. Results

The traditional electrochemical etching method for constructing microstructures on
metal substrates typically used a plate cathode [29]. However, this method had limitations,
such as low current density, long processing time, and low efficiency when fabricating
microstructures for superhydrophobic surfaces [30]. To address these issues, we proposed a
wire electrochemical etching method. In our work, we utilized the COMSOL Multiphysics
5.6 software to build the models presented in Figures 1b,c and S1a,b. The process of using
both the wire cathode and plate cathode was then simulated. The parameters used in the
simulation were detailed in Table 1.

Table 1. Parameters of the wire electrochemical etching and plate electrochemical etching.

Plate Cathode Wire Cathode

Anode length 10 mm 10 mm
Cathode length (diameter) 10 mm 100 µm

Gap between the anode and cathode 20 mm 30 µm
Initial potential 8 V 8 V

Anode size 10 mm × 10 mm 10 mm × 10 mm

During the electrochemical etching process, micro- and nanostructures were formed
on the surface of the anode nickel plate via etching. This required a high current density in
the surface of the anode. To achieve this, the gap between the anode and cathode needed to
be relatively small while still allowing the flow of electrolytes. Furthermore, the processing
area between electrodes should be as small as possible.

Simulation results showed that in the plate electrochemical etching, the voltage was
sparse, and the current density was low and concentrated at the two end point locations of
the anode nickel surface, as shown in Figure S1c,d. In contrast, in the wire electrochemical
etching, the voltage was intensive, and the current density was high and concentrated
on the surface of the anode nickel plate, as shown in Figure 1d,e. To observe the current
density on the anode nickel plate in detail, the current density distribution on the surface of
the anode nickel plate under the application of the same voltage was shown in Figure S1e,f.
When using a plate cathode, the maximum current density on the surface of the anode nickel
plate was only 0.1 A/cm2. However, when using a wire cathode, the maximum current
density reached up to 14 A/cm2. Wire electrochemical etching reduced the processing area
of the cathode and reduced the gap between the anode and cathode while still ensuring a
continuous flow of electrolytes. Consequently, the current density was much higher than
that of the plate cathode process. Therefore, the use of a wire cathode to fabricate nickel
superhydrophobic surfaces greatly improved efficiency.

The phenomenon of electrolytic reactions induced by the current through electrodes
was revealed by Faraday’s first law, which stated that the amount of substance reacting
electrochemically at the anode and cathode is directly proportional to the amount of
electricity passing through the circuit. Additionally, the amount of electricity is proportional
to the current in the circuit and the processing time. Faraday’s second law reveals that in an
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electrolytic reaction, the substance dissolved at the anode and precipitated at the cathode
have the same amount of substance. This led to the mass M of dissolved metal at the anode:

M = kQ = kIt (1)

where M is the amount of dissolved or precipitated material on the electrode (g), k is
the mass chemical equivalent of the electrolyzed material [g/(A·s)], Q is the total charge
through the interface of the anode and cathode (A·s), I is the processing current (A),
and t is the processing time (s) [32]. In the actual electrochemical etching process, the
volume change after the electrochemical etching led to micrometer-scale pits [33]. The
electrochemical etching volume V according to the volume equation is:

V =
M
ρ

=
kIt
ρ

= ωIt (2)

where V is the volume of the substance dissolved at the anode (cm3); ρ is the density
of the nickel (g/cm3); and ω is the volumetric electrochemical equivalent of the nickel
[cm3/(A·s)] [34].

In the electrochemical etching process, the actual amount of the anode metal dissolved
differs from the theoretical dissolved amount. Therefore, the current machining efficiency
η is introduced [35]. Then, the formula is modified as:

Me = ηkQ = ηkIt (3)

Ve = η
M
ρ

= η
kIt
ρ

= ηωIt (4)

During the wire electrochemical etching, the actual dissolution velocity of anode nickel
plate in the direction of cathode feed rate v, for example, with an electrolytic area of S, is:

ve =
ηV
St

=
ηωIt

St
= ηωi (5)

where V is the volume of the substance dissolved at the anode (cm3); ω is the volu-
metric electrochemical equivalent of the nickel [cm3/(A·s)]; and i is the current density
(A/cm2) [36]. The resulting electrochemical corrosion pits are the basis for further prepara-
tion of superhydrophobic surfaces.

Figure 2a–c showed the optimal superhydrophobic surface formed by the wire elec-
trochemical etching through the comparison of different fabrication parameters. In this
work, the effects on wettability were explored in terms of wire cathode feed rate, electrolyte
concentration, and voltage. Through the preliminary pre-experiment, a range of parameters
for fabricating superhydrophobic nickel samples were obtained, with a feed rate of roughly
10–50 µm/s, electrolyte concentration of 15–35 g/L, and a voltage of 6–10 V. Firstly, the
electrolyte concentration of 30 g/L and the voltage of 8 V were selected to explore the effect
of fabricating surface at different feed rates. We used the SEM to observe microstructures
under different parameters. Figure 2d showed the surface effects obtained at various wire
cathode feed rates, ranging from 10 µm/s to 50 µm/s. In each row, the feed rates increased
from top to bottom. At 10 µm/s, the corrosion micro-pits can be clearly seen. With the
increase of the feed rate, the corrosion traces on the surface of the nickel plate gradually be-
came lighter and more uniform. This was due to the fact that at low rates, the anode nickel
plate was etched for a long period of time and a richer micro-nanostructure was formed on
the surface, resulting in better superhydrophobicity. When the feed rate exceeded 30 µm/s,
the rolling angle increased rapidly with a further increase in feed rate, and there was no
superhydrophobicity on the etched surface. Comparing the 10–30 µm/s process, a lower
rolling angle can be obtained in the 10 µm/s process. However, in terms of efficiency, using
a feed rate of 30 µm/s not only met the requirements for fabricating superhydrophobic
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nickel samples, but also greatly improved the efficiency of the fabrication. It was also
possible to fabricate superhydrophobic surfaces with a contact angle of 153◦ and a rolling
angle of 10◦. Thus, the feed rate of 30 µm/s was selected.
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Figure 2. Effect of parameters on fabricating superhydrophobic surface. (a) Trend plot of the effect
of feed rate on fabricating effect at 8 V and 30 g/L electrolyte concentration. (b) Trend plot of the
effect of electrolyte concentration on fabricating effect at 30 µm/s feed rate and 8 V. (c) Trend plot of
the effect of voltage on fabricating effect at 30 µm/s feed rate and 30 g/L electrolyte concentration.
(d) Macroscopic, SEM, and contact angle measurements after etching at 10 µm/s, 20 µm/s, 30 µm/s,
40 µm/s, and 50 µm/s feed rate at 30 g/L electrolyte concentration and 8 V voltage.

Similarly, the feed rate of 30 µm/s and the voltage of 8 V were selected to explore the
effect of fabricating surface at different electrolyte concentrations. As shown in Figure 2b,
the contact angle remained relatively consistent across different electrolyte concentrations,
which was greater than 150◦. However, the rolling angle decreased greatly with the increase
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of electrolyte concentration at 15–30 g/L, indicating the increase of superhydrophobicity,
and the superhydrophobicity decreased after exceeding 30 g/L electrolyte concentration.
As a result, the electrolyte concentration of 30 g/L was selected. To explore the effect of
voltage on wettability, 30 µm/s feed rate and 30 g/L electrolyte concentration were selected,
as shown in Figure 2c, and it was summarized that better superhydrophobicity could be
obtained when the voltage was 8 V. In summary, the best parameters were the feed rate
of 30 µm/s, the electrolyte concentration of 30 g/L, and the voltage of 8 V. The variation
in microstructure with electrolyte concentration and voltage surface change are shown in
Figures S2 and S3.

As shown in Figure 3a,b, the microstructure of the nickel plate surface was corrosion
pits, which are necessary to form a superhydrophobic surface [37–39]. Upon further
magnification of the microstructure, we observed that the stepped laminar structure existed
in the edges of corrosion pits, which was due to grain boundary corrosion and dislocation
corrosion that occurred during the electrochemical etching process and further expanded
to produce corrosion pits, as shown in Figure 3c [40,41]. To investigate the size of the
microstructures, we used Zygo to measure the surface roughness, as shown in Figure 3d.
The average roughness of the entire surface after etching was 7.87 µm, and the corrosion
pits were analyzed to explore their influence on superhydrophobicity. To investigate the
variation in the element types before and after electrochemical etching, we used the EDS to
analyze the surface, as shown in Figure 3e. The results showed that there was no variation
in the element types before and after wire electrochemical etching. To investigate the
variation in the structure and the composition of the crystalline material before and after
electrochemical etching, we used the XRD to analyze the surface, as shown in Figure 3f.
The results showed no variation before and after electrochemical etching compared with
the bare nickel plate (PDF Card #04-0850).
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The processing principle was further analyzed and the reason for the variation in
wettability was explored by measuring the complexity of the microstructure, as shown in
Figure 4. The presence of numerous grain boundaries and dislocations in nickel resulted in
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preferential corrosion at these locations during wire electrochemical etching processing,
as shown in Figure 4a. As a result, when the wire cathode swept across the surface
of the nickel anode plate, the stepped laminar structure initially formed at the grain
boundaries, and corrosion gradually extended towards the center of the grains, resulting
in the formation of corrosion pits. To investigate the influence of various processing
parameters on the complexity of the surface microstructure and analyze their effect on
wettability, we conducted measurements of the surface microstructure after etching using
Zygo (NewView9000, Middletown, CT, USA) at different feed rates of 30 g/L electrolyte
concentration and 8 V voltage, as shown in Figure 4b. First, the surface roughness of the
polished and unetched nickel plate was compared with that of the nickel plate after etching
at 30 µm/s, 40 µm/s, and 50 µm/s feed rates. On the unetched surface, it appeared smooth,
with a roughness of only 0.15 µm over the entire surface. The roughness was slightly
reduced when the feed speed was low, measuring approximately 7.87 µm. However, as
the speed increased, the roughness became noticeably higher. The difference in roughness
indicated that the distance between the peaks and valleys of two adjacent corrosion pits on
the surface of the etched surface was smaller in the low feed rate, and the value increased
as the feed rate increased.
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Figure 4. Fabrication schematic and analysis of the principle of superhydrophobicity. (a) Schematic
diagram of the principle of electrochemical etching process. (b) Image of the surface at a feed rate of
30–50 µm/s at 8 V and 30 g/L electrolyte concentration. (c) Plot of the measured surface profile data
at a feed rate of 30–50 µm/s at 8 V and 30 g/L electrolyte concentration. (d) Statistical diagram of the
size and quantity of corrosion pits.

The surface morphology and characteristics of corrosion pits, including the quantity,
depth, and diameter, were further analyzed by Zygo, as shown in Figure 4c. When the
wire cathode was etching at a feed rate of 30 µm/s, the surface was entirely corroded,
as shown in Figure 4c. It formed intricate corrosion pits, and the diameter and depth of
the corrosion pits were relatively small. When the feed rate was increased to 40 µm/s, it
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can be seen from the surface height data that some areas were obviously not corroded.
When the feed rate was further increased to 50 µm/s, most of the areas were not corroded.
The quantity, depth, and diameter of the surface microstructures at different feed rates
were quantified, as shown in Figure 4d. When the feed rate was increased, the number
of pits decreased; both the depth and diameter of the pits increased, which meant that
the complexity of the microstructure became increasingly simple. As a result, the contact
angle of the etched surface showed a significant decrease and the rolling angle increased
dramatically when the feed rate was faster than 30 µm/s. The surface in this case could not
achieve a superhydrophobic effect. In summary, when the feed rate exceeded 30 µm/s, the
originally rich microstructure became simple, and thus it was difficult to meet the structural
requirements of superhydrophobicity, and superhydrophobicity was lost.

To demonstrate the usefulness of superhydrophobic nickel samples in contaminated
environments, a series of tests was conducted [42–44]. These included a self-cleaning test, as
shown in Figure 5a, and antifouling tests, as shown in Figure 5b,c. In the self-cleaning test, a
simulated contaminant (coffee grounds) was intentionally spilled on the superhydrophobic
nickel surface. The contaminant was easily carried away and cleaned by the sliding water
droplets. Furthermore, in the antifouling test, the superhydrophobic nickel sample was
immersed in muddy water and stirred for 10 min; the surface remained clean and was not
contaminated by the muddy water. After the antifouling test, we once again measured
the contact angle and rolling angle, as shown in Figure S4. It still met the requirements
of superhydrophobicity. The superhydrophobic nickel plate surface was also resistant to
contamination from a series of liquids, such as acid (pH = 1, HCl solution), alkali (pH = 14,
NaOH solution), tea, orangeade, cola, and milk. This experiment aimed to simulate a
realistic situation where the surface was exposed to potential fouling agents. Despite the
challenging conditions, the superhydrophobic nickel plate remained resistant to fouling,
indicating that the superhydrophobic nickel plate surface exhibited good self-cleaning and
antifouling properties in various polluted environments.
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To quantitatively characterize the corrosion protection of the superhydrophobic nickel
sample, additional electrochemical impedance spectroscopy tests were conducted [45,46].
The electrodes were held for 500 s at the open-circuit potential (OCP) before starting the
measurements. The results showed that the OCP of the superhydrophobic nickel sample
was −68 mV, and the OCP of the bare nickel sample was −222 mV. The EIS parameters
were tested at an AC potential of 5 mV, and the applied frequency extended from 10,000
to 0.01 Hz. The Nyquist plot revealed the interfacial charge transfer resistance, as shown
in Figure 6a. In general, the larger the arc radius of the Nyquist plot, the higher the
charge transfer resistance. The superhydrophobic nickel sample had a larger arc radius
compared to the bare nickel sample, which meant that the superhydrophobic nickel sample
significantly reduced the charge transfer ability and conductivity of the electrode. Therefore,
the superhydrophobic nickel sample enhanced corrosion protection. We used the Randles–
Ershler circuit model to fit the equivalent electrical circuit; the values for Rs, Rct, CPE, and
Error are shown in Table S1 [47]. Figure 6b shows the Bode plot, wherein the higher low-
frequency impedance mode value of the superhydrophobic nickel sample also indicated
stronger corrosion protection.
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The results of the polarization curves are shown in Figure 6c. The corrosion potential
of the superhydrophobic nickel plate was determined as the potential at the tip of the
intersection of the two curves, which was about −655 mV. In comparison, the corrosion
potential of the bare nickel sample was about −764 mV. A higher corrosion potential
indicated greater corrosion protection of the surface. Remarkably, the corrosion potential
of the superhydrophobic nickel sample was 109 mV higher than that of the bare nickel
sample. In addition, we conducted fitting calculations for the corrosion rate, Tafel slope,
and corrosion current density, and the values are shown in Table S2. Consequently, it can be
deduced from the electrochemical impedance spectroscopy tests that the superhydrophobic
nickel sample exhibited superior corrosion protection compared to the bare nickel sample.

To evaluate the robustness and durability of a superhydrophobic nickel sample in prac-
tical applications, we conducted an abrasion resistance test [48,49]. As shown in Figure 7a,
we applied a weight onto the nickel plate and used tweezers to rub the superhydrophobic
surface against 1200 # sandpaper. We recorded the values of the contact angle and rolling
angle while moving on sandpaper. The test schematic is shown in Figure 7b. After 5 m
of abrasion, the contact angle was almost unchanged and still met the superhydrophobic
requirements, as shown in Figure 7b. Additionally, the water droplets can easily roll off
the surface at an inclination angle of 20◦. We also used 240 # sandpaper to repeat this test,
and the results were similar and shown in Figure S5, indicating that the superhydrophobic
nickel sample still maintained good superhydrophobicity after 5 m of abrasion.
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4. Conclusions

In this work, we proposed a new electrochemical etching method using a wire cathode
to fabricate superhydrophobic nickel samples with high current density and high efficiency.
Through the establishment of the simulation models of different shapes of cathodes by
COMSOL Multiphysics 5.6 software, the results showed that the introduction of a wire cath-
ode greatly improved the current density in the anode region. The processing parameters
were investigated, and it was found that the superhydrophobicity was optimal at 30 µm/s
feed rate, 30 g/L NaCl electrolyte concentration, and 8 V voltage. The superhydrophobic
nickel sample with a contact angle of 153◦ and a rolling angle of 10◦ could be fabricated via
wire electrochemical etching and modification. The nickel plate was etched with corrosion
micro-pits, which reduced the solid-liquid contact area and improved superhydrophobicity.
According to XRD and EDS, the element types and composition of the crystalline material
of the nickel surface did not change much after wire electrochemical etching. The corrosion
protection of the superhydrophobic nickel sample was evaluated in detail by an electro-
chemical impedance spectroscopy test, and the superhydrophobic nickel sample also had
good self-cleaning performance, antifouling performance, and abrasion resistance. The
test proved that its corrosion protection exceeded that of a bare nickel sample, which is
expected to greatly promote the application of superhydrophobic nickel samples in harsh
corrosive conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16237472/s1. Figure S1. Plate electrochemical etching simulation.
(a) Model for plate electrochemical etching. (b) Local magnification for plate electrochemical etching.
(c) Voltage for plate electrochemical etching. (e) Current density for plate electrochemical etching. (f)
Current density data on the surface of anode nickel plate. Figure S2. Effect of electrolyte concentration
on fabricating superhydrophobic surface. Macroscopic, SEM, and contact angle measurements after
etching at 15 g/L, 20 g/L, 25 g/L, 30 g/L, and 35 g/L electrolyte concentration at 30 µm/s feed rate
and 8 V voltage. Figure S3. Effect of voltage on fabricating superhydrophobic surface. Macroscopic,
SEM, and contact angle measurements after etching at 4 V, 6 V, 8 V, 10 V, and 12 V voltage at 30 g/L
electrolyte concentration and 30 µm/s feed rate. Figure S4. Characterization of superhydrophobic
nickel surface after antifouling test.(a) Measurement of contact angle.(b) Measurement of rolling
angle. Figure S4. Abrasion resistance test data plot on the 240 # sandpaper. Table S1. The fitting
values for the electrochemical impedance spectroscopy simulation. Table S2. The fitting values for
the electrochemical impedance spectroscopy simulation.
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