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Abstract: This model discussion focuses on links between the unique properties of relaxor ceramics
and the basics of Critical Phenomena Physics and Glass Transition Physics. It indicates the significance
of uniaxiality for the appearance of mean-field type features near the paraelectric-to-ferroelectric phase
transition. Pretransitional fluctuations, that are increasing up to the size of a grain and leading to inter-
grain, random, local electric fields are responsible for relaxor ceramics characteristics. Their impact
yields the pseudospinodal behavior associated with “weakly discontinuous” local phase transitions.
The emerging model redefines the meaning of the Burns temperature and polar nanoregions (PNRs).
It offers a coherent explanation of “dielectric constant” changes with the “diffused maximum” near
the paraelectric-to-ferroelectric transition, the sensitivity to moderate electric fields (tunability), and
the “glassy” dynamics. These considerations are challenged by the experimental results of complex
dielectric permittivity studies in a Ba0.65Sr0.35TiO3 relaxor ceramic, covering ca. 250 K, from the
paraelectric to the “deep” ferroelectric phase. The distortion-sensitive and derivative-based analysis in
the paraelectric phase and the surrounding paraelectric-to-ferroelectric transition reveal a preference
for the exponential scaling pattern for ε(T) changes. This may suggest that Griffith-phase behavior
is associated with mean-field criticality disturbed by random local impacts. The preference for the
universalistic “critical & activated” evolution of the primary relaxation time is shown for dynamics.
The discussion is supplemented by a coupled energy loss analysis. The electric field-related tunability
studies lead to scaling relationships describing their temperature changes.

Keywords: relaxor ceramics; dielectric properties; critical phenomena; glassy dynamics; modeling

1. Introduction

Relaxor ceramics remain a cognitive challenge despite seven decades of research [1–54].
The significance of innovative applications extends from varactors, signal tunable filters,
phase shifters, and frequency-selective surfaces for conformal antennas to possible elec-
trocaloric effect applications [12,14,16,21,27,28,34,35,41,45–51]. Their unique dielectric prop-
erties, sensitivity to the external electric field, and tunability are essential. The increase
in research reports since 2020 (24% rise in 2022 and 70% increase, up to approximately
3600 papers in 2023 [52]) shows the significance of relaxor ceramics. Regarding relaxor
ceramics applications, the global market is expected to quadruple between 2022 and 2029
to approximately USD 16 billion [52,53].
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The unique properties of relaxor ceramics are mainly related to their ‘dielectric constant’ changes
near the paraelectric-to-ferroelectric transition. The “homogeneous,” canonic ferroelectric material is
crucial as a reference case. In such a system, the temperature dependence of the dielectric constant
ε(T) is represented by the Curie–Weiss (CW) equation [2–5,7,9–12,14,16,19,21,24,25,28,33–35,38,41,43]:

ε(T) =
ACW

T − TC
, (1a)

⇒ 1
ε(T)

= A−1
CW T − A−1

CW TC, (1b)

where ACW = const and TC is the Curie–Weiss critical temperature.
For inherently “heterogeneous” relaxor ceramics, instead of the “infinite” singular-

ity ε(T → TC)→ ∞ (Equation (1a,b)), a “diffused” temperature maximum of ε(T) ap-
pears [1–54]. The next unique feature is related to strong changes in the dielectric constant
when even a moderate external electric field is applied. This is described by the so-called
tunability (T%) [9,12,14–16,24,25,27,28,34–36,41,43]:

T(%) =
ε(E→ 0)− ε(E)

ε(E→ 0)
× 100%. (2)

The dynamics of relaxor ceramics exhibit scaling patterns characteristic of glass-
forming systems in the previtreous domain. The hallmark of “glassy” dynamics is the super-
Arrhenius (SA) temperature evolution of the primary relaxation time, for which the Vogel–
Fulcher–Tammann (VFT) dependence is used as the main replacement equation [1–52]:

τ(T) = τ∞exp
Ea(T)

RT
, (3a)

⇒ τ(T) = τ∞exp
D

T − T0
= τ∞exp

DTT0

T − T0
. (3b)

Equation (3a) is the canonic SA relation, with the apparent (temperature-dependent)
activation energy Ea(T). Equation (3a) simplifies to the basic Arrhenius equation for
Ea(T) = Ea = const, in the given temperature domain. R denotes the gas constant.

For the VFT model equation: Ea(T) = Dt = (RDTT0)t−1, and t = (T − T0)/T
represents the relative distance from the extrapolated singular VFT temperature T0. In
glass-forming systems, T0 is located below the glass temperature Tg, which by “conven-
tion” is linked to τ

(
Tg
)
= 100s. The amplitude D = const and DT is called the fragility

strength [54–56].
Broadband dielectric spectroscopy (BDS) is essential for determining the mentioned

properties [55]. BDS output results can be represented as the complex dielectric permit-
tivity: ε∗( f , T) = ε′( f , T) − iε′′ ( f , T). The real part, ε′( f , T), enables the determination
of the canonic dielectric constant. It is associated with the so-called static domain of
ε′( f , T = const) spectrum, where a frequency shift does not significantly change the dielec-
tric permittivity value. For dipolar dielectrics, it occurs within the 1 kHz < f < 10 MHz
domain. For lower frequencies (LF), below the static domain, a strong increase in ε′( f )
and ε′′ ( f ) occurs, which is commonly linked to the impact of ionic contamination [55].
The response related to relaxation processes appears in higher frequencies, above the static
domain [55].

In relaxor systems, for temperature changes in the dielectric constant, ε′(T, f = const),
the diffused maximum near the paraelectric-to-ferroelectric transition is the characteris-
tic feature. Its “branches” are described by the CW relation (Equation (1)) for a set of
scanned frequencies. Parameters describing the maximum, (ε′max, εm) and (Tmax, Tm), are
frequency-dependent [1–52]. This indicates that for relaxors, one should consider the real
part of the dielectric permittivity rather than the canonic dielectric constant.

Regarding dynamics, the primary loss curve ε′′ ( f , T = const) characterizing the re-
laxation process associated with permanent dipole moments is significant. Its time scale esti-
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mates the peak frequency, namely the primary relaxation time: τ = 1/ωpeak = 1/2π fpeak [56].
For ferroelectric systems, including relaxors, temperature scans for subsequent frequencies
lead to the manifestation of primary loss curves in ε′′ ( f = const, T) plane. In this case,
experimental data are portrayed via the following relation [1–3,7–10,12–14,21,24,32,35,47]:

f (T) = f (Tm) = f∞exp
E′a(T)

T
= f∞exp

D′

Tm − T0
, (4)

where Tm is the temperature for the maximum of ε′′ ( f = const, T) detected in temperature
scans for subsequent frequencies f ; Tm = Tmax is the temperature describing the loss curve
maximum for such scans.

Equation (3a,b) convert into Equation (4) for τ(T)→ 1/ f (T) and T → Tm .
The “glassy”, “previtreous”-type dynamics is also associated with the non-Debye,

multi-time distribution of relaxation times. It is manifested by the “broadening” of the pri-
mary loss curves above the single-relaxation-time Debye pattern. Most commonly, it is rep-
resented via the Havriliak–Negami (HN) relation [3,4,9,12–14,16–19,21,24,29–33,47,54–56]:

ε∗( f ) = ε∞ +
∆ε(

1 + (iωτ)a)b (5)

where power exponent 0 < a, b < 1.
When a, b = 1, Equation (5) is simplified to the basic Debye equation associated with

a single relaxation time. In Equation (5), ∆ε = ε− ε∞ is called the dielectric strength and
describes the dipolar contribution to the “total” value of the dielectric constant; ε∞ is the
non-dipolar permittivity related to electronic and atomic contributions.

Studies in supercooled glass-forming liquids have shown that the power exponents in
Equation (5) can be used as metrics for the distribution of primary relaxation times. It is
well illustrated by the Jonsher scaling [57] of primary loss curves ε′′ ( f , T = const) [56,58]:

ε′′ ( f < fmax)

ε′′max
= a′ f m ⇒ log10

(
ε′′ ( f )/ε′′max

)
= log10a′+ mlog10 f , (6a)

ε′′ ( f > fmax)

ε′′max
= b′ f−n ⇒ log10

(
ε′′ ( f )/ε′′max

)
= log10b′ − nlog10 f , (6b)

where T = const, a′, b′ = const, and m, n are parameters describing the distribution.
The following link between the distribution metric for HN Equation (5) and Jonsher

Equation (6) takes place: m = a and n = ab. The reference Debye relaxation is related
to m = n = 1.

The analysis based on Equation (6a,b) enables the reliable determining of the relaxation
time, using the condition: dlog10(ε

′′ ( f ))/dlog10 f = 0, for f = fpeak and τ = 1/2π fpeak.
Alternatively, the relaxation time can be determined using the HN Equation (5), but it is
associated with the five-parameter nonlinear fitting.

For glass-forming systems, the SA (Equation (3a,b)) and the non-Debye (Equation
(5)) behavior take place on cooling from the ultraviscous/ultraslowed domain to the
amorphous solid glass. It is associated with the time-scale τ

(
Tg
)
∼ 100s [58]. For relaxor

systems, the transition is associated with the “diffused” paraelectric–ferroelectric transition,
and the mentioned “glassy” time scale is not reached [1–52].

It should be stressed that such features of the complex dynamics are absent for basic
“homogeneous” ferroelectric systems.

In relaxor ceramics, the temperature at which the distortion from the CW behavior
(Equation (1a,b)) occurs on cooling towards the transition is called the Burns temperature
(TB) [3,4]. It is linked to the onset of polar nanoregions (PNRs), a key concept to explain
unique relaxors’ features [3–54]. It is noted that [37] “(. . .) the emergence of PNRs begins to form
rapidly through the interaction among adjacent dipoles and orients between the states with the same
energy and contributes less to the dielectric permittivity because of violent thermal fluctuation”.
It is suggested that the enhanced interactions between the dipole clusters increase the
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correlation length, supporting the PNR-associated local field properties. The electric field
can reorient the PNRs, which can significantly change the dielectric permittivity behavior,
characterized by the aforementioned deviation from the Curie–Weiss law. Following this
picture, the “microscopic fluctuations”, in which local fluctuations, associated with the
PNRs, cause local changes in the Curie temperature TC, often heuristically commented
as the consequence of local concentration changes, have been introduced [2,4–14,16,18,20,
21,24–26,31–39,47]. Assuming a Gaussian-type distribution of TC, Uchino and Nomura
proposed the following relation to describe the dielectric constant changes in relaxor
ceramics [2,24]:

1
ε(T)

=
1

εm
exp

(
− (T − TA)

2

2σ2

)
≈ 1

εm

[
1 +

(T − TA)
2

2σ2 + . . .

]
, (7)

for T > Tm, εm = εmax. Uchino and Nomura proposed the assumption of TA = Tm and
generalize the above relation to arbitrary power exponent 1 ≤ γ ≤ 2, which led to the
commonly used semi-empirical relation [24]:

1
ε(T)

− 1
εm

= C′−1(T − Tm)
γ′. (8)

The above relation can be used to represent experimental data in the paraelectric phase,
even for T − Tm > 1÷ 3K [2,4–14,16,18,20,21,24–26,31–39,42–44]. It should be emphasized
that Equation (8) “reduces” to CW Equation (1) for γ = 1. It leads to the conclusion that in
such a case γ′ → 1 and Tm → TC , εm → ∞ . However, in the opinion of the authors, the
link between the exponent γ′ in Equation (8) and well-defined critical exponents [59–64] is
not clear.

In ref. [7], a different pattern of dielectric constant changes was proposed. The model
considered the impact of relaxation polarization processes associated with PNRs by in-
troducing two contributions. The first is due to the thermally activated flips of the polar
regions, and the second represents the “other” polarization process. The following relation
was obtained for T > Tm [7]:

ε(T) = ε∞ + εre f .exp(a− bT), (9)

where in the given case parameters a, b = const, and the coefficient b is related to the rate
of PNRs in the material.

The behavior in the ferroelectric state, for T < Tm, was also derived [7]:

ε(T) = ε∞ + A(T)(lnω0 − lnω), (10)

where ω0 is the average relaxation frequency of a polar unit cell that is independent of the
temperature, i.e., lnω0 = const, A(T) is an intrinsic parameter of the relaxor material.

Notwithstanding, experimental results for relaxor systems are commonly scaled via
Equations (7) or (8) or their parallels.

The reorientation of the PNRs, characterized by the relaxation time (τ), is also the
reference for models focused on the non-Arrhenius behavior of the primary relaxation time,
for which the VFT relation is used as the scaling reference. For the authors, a problem
arises when taking into account that the PNRs concept is coupled to the Burns temperature,
i.e., the onset of the distortion from the CW behavior on cooling towards the paraelectric–
ferroelectric transition, whereas the glassy dynamics, represented by Equation (3), are
observed on both sides of TB [1–52].

Despite decades of studies, a commonly accepted model to explain the aforementioned
characteristics of relaxor ceramics is still lacking [1–52]. The combination of “glassy”
dynamics and the “distorted critical-like” behavior (Equations (1) and (7)) remains a
challenge. Even the coherent addressing of the canonical experimental features mentioned
above, which are checkpoints for theoretical models, remains a problem. Simple and
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fundamentally justified scaling dependencies support relaxor ceramics’ modeling, and they
can be crucial for the expected boost in innovative relaxor-based devices [52,53].

In this report, we propose looking at the discussed properties of relaxor materials from
a slightly different perspective, namely with an explicit reference to the basics of Critical
Phenomena and Phase Transitions Physics [59–62] and Glass Transition Physics [54–56]
and then confront the emerging conclusions with existing and new experimental results,
also based on research carried out specifically for this work.

2. Materials and Methods

The BST sample was prepared using BaCO3 (>98%, Chempur, Piekary Śląskie, Poland),
SrCO3 (>98%, Chempur, Piekary Śląskie, Poland), and TiO2 rutile (>99.9%, Sigma-Aldrich,
St. Louis, MO, USA). The materials in stoichiometric proportions (Ba0.65Sr0.35TiO3) were
ball-milled for 7 h in water and ethanol, subsequently dried and calcined at 1050 ◦C for 2 h,
and finally, barium strontium titanate was synthesized in a high-temperature solid-state
reaction carried out at 1340 ◦C for 2 h. The sintered material was ground with water and
zirconia grinding media on a Witeg BML-6 ball mill at a speed of 300 rpm for 7 h. After
drying, the samples of diameter d = 20 mm and height h = 5 mm were obtained via pressing
and sintering at 1300 ◦C for 1 h.

The densities of the samples were measured using a helium pycnometer AccuPyc
II 1340 (Micromeritics, Norcross, GA, USA). The density of the synthesized powder was
5.629 ± 0.004 g/cm3, while the density of the sintered sample was 5.612 ± 0.005 g/cm3.

The average particle size measurements were performed using a Laser Scattering
Particle Size Distribution Analyzer LA-950 (HORIBA, Kyoto, Japan). Figure 1 shows the
particle size distribution of synthesized barium strontium titanate powder. The average
particle size was 1.88 µm.
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Figure 1. Results of particle size distribution analysis.

The powder consists of two fractions: small particles (0.06–0.13 µm) and larger agglomer-
ates (2–7 µm), which were probably formed by the re-aggregation of small particles during the
milling process. The powder X-ray diffraction patterns were recorded at room temperature
on an X’PERT PRO MPD X-ray diffractometer (Panalytical, Almelo, The Netherlands) with a
Cu anode. An X-ray diffractogram was made in the angular 2θ range from 5 to 81◦ for the
powder sample and used to identify the phase composition. It was quantitatively analyzed
using the Rietveld method, which was also employed to calculate the size of the crystallites.

A sample holder with a spinner was used in this study. The size of the crystallites
and lattice distortions were determined directly from the Sherrer equation for 110 BST
reflex. The coarse-crystalline calcite of natural origin and its reflex 104 were used as a
half-width standard for the measuring system. The unit cell parameters were refined
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using the Rietveld method in quantitative analysis. The results of XRD qualitative and
quantitative analysis are shown in Table 1. The synthesized BST consisted of 99.3% BST
in the assumed stoichiometry (Ba0.65Sr0.35TiO3), including cubic (77.1%) and tetragonal
(22.9%) phases, and a small (below 1%) addition of cubic BaTiO3.

Table 1. The composition, structure, and size of the tested relaxor ceramic crystallites.

Composition Share (%) Crystalline Structure Type The Share of the Given CS Type %

Ba0.65Sr0.35TiO3 99.3
Cubic 77.1

Tetragonal 22.9
BaTiO3 0.7 Cubic 100

Based on the microstructural observations of the sintered sample (Figure 2) performed
with a scanning electron microscope Prisma E (Thermo Scientific, Waltham, MA, USA),
the grains grew approximately five times larger. During the sintering process of the
agglomerates, pores and grain boundaries disappear so that we can observe sintered
agglomerates with a size in the range of 2–10 µm in the sample structure. The visible
defects in the sample were probably caused by the grains being torn out when breaking the
sample for observations.
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Figure 2. Scanning electron microscope picture of the sintered tested ceramic sample.

The ceramic samples were then sliced into discs of height h = 1 mm for broadband
dielectric spectroscopy (BDS) studies [55]. These were carried out using a Novocontrol
Alpha-A spectrometer (NOVOCONTROL Technologies GmbH & Co. KG, Montabaur,
Germany), which allows for high-resolution studies up to 5–6 of digits permanent reso-
lution over a broad frequency and temperature ranges. The latter was controlled using a
Novocontrol Quattro system. The adjustment of the system elements made by the manu-
facturer allows for the removal of all parasitic capacitances and the direct registration in the
representation of the dielectric permittivity: ε∗( f , T) = ε′ − iε′′ . The results were recorded
isothermally for about 63 different frequencies for 250 temperatures tested successively.
It made it possible to analyze the data in the representation ε∗( f , T = const) as shown
in Figure 3, commonly used in Critical Phenomena Physics [59–62] and Glass Transition
Physics [54–58] and in the equivalent representation ε∗( f = cont, T) (Figure 4) often used
in the physics of ferroelectrics [63–68] and relaxors [1–52].
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3. Results
3.1. Model Discussion
3.1.1. “Critical” View on Dielectric-Constant-Related Behavior in Relaxor Systems

The Curie–Weiss (CW) type scaling of dielectric constant temperature evolution is
the essential experimental reference for basic “homogeneous” ferroelectrics and related
“complex & heterogeneous” ferroelectric relaxor systems [1–52]. To interpret the CW-
type behavior [69–71], Devonshire [72,73] directly used the Landau model [74], which
considers the free energy power series expansion of the order parameter as the metric of
the appearing/disappearing symmetry elements near the continuous phase transitions.
Taking the electric polarization P as the order parameter, one obtains [72,73]:

F = F0 +
a
2

P2 +
b
4

P4 +
c
6

P6 − EP, (11)

where coefficient a = A(T − TC); parameters b and c are considered approximately constant.
The last term reflects the interaction with the electric field.

The above relation includes the c
6 P6 term, characteristic for the tricritical point (TCP) case,

the simplest multicritical point associated with meeting three critical points curves [60,61]. The so-
called symmetric TCP manifests via the smooth crossover from discontinuous to continuous
phase transitions [61]. This term is absent for the basic mean-field (MF) case [60,61]. Equation (11)
gives the following pattern for pretransitional changes in the order parameter [59–62,74–76]:

P(T) ∝ (TC − T)β. (12)

The exponent β = 1/2 for MF and β = 1/4 for TCP [60]. For the susceptibility, i.e., the
order parameter changes via the coupled external field, χ = dP/dE:

χ(T) =
a−1

(T − TC)
γ , for T > TC, (13a)

χ(T) =
(2a)−1

(TC − T)γ , for T < TC. (13b)

The susceptibility-related exponent γ = 1, both for MF and TCP cases.
Equation (11) leads to the prediction of linear heat capacity changes on both sides of

TC, i.e., no pretransitional anomaly associated with (critical) exponents but instead only the
“jump”: ∆Cv = TCa2/2b [61,74]. This behavior does not correlate with experimental results,
for which heat capacity pretransitional anomalies have been evidenced [12,14,19]. The ba-
sic Landau–Devonshire model dependence (Equation (11)) [72,73], or generally the basic
Landau model [74], which originally was exemplified for magnetization and paramagnetic-
ferromagnetic transition, is related to the “classical” behavior within the basic MF or TCP
approximations, with a hypothetical negligible impact of pretransitional/precritical fluctu-
ations. Nevertheless, such an impact exists. To show it explicitly, Ginzburg supplemented
the Landau equation with the gradient term [77,78], which directly recalls fluctuations.
Implementing this concept to Equation (11), one obtains:

F = F0 +
a
2

P2 +
b
4

P4 +
c
6

P6 + κ(∇P)2 − EP, (14)

where κ is the stiffness coefficient and the term (∇P)2 ∝ 〈δP2〉 is related to fluctuations of
the order parameter around some “equilibrium” value.

Equation (14) or its parallels for isomorphic critical systems yield temperature charac-
terizations of the correlation length (size) ξ and the lifetime τf l. of pretransitional/precritical
fluctuations [61]:

ξ(T) = ξ0|T − TC|−ν, (15a)

τf l.(T) = τ0|T − TC|−ϕ ∝ [ξ(T)]z, (15b)
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where ν is the correlation length critical exponent, φ = zν; z is the so-called dynamic
exponent: z = 2 for the conserved order parameter and z = 3 for the non-conserved order
parameter. For the classic behavior (MF, TCP), ν = 1/2 and φ = 1.

Equation (14) leads to the following pretransitional behavior of the heat capacity [61]:

Cv(T → TC) ∝ |T − TC|−α, (16)

with exponents α = 1/2 ( T < TC) and α = 0 ( T > TC) for MF; for TCP, α = 1/2 both for
T < TC and T > TC.

Critical exponents are basic parameters characterizing pretransitional behavior. The grand
success of Critical Phenomena Physics [59–62] was related to showing that the values of crit-
ical exponents depend only on the space (d) and the order parameter (n) dimensionalities.
Thus, microscopically different systems can be assembled into (d, n) universality classes,
in which isomorphic/equivalent physical properties are described by the same values of
critical exponents near critical (singular) points. This universal behavior splits into two cate-
gories: (i) non-classical, where the exponents are small irrational numbers, and (ii) classical
ones, where the exponents are small integers or their ratios. The latter is associated with
space dimensionalities d ≥ 4 (single critical point, MF case), and d ≥ 3 (the simplest mul-
ticritical point: TCP) [60–62]. The “classical” behavior is also linked to an “infinite” range
of intermolecular/inter-element interactions at the microscopic level. One can recall the
Ginzburg criterion [77,78] to comment on this issue and the interplay between classical and
non-classical criticality. Applying the above discussion to the paraelectric–ferroelectric phase
transition, one can relate the classical behavior to the following form of the criterion:

〈∆P2〉
P2 =

1
ξd

kTχ

P2 < 1, (17)

where P has the meaning of the general order parameter and χ ∝ |T − TC|−γ is the order-
parameter-coupled susceptibility.

The Ginzburg criterion [77,78] shows that the classical–non-classical crossover can
occur if the space-related range of interactions associated with pretransitional fluctuations
becomes smaller than the range of microscopic “permanent” interactions (intermolecular,
inter-element) characterizing a given system. This implies that for systems with non-
classical critical behavior, the crossover to the classical one should occur far from the critical
point, where the correlation length decreases enough. Indeed, such behavior has been
evidenced, for instance, a few tens of Kelvin away from the critical consolute temperature
in binary critical mixtures of limited miscibility (d = 3, n = 1 universality class: critical
exponents γ ≈ 1.23, β ≈ 0.325, ν ≈ 0.625) [61,76]. However, in critical mixtures, the
explicit classical behavior associated with exponents γ = 1, β = 1/2, ν ≈ 1/2 also has been
demonstrated in the broad surroundings of TC under the shear flow [79–83] or under the
strong electric field [84,85], with the crossover to the non-classical behavior remote from
TC. It is a kind of “reversed criticality” under the exogenic uniaxial impact. The mentioned
impacts cause the uniaxial elongation of precritical fluctuations, which is possible in
the near-critical domain even under moderate external impacts [61]. In the given case,
exogenic impacts do not affect intermolecular interactions, and the only factor leading to
the “anomalous” appearance of classical behavior may be local uniaxial symmetry, which,
in the given case, is induced by exogenic impacts. This concept led to the explanation
of changes in the nonlinear dielectric effect (NDE) and the electro-optic Kerr effect (EKE)
when approaching the critical consolute point and gas–liquid critical point [84,85]. It also
became crucial in explaining the mean-field nature of NDE, EKE, and dielectric constant
pretransitional changes in the isotropic liquid phase of nematogenic liquid crystals, where
rod-like uniaxial symmetry is the inherent feature [84,85]. Recently, it was also used to
show and explain the behavior of NDE, EKE, and the dielectric constant in the liquid phase
on approaching the orientationally disordered crystal (ODIC) phase of plastic crystals [58].
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For explaining such behavior, it is essential to understand the interrelation between
the meaning of the increased dimensionality (d ≥ 4, for MF case) and the “infinite” range
of interactions. For both cases, it means that the number of nearest neighbors of a given
molecule or element, related to the possibility of interactions (“visibility”), is greater than
the number resulting from the simplest “geometrical packing” represented by spheres.
This situation can occur when the local symmetry of the elements building the system is
predominantly uniaxial. The above allows us to answer a fundamental question:

Why does the wide surrounding of the paraelectric–ferroelectric transition show the
mean-field characterizations described by the Curie–Weiss “law” (Equation (1)), related to
the MF exponent γ = 1?

In our opinion, it can be explained by the inherent uniaxiality, which is the origin of
ferroelectricity and is associated with a uniaxial shift in charges within a basic element of
the crystalline network.

As for the complex case of relaxor ferroelectric materials, one should take into account
their basic material characterization, namely that they are composed of micrometric-size
(lGrain) grains, connected by “molten” surfaces, that can lead to partially amorphous inter-
grain material. Consequently, it can be assumed that in the paraelectric phase of relaxor
ceramics on cooling towards the para–ferro transition, first, the “canonical” ferroelectricity
develops within grains until the correlation length approaches the grain size. Accord-
ing to the authors, this occurs at the temperature that can be associated with the Burns
temperature, then ξ(TB) ∼ lG. Further cooling towards the para-ferro transition cannot
increase the correlation length of pre-ferroelectric fluctuations up to the infinite value
(Equation (15a)), expected for classical, homogeneous ferroelectric systems. However, fur-
ther cooling towards the transition can improve the pre-ferroelectric ordering within limited
grain volumes. Consequently, one can expect the appearance of strong inter-grain local
electric fields. They can lead to some coupling of fluctuations confined by grain borders,
which can affect their interiors.

At this point, the temperature behavior of the order parameter under the coupled field
is worth recalling. For ferromagnetic systems, it is the magnetization and the magnetic
field; for ferroelectric systems, it is the electric polarization and the electric field. Under
the permanent influence of such a (global or local) field, (electric or magnetic), the order
parameter, instead of approaching zero to T → TC according to Equation (12) shows a
strong deviation when passing from the ferro- to the paraelectric phase. It preserves a non-
zero value when passing from the high-temperature para- phase to the low-temperature
ferro- phase, and vice versa. The onset and the value of this distortion depends on the field
intensity. From Equations (11) and (14), the following relations can be obtained for the
dielectric constant and the dielectric susceptibility.

χ(T, P, E) = ε(T, P, E)− 1 =

(
∂2F(T, P, E)

∂P2

)−1

=
1

a + 3bP2(E)
=

1
A(T − TC) + 3bP2(E)

=
A−1

T − (TC + 3A−1bP2(E))
. (18)

The local electric field resulting from the ferroelectric arrangement within grains is
not uniform in magnitude and direction. Following Equation (18), one can expect “pseu-
dospinodal singular temperatures” [59,86] corresponding to different available maximum
dielectric permittivity values.

It is noteworthy that parallel singular functional forms of pretransitional behav-
ior should appear for Equations (1), (13), (14) and (18) on the approach to the “crit-
ical” temperature T → TC and on the approach to the pseudospinodal temperature,
T → TSP = TC +

(
3A−1bP2(E)

)
(Equation (18)). However, the latter is associated with

finite terminal dielectric permittivity/dielectric constant values. For relaxor ceramics, the
“generic” random local electric fields are self-induced on cooling towards the paraelectric–
ferroelectric transitions, and the additional “frustration” (F) contribution can also be ex-
pected. It can affect the dielectric constant, the dielectric susceptibility, and the singular
“critical-like temperature” TSP = TC +

(
3A−1bP2(E) + F

)
.
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3.1.2. “Critical” View on Dynamics in Relaxor Systems

“Glassy” dynamics is the next unique feature of relaxor ceramics [1–52]. It is generally
demonstrated by representing the evolution of the primary relaxation time with the VFT re-
lation (Equations (3) and (4)), instead of the simple Arrhenius pattern τ(T) = τ∞exp(Ea/RT)
where Ea = const. Non-Debye changes in the shape of loss curves are often described us-
ing the HN relation (Equation (5)) [2,6–8,12–16,19,21–26,31–39,47]. Such a scaling pattern
is also characteristic of the previtreous domain (i.e., above the glass temperature Tg) of
glass-forming systems. The origin for these universalistic changes, related to τ

(
Tg
)
< 100s

time-scales, remains a challenge [54–56]. For relaxor systems, they are explicitly related to
the approach of the paraelectric–ferroelectric transition. The “glassy” dynamics can be asso-
ciated with the development of the pretransitional fluctuation time-scale (Equation (15b)),
which parallels a single-dipole-moment relaxation due to the MF nature of the phenomenon.
Below TB, which we associate with reaching the grain size limit via the correlation length
of fluctuations (Equation (15a)), the increasing influence of the frustration associated with
rising impacts of random internal local electric fields may appear. Interestingly, passing
through TB the Burns temperature does not affect the parameterization of τ(T) using the
VFT relation [1–52].

Recently, it has been shown that the VFT relation is primarily an effective descriptive
tool for glass-forming systems, and its fundamental importance is limited [56].

The insight based on the analysis of the apparent activation energy index
IL(T) = −dlnEa(T)/dlnT = (dEa(T)/Ea(T))/(dT/T) led to the following expression
for configurational entropy changes [56,87]:

SC(T) = S0tn = S0

(
T − TK

T

)n
= S0

(
1− TK

T

)n
, (19a)

lnSC(T) = lnS0 + nlnt ⇒
(

dlnSC(T)
d(1/T)

)−1
=

(
1

nTK

)
+ n−1T−1 , (19b)

where S0 = const, TK is related to the so-called Kauzmann temperature, the exponent
0.18 < n < 1.6; the upper limit is related to the dominance of the orientational local
ordering (naturally coupled to uniaxiality), and the lower one to the translational order.
For n = 1, a system has no preferable type of the local symmetry.

This leads to the following “VFT-extended” equation [56,87–89]:

τ(T) = τ∞exp
(

D
T

t−n
)
= τ∞exp

(
DTn−1

(T − TK)
n

)
. (20)

This relation correlates with the VFT equation for n = 1, but the analysis of experi-
mental data shows that for relaxor systems n > 1 [56,87–89]. However, the “generalized
VFT” Equation (20) contains four fitting parameters, significantly reducing the analysis’s
reliability. Obtaining the n parameter independently may be a solution, for example, using
the configurational entropy analysis, as defined by Equation (19b). However, it requires
high-resolution and long-range experimental results of the heat capacity measurements to
determine changes in configurational entropy, which are rarely available.

Recently, a new universalistic description of the so-called steepness index has been
shown: mT(T) = dlog10τ(T)/d

(
Tg/T

)
. Note that it is proportional to the apparent activa-

tion enthalpy Ha(T) = dlnτ(T)/d(1/T) [90]:

mT(T) =
dlog10τ(T)
d
(
Tg/T

) =
1

Tgln10
dlnτ(T)
d(1/T)

= C×Ha(T) = C
M

T − T∗g
, (21)

where C, M = const and T∗g < Tg is the extrapolated singular glass (vitrification) temperature.
The above relation directly leads to the following three-parameter dependence for the

primary relaxation time [90]:
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τ(T) = CΓ

(
t−1exp(t)

)Γ
, (22a)

lnτ(T) = lnCΓ + Γ(t− lnt), (22b)

where t =
(

T − T∗g
)

/T and CΓ = const.
The number of adjustable parameters can be reduced to only two, since T∗g can be

easily determined via scaling Equation (21), using the linear regression for the experimental
data presented in the plot H−1

a = (dlnτ(T)/d(1/T))−1 vs. T. Knowing T∗g , one can present
the experimental data using the plot defined by Equation (22b), namely lnτ(T) vs. t− lnt.
We can then use the linear regression fit, and one can estimate the optimal values of CΓ
and Γ parameters. Thus, the nonlinear fitting can be totally avoided for portraying τ(T)
changes via Equation (22a).

Equation (22) relates characteristics of the “activated” (i.e., SA-type: Equation (3a))
and the critical-like behavior. It is notable that there is a link between the exponent Γ and
the dominant local symmetry in the given system.

If the uniaxial or translational symmetries are dominant, Equation (22a) can be fairly
approximated by an even more straightforward critical-like relation [56,90,91]:

τ(T) = τ0(T − T∗C)
ϕ, (23)

where the exponent ϕ ≈ 9 and T∗C < Tg.
In particular, Equation (23) correlates with the so-called dynamical scaling model

(DSM) [92], whose check-point is related to the exponent ϕ = 9. It was suggested to be
“universal”, at least for glass forming low-molecular-weight liquids and polymers [92].
Such a statement has not found a reliable experimental confirmation [56]. However, the
authors of this work (ADR, SJR) have shown, using a distortions-sensitive analysis, that
Equation (23) perfectly describes liquid crystalline (LC) systems, with the inherent uniaxial
symmetry of molecules. We emphasize this fact because DSM is the “generic” mean-field
model. The classical MF/TCP characterization is also the generic feature of the mentioned
rod-like LC systems due to their local uniaxiality [56,90,91].

The discussion presented in this section suggests that the standard VFT relation used to
describe “glassy dynamics” in relaxor systems should be considered as an effective tool with
limited fundamental significance. The role of the critical-like, mean-field description and
the importance of uniaxial symmetry seems to be crucial. It correlates with the discussion
of static properties, namely dielectric susceptibility and dielectric constant in Section 3.1.1.

3.1.3. “Critical” View on Clausius–Mossotti Local Field in Ferroelectric Systems

Shortly after Michel Faraday introduced the dielectric constant to characterize the
properties of dielectrics, this quantity became important for gaining fundamental insight
into the microscopic properties of this type of materials [93]. In 1850, Ottaviano Mossotti
proposed the first local field model concept [94]. After supplementations introduced
by Rudolf Clausius, it is called the Clausius–Mossotti local field model [95,96]. Further
developments of this concept considered a molecule/element inside a cavity in a dielectric,
under an external electric field E [95,96]:

F = E + E1 + E2, (24)

where E2 is the electric field created by elements/molecules within a semi-microscopic
cavity surrounding a given molecule/element, and E1 results from charges situated on the
surface of the cavity.

For a dielectric system (basically gas or liquid) with a random distribution of elements
or a regular crystalline lattice (for solids), E2 = 0. In such a case, summarizing the effect of
the cavity surface charge, one obtains [95,96]:

E1 = P/3ε0, (25)
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where P denotes the polarization vector and ε0 = 8.854
(

pFm−1) is the vacuum electric permittivity.
This approximation can be applied to gaseous dielectrics with non-interacting molecules

or non-dipolar liquids [95,96]. Let us recall the dielectric displacement vector:
D = ε0E + P = (χ′ + 1)ε0E = ε0ε′E and the relation between the polarizability vec-
tor and the basic element/molecule polarization: P = ε0χ′E = NαpF, where α means the
basic element/molecule polarizability and N = NA M−1 stands for the number of base
elements/molecules per unit volume, ρ is density, M is the molecular mass, and NA is the
Avogadro number. Taking this into account, Equation (24) and the fact that E2 = 0, one
obtains [95,96]:

F =
P

3ε0
=

χ′

χ′ + 3
P ⇒ χ′ =

NαP
3ε0

χ′

χ′ + 3
. (26)

The re-arrangement of the latter yields:

χ′ =
P
εoE

=
NαP/ε0

1− NαP/3ε0
. (27)

The above relations (Equations (24)–(27)) show canonic results presented in classic
monographs on dielectrics physics [95,96]. Von Hippel [95] supplemented Equation (27) by
considering dipolar dielectrics, especially liquid ones, and using the relation introduced by
Debye αP = µ2/3kBT. It transformed Equation (27) into the following form [95,96]:

χ = ε− 1 =
3TC

1− TC
, (28)

where TC = Nµ2/9kBε0.
In his classic monograph [95], von Hippel pointed out the paradoxical consequences

of this reasoning for such a common dipolar dielectric liquid as water. He pointed out
that it leads to the paraelectric–ferroelectric transition at TC ≈ 1520 K, and concluded [95]:
“water should solidify by spontaneous polarization at high temperature, making life im-
possible on this earth!” This paradoxical result is often cited in monographs and presented
in undergraduate lectures for students due to its impressiveness and to show the con-
sequences of violating the basic assumptions of a given model. Von Hippel associated
the paradox with the lack of short-range interactions associated with the non-zero field
E2. The paradox anomaly for dielectric liquids has been removed by the inclusion of
short-range interactions, for example in Kirkwood or Froelich models, commonly used to
interpret experimental data for decades [96]. It should be noted that von Hippel’s para-
dox example ignores an important fact. He considered the density of water for “normal”
conditions, i.e., d = 1 g/cm3 [95,96]. However, for T > TC ≈ 1520 K such density is only
possible under multi-GPa pressures. It can even lead to exotic properties often detected for
materials at extreme pressures.

The following summary from the monograph Dielectric Physics by Chełkowski can
summarize the considerations regarding the application of the Clausius–Mossotti local
field model [96]: “(. . .) it is obvious that in the case of dipolar materials (. . .) the Lorentz
field model cannot be employed”.

However, there are materials for which the Clausius–Mossotti model can be ap-
plied. These are the solid phase of classical ferroelectrics or liquid crystalline ferroelectrics.
Both systems are inherently associated with significant permanent dipole moments. Several
models deal with this topic [63–68] and refs. therein, essentially referring to the qualitative
explanation of von Hippel [96], who stated that in ferroelectric materials, an applied electric
field or thermal motion can induce a charge displacement and, hence, a net dipole moment
within the crystalline network, which can be further increased by the additional displace-
ment caused by inter-ion couplings. The process continues until the thermal motion is
overcome at a critical temperature.

But the question remains: Why is the Clausius–Mossotti local field model obeyed
in ferroelectric materials? According to the authors, the key argument in favor of such
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behavior is tautological: it recalls the similarity between the Curie–Weiss and the Mossotti
Catastrophe equations, i.e., Equations (1) and (28).

The “Critical” discussion in Sections 3.1.1 and 3.1.2 can provide an answer. The intrin-
sic link between the basic mechanism of the appearance of ferroelectricity and the uniaxial
symmetry leads to the mean-field characterization. It implies the “immersion” of induced
dipole moments in the mean-field surrounding. As a result, a kind of “effective gas” of
independent dipole moments can appear, which correlates with the basic assumption of the
Clausius–Mossotti local field model. Deviations from this picture can be associated with
the emergence of additional specific material properties, e.g., in the broad surroundings of
the paraelectric–ferroelectric transition for relaxor ceramics.

3.2. Experimental Results and Discussion

The studies were carried out in a Ba0.65Sr0.35TiO3 relaxor ceramic (99.3%). Its prepara-
tion and characterization are described in the Methods section. It also includes frequency-
related (T = const. Figure 3) and temperature-related ( f = const: Figure 4) master plots
showing the real and imaginary components of the complex dielectric permittivity: see also
Appendix A for the complete data set. The results presented in the Methods section were
selected from data covering 250 tested temperatures in the range 123 K < T < 373 K, to
illustrate general features. The dielectric constant is the basic property whose temperature
evolution is considered for relaxor ceramics. However, the canonical definition of the
dielectric constant in Dielectrics Physics [95,96] defines it as the nearly constant value of
ε′ = ε in the static frequency domain, where a frequency shift has a negligible effect on the
measured values. It is visualized as the horizontal domain in ε′( f , T = const) spectrum.
For dipolar dielectrics, it usually occurs for 1 kHz < f < 10 MHz [55,58,95,96].

The results presented in Appendix A show that such behavior is almost absent for the
tested relaxor ceramics, especially near the paraelectric–ferroelectric transition. The static-type
horizontal behavior appears only well above the transition (for the isotherm T = 373 K) and
for T ≈ 200 K± 30. It is noteworthy that the Curie–Weiss temperature TC ≈ 292 K.

Consequently, the Curie–Weiss behavior for relaxor ceramics should be discussed in
frames of the real part of dielectric permittivity, and the “dielectric constant” should be
treated as the replacement name and written “in parentheses”, in the opinion of the authors.
For this meaning of “dielectric constant”, the frequency f = 10 kHz can be a reasonable
choice for the tested system.

Figures 5–7 show different aspects of ε′(T, f = 10 kHz), focused on testing the tempera-
ture evolution via a distortions-sensitive and derivative-based analysis (Figure 6) [56,58,90,91,97].
Such an analysis has already been applied in glass-forming systems and “critical” liquids, reveal-
ing significant features that are hidden for the direct nonlinear fitting of experimental data [56].
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Figure 5. Temperature changes in the real part of dielectric permittivity, related to the so-called
“dielectric constant” and its reciprocal. Results for Ba0.65Sr0.35TiO3 relaxor ceramic. The Burns
temperature TB is indicated. According to this report, TB is not a significant material characteristic,
which is expressed with a “?”.
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Figure 6. Temperature changes in “the dielectric constant” reciprocal derivative, focused on the
distortions-sensitive test of the Curie–Weiss behavior, manifesting via horizontal lines. The analysis
for Ba0.65Sr0.35TiO3 relaxor ceramic-based on experimental data is shown in Figure 5.
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Figure 7. Temperature changes in the logarithm of the “dielectric constant” and the reciprocal of its
derivative for the distortions-sensitive test of such behavior, which is manifested by the horizontal
line. The analysis for Ba0.65Sr0.35TiO3 relaxor ceramic is based on experimental data from Figure 5.

Figure 5 presents the temperature evolution of the “dielectric constant” in the tempera-
ture range covering 250 K, including the evolution of its reciprocal. The latter is reminiscent
of the commonly used analysis, focused on the Curie–Weiss relation (Equation (1)). It is
also used to determine the Burns temperature TB, which is related to the distortion from
CW behavior when approaching the paraelectric–ferroelectric transition. The departure
from CW Equation (1) is gradual, and precise estimation of its value is not possible, namely:
TB = 340 K± 5 K. Linear changes of 1/ε(T) in the paraelectric phase can be considered
as a confirmation of the process description via the Curie–Weiss Equation (1). It covers
the temperature range of about 50 K, although a weak bias appears when approaching the
high temperature limit (T ≈ 375 K).

The precise determination of the TB value and the validation of the CW description
offers a distortions-sensitive data analysis recalling Equation (1b):
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d(1/ε(T))
dT

=
d
(

A−1
CW T − A−1

CW TC

)
dT

= A−1
CW = const., (29)

Such an analysis is shown in Figure 6: the horizontal line, expected according to
Equation (29), appears only on the ferroelectric side of the curve related to the paraelectric–
ferroelectric transition. There is no horizontal line on the paraelectric side where studies in
relaxor systems are focused. Hence, the result validating the Curie–Weiss-type description
in the paraelectric phase is negative.

In particular, in the ferroelectric phase, near T ≈ 170 K, a feature of the next phase
transition appears. For T > 170 K, it follows the pattern parallel to Equation (29), for ca. 40 K.

Figure 7 shows the experimental data from Figure 5 using the semi-log scale. The
distortions-sensitive and derivative-based analysis complements the results. It has two aims.
The first is to confirm the (surprising) fairly exponential behavior covering the range
between T ∼ 375 K and T ∼ 315 K:

ε(T) = εre f .exp(a′T) ⇒ lnε(T) = lnεre f . + a′T, (30)

where εre f ., a′ = const.
Such behavior is validated by the solid line in Figure 7. It is supplemented by the

distortions-sensitive and derivative-based analysis, presented as [dlnε(T)/dT]−1 vs. T
analytic plot. It enables the ”subtle” test of the existence of critical-like domains, described
as follows:

ε(T) = ε0
∣∣∣T − T*

∣∣∣−φ ⇒ lnε(T) = lnε0 −φln
∣∣∣T − T*

∣∣∣ ⇒ d(lnε(T))
dT

=
−φ
|T − T*|

⇒
[

d(lnε(T))
dT

]−1

= −φT ∓φT* = a + bT, (31)

where ε0, a, b = const, T∗ stands for the critical-like temperature and φ is the “critical” exponent.
The above plot also allows the validation of Equation (30), which gives a horizontal

line, namely: [
d(lnε(T))

dT

]−1
=
(
a′
)−1

= const.. (32)

Thus, Equation (30) provides an optimal representation of the experimental data in
the paraelectric phase. There is a remarkable agreement between Equation (30) and the
output model-relations (Equation (9)), proposed in ref. [7].

Figure 7 also presents the results of the derivative-based analysis of “the dielectric
constant” changes in the surrounding of its maximum, associated with the transition from
the paraelectric to the ferroelectric phase.

The linear domain detected in such analysis is related to (Figure 8):

d(lnε(T))
dT

= a + bT ⇒ d(lnε(T)) = (a + bT)dT. (33)

The integration of the above yields:

ε(T) = A exp
(

c + aT + bT2
)

for 285 K < T < 314 K, (34)

i.e., for the surroundings of the paraelectric–ferroelectric transition.
For the paraelectric side of the transition, the following portrayal was validated

(Figure 7):
ε(T) = Aexp(b + aT) for 315 K < T < 375 K, (35)

while for the ferroelectric side of the transition:

ε(T) =
C

|T − TC|
for 234 K < T < 285 K, (36)

i.e., correlated with the mean-field Landau–Devonshire model [74,75].
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the quality factor 𝑄 = 1 𝐷⁄ , significant for applications in materials engineering. 

Figure 8. Temperature changes in the derivative of “dielectric constant” (ε′( f = 10 kHz)) logarithm
in the surroundings of the paraelectric–ferroelectric transition. The dashed red line indicates the
temperature of the “dielectric constant” maximal value. Solid, black arrows indicate terminals of the
linear behavior. The analysis for Ba0.65Sr0.35TiO3 relaxor ceramic based on experimental data shown
in Figure 5.

In particular, there are almost no “gaps” between the descriptions related to the
following temperature domains.

Temperature changes in the imaginary part of the dielectric permittivity for the dis-
cussed “quasi-static” frequency f = 10 kHz are shown in Figure 9. This magnitude reflects
the energy absorbed for subsequent processes, complementing the message from the scan
of the real component, which mainly reflects the appearance and arrangement of perma-
nent dipole moments [58,96]. In the ferroelectric phase, there is a strong manifestation of
relaxation processes, which, for ε′(T) only become explicitly visible only for disturbances-
sensitive and derivative-based analysis. This evidence is even stronger, especially in the
paraelectric phase, for the dielectric loss tangent tanδ = ε′′/ε′, which can be related to the
fact that this quantity D = tanδ = (energy lost per cycle/energy stored per cycle).
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Figure 9. Temperature changes of the imaginary part of dielectric permittivity (ε′′ ( f = 10 kHz)) and
related tan ε = ε′′ /ε′. The solid, black line indicates characteristic temperatures, and the dashed red
line is related to the paraelectric–ferroelectric transition: note a slight shift in comparison with tem-
peratures detected in ε′(T) analysis. The results are for Ba0.65Sr0.35TiO3 relaxor ceramic (see Figure 3
and Appendix A).
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In Figure 9, the cycle is related to f = 10 kHz, i.e., it determines the energy of
the process itself, minimizing the influence of the “background”, related to the “whole”
system [58,95,96]. This property is also called the dissipation factor, and it is used to define
the quality factor Q = 1/D, significant for applications in materials engineering.

Figure 9 shows that the tested system is characterized by a relatively low dissipa-
tion/loss factor. It increases on approaching the paraelectric–ferroelectric transition, which
can be related to an increasing number of permanent dipole moments and ability to inter-
act with the external electric field and is also coupled within multi-element fluctuations.
The latter are associated with the anomalously increasing susceptibility χ = ε− 1 reflecting
the increasing sensitivity of local order parameter changes (polarizability) to the electric
field. This effect diminishes away from the transition. The impact on tanδ(T) evolution is
shown in Figure 10.
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Figure 10. Temperature evolutions of tg (T, f = const) = ε′′ ( f , T)/ε′( f , T) for selected frequencies
in the tested relaxor ceramic, specified in Table 1.

Relaxation times appearing in dielectric permittivity spectra were determined from
peak frequencies of loss curves τ = 1/2π f peak, supported by the analysis of dlog10ε′′ (T)/dT
and dlog10ε′′ ( f )/dlog10 f allowing its unambiguous estimation. This protocol avoids the
significant uncertainty for the determination of relaxation times via the Havriliak–Negami
relation [58], which requires nonlinear fitting. Such fitting is associated with at least four
adjustable parameters, and their number increases to eight when the merging of two
relaxation processes creates the loss curve. Loss curves for characteristic temperature
ranges, with indications of basic relaxation processes and coupled relaxation times, are
shown in Figure 11.

Figure 12 presents the map of relaxation times using the Arrhenius scale: log10τ(T) vs.
1/T. The inset shows the relaxation time τ3 at low temperatures in the ferroelectric state.
It appears that the tested system exhibits a unique feature. Usually, the super-Arrhenius
behavior occurs in the paraelectric phase and terminates close to Tm. For the tested compound
it terminates at Tterm. ≈ 330 K, considering τ1(1/ T) changes. The super-Arrhenius (SA)
behavior of τ2(1/ T) behavior is notable. The SA behavior is related to Equation (22) and has
been shown by the apparent activation enthalpy tests, which focused on validating the SA
behavior representation by Equation (21). This result is shown in Figure 13. On further cooling
towards the transition, a new process emerges. It explicitly follows the simple Arrhenius
pattern, with the constant activation energy extending deeply into the ferroelectric state,
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with no hallmark when passing Tm temperature (Figure 12). The height (maximum) of the
associated loss curves increases strongly on cooling, as shown in Figure 14. Figure 15 presents
the scaled superposition of loss curves related to τ2 relaxation time, showing the essentially
non-Debye and broad distribution of relaxation times.
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Figure 11. Dielectric loss curves at three selected temperatures in the para- and ferroelectric phases.
Relevant relaxation processes are indicated. Results are for Ba0.65Sr0.35TiO3 relaxor ceramic.
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Figure 13. The temperature dependence of the reciprocal of the apparent activation enthalpy focused
on validating Equations (21) and (22), which should manifest as linear behavior. The singular
temperature T∗ is indicated by the arrow.
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Figure 14. Temperature changes of the maxima of loss curves related to ε2 relaxation time, as indicated
in Figure 12.
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Figure 15. Time–temperature–superposition (TTS) of relaxation time in the tested relaxor ceramic,
covering both paraelectric and ferroelectric phases. For comparison, the single relaxation time-related
Debye distribution is also shown. The plot is presented in the log-log scale.
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In the ferroelectric phase, phase transformations were detected, as can be seen for
temperature evolution of “the dielectric constant” (Figure 7), which suggests a link with the
arrangement of permanent dipole moments, and also for ε′′ (T) and tanδ(T), which may
reflect the energy loss associated with these phenomena. The process related to the lowest
temperature introduces an additional relaxation time τ3. Its temperature evolution follows
the basic Arrhenius pattern, as it is shown in the inset in Figure 12.

For applications of relaxor systems, the sensitivity of the dielectric properties, in
particular the ”dielectric constant”, to the external electric field is essential. The fun-
damental origins of such behavior in relaxor ceramics also have remained a challenge.
Figure 16 shows such behavior for the relaxor ceramic discussed in the report. Figure 17
presents the same experimental data, but in respect to the reference at (U = 0, E = 0):
∆ε(E) = ε(E = 0)− ε(E), i.e., relative changes in “the dielectric constant”. In particular,
relatively large changes in “the dielectric constant” occur for relatively weak electric fields
in the tested material.
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It is also worth noting that a relatively large shift in the ε(T) curve maximum reaching
∆T(E) ≈ 3 K for the electric field E = 12 kVcm−1. This shows the notable manifestation of
the electrocaloric effect [49] in the given system.

Figure 18 presents the test of the electric field intensity, or the applied voltage, impact
on ∆ε(E) = ε(E = 0) − ε(E), in the vicinity of the paraelectric–ferroelectric transition.
The red curves show that the following polynomial can describe experimental data:

∆ε(E) = εre f . + aE2 + bE4, (37)
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This report shows that it is possible to describe the temperature changes in the dielec-
tric constant for the following domains: (i) in the ferroelectric phase (Equation (36)); (ii)
in the vicinity of the diffused, temperature-stretched, paraelectric–ferroelectric transition
(Equation (34)); and (iii) in the paraelectric phase (Equation (35)). The transition to the sub-
sequent domains occurs without a significant temperature gap, which allows us to consider
the tunability characterization (Equation (2)), i.e., the relative changes in the “dielectric
constant” caused by an external electric field [9,12,14–16,24,25,27,28,34–36]:

T =
ε(E→ 0)− ε(E)

ε(E→ 0)
= 1− ε(E)

ε(E→ 0)
. (38)

For the ferroelectric side of the para-ferro transition, where the CW Equation (1) is
obeyed, one obtains:

T = 1− ACW(E)
ACW

T − TC
T − TC(E)

. (39)

It reduces to the temperature-independent parameter T = 1− ACW(E)/ACW if the
TC(E) shift is negligible.

For the paraelectric side of the transition, related to Equation (35), one obtains:

T = 1− A
A(E)

exp(∆b− ∆aT), (40)

where ∆a = a(E)− a and ∆b = b(E)− b, where a and b are related to E = 0.
For the “diffused” surrounding of the para-ferro transition, one obtains:

T = 1− A
A(E)

exp
(

∆b− ∆aT − ∆cT2
)

. (41)
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3.3. Summary of Results

1. First, a new model for understanding and explaining the physics of relaxor ceramics is
presented. It is based on references to the fundamentals of Critical Phenomena Physics
and Glass Transition Physics. A particularly notable feature is the focus on the role of
local symmetry, in this case uniaxial, which is particularly focused. The proposed
model combines the unique properties of ceramic relaxors with the formation of
random local electric fields resulting from pretransitional ferroelectric fluctuations
inside ceramic “grains”, i.e., confined by grain boundaries. Local electric fields
create a specific feedback mechanism that couples the grain-constrained ferroelectric
domains and also affect the interior of the grain-constrained ferroelectric domains,
causing a bias towards the discontinuous transition. This gives rise to a singular
pseudospinodal behavior [89], similar to the critical one, but is associated with an
inherent non-zero order parameter (polarization in this case). Another notable feature
of the model is the inherent link to basic experimental features. These are characteristic
temperature changes in the “dielectric constant”, electric-field-related stability, and
glassy dynamics. The latter relates to the natural introduction of non-Arrhenius
temperature variations and extreme non-Debye broadening of the primary loss curves.

The model highlights an additional fundamental feature of relaxor ceramics that has
been overlooked so far. This is the absence of the “canonic” dielectric constant, defined in
Dielectrics Physics as the “horizontal” and frequency-independent domain of the real part
of the dielectric permittivity spectrum. Therefore, for relaxor ceramics, one should consider
the real part of the dielectric permittivity for a selected frequency, and the name “dielectric
constant” should be used in quotation marks.

2. The second part of the report presents the experimental results. They are based on
relaxor ceramics specially prepared for this work. The innovative differential analysis
for the temperature evolution of “dielectric constant” was used. An important result
is an explicit demonstration that the “dielectric constant” in the paraelectric phase
prefers not the Curie–Weiss portrayal but the exponential description. The results
also challenge the “omnipotence” of the VFT relation as the “proof” for the glassy
dynamics.

3. Based on the results discussed in points (1) and (2), it was possible to describe in a
new way the full range of temperature changes of the “dielectric constant” in the
para- and ferroelectric phases, for the “diffused” top-domain, and in the ferroelectric
phase, virtually without gaps between domains. Equations describing the temperature
dependences of the electric-field-related tunability have also been proposed.

4. Conclusions

This report presents a model discussion of the unique properties of relaxor ceramics
in relation to Critical Phenomena Physics [59–62], Glass Transition Physics [54–56], and the
reference to basic “homogeneous” ferroelectrics.

It indicates the importance of pretransitional fluctuations and the importance of
uniaxiality in creating mean-field conditions near the paraelectric–ferroelectric transition, in
both “homogeneous” and “heterogeneous” (i.e., relaxor ceramics) materials. The discussion
includes the extended Devonshire–Landau model [72,73] and some new conclusions for
the Clausius–Mossotti [94–96] local field model.

It is proposed that random local electric fields between ceramic grains with pre-
ferroelectric arrangement, caused by pretransitional fluctuations, are responsible for the
generation of characteristic ε(T) changes in relaxor ceramics in the broad vicinity of the
paraelectric–ferroelectric transition. The action of such local electric fields results in a distri-
bution of local “Curie–Weiss type” domains, associated with a set of pseudospinodal [89]
singular temperatures coupled to weakly discontinuous phase transitions:
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ε(T) =
Alocal

Sp

T − Tlocal
Sp (E)

. (42)

Pseudospinodal behavior leads to finite ε(T) “terminate” values because the discontin-
uous transition occurs before reaching the singular temperature TSp. It is noteworthy that
such a picture allows to avoid problems of the essentially heuristic concept of local critical
temperatures TC (Equation (1)) resulting from PNR fluctuations, causing local concentration
changes, often recalled in the modeling of relaxor ceramics properties [2–54].

In particular, for basic, “homogeneous”, ferroelectric materials, even a strong external
electric field initially leads to non-linear changes in the dielectric constant, which are
described by so-called gap-exponents [98]. For relaxor ceramics, a moderate external
electric field is already sufficient to strongly decrease the dielectric constant (ε′) leading
to tunability, which is crucial for applications. The given concept can be associated with
the possibility of relatively easy interaction between intergranular electric fields and the
external field.

In simple “homogeneous” ferroelectric materials, the static domain manifested via
“horizontal changes” in ε′( f , T = const) scan within the frequency range
1 kHz < f < 10 MHz is the common feature. In a static domain ε′( f ) ≈ ε = const,
despite a frequency shift. This is also the definition of the canonical dielectric constant.
For relaxor ceramics, this behavior is absent, and some frequency change of ε′( f ) in the
above frequency range is a standard feature. This is shown, for example, in Figure 3 and
in Figure A1 in Appendix A. It can also be inferred from numerous reports on relaxor
ceramics. In the opinion of the authors, the frequency-dependent “quasi-dielectric constant”
is the next hallmark of relaxor ceramics. Such behavior can be deduced from the conceptual
model proposed in the report.

For the conceptual model presented, the spatial growth of pretransitional/pre-ferroelectric
fluctuations can be estimated by the counterpart of Equation (15a):

ξ(T) = ξ0
∣∣T − TSp(E)

∣∣−ν. (43)

This pseudospinodal [60,89] correlation length is limited by the grain size, i.e.,
ξ(T) < lgrain and additionally influenced by the impact of local electric fields on the
singular temperature TSp(E). Such size changes are coupled to lifetime changes of fluctua-
tions, which can be expressed by the counterpart of Equation (15b):

τf l.(T) = τ0
∣∣T − TSp(E)

∣∣−φ. (44)

Also, in the given case, the terminal values are related to the condition
ξ(T) ∼ lgrain. For the mean-field characterization of the system, the collective and single-
element relaxation times are related, i.e., τf l. ∝ τ. Therefore, the size distribution of grain
and the topology, as well as the influence of random local electric fields, must lead to a broad
distribution of relaxation times, which is the necessary prerequisite for the glassy dynamics
observed in relaxor ceramics, including non-Debye and super-Arrhenius (SA) dynamics.

It is also worth noting that the presented model also explains another characteristic of
relaxor ceramics: in different systems, the terminal values of the primary relaxation time
range from seconds to milliseconds [1–52]. For the reference dynamics in glass-forming
systems, τ

(
Tg
)
≈ 100 s [54–56].

Experimental studies complemented the model discussion for relaxor ceramics. They
were supported by innovative distortions-sensitive and derivative-based data analysis.
This was possible due to the specific characteristics of the experiment and the collected
data (see Appendix A). Experimental tests were carried out on a Ba0.65Sr0.35TiO3 relaxor
ceramic (see Table 1). Figure 5 shows that the permanent increase in the “dielectric constant”
takes place from T ≈ 120 K to the maximum reached at Tm ≈ 291 K, and subsequently
ε(T) decreases down to Tm ≈ 375 K. The typical analysis applies a 1/ε(T) vs. T plot to
test the Curie–Weiss (Equation (1)) representation. Such a plot is also shown in Figure 5,
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suggesting the CW portrayal covers a range from Tm ∼ 292 K to T ≈ 228 K, i.e., for ∼ 60 K.
in the ferroelectric phase. In the paraelectric phase, which is the particular focus of studies
recalling the model analysis, the CW-type (Equation (1)) behavior starts at TB ∼ 235K
(the Burns temperature) and terminates at T > 375 K, i.e., for at least ∆T ∼ 40 K. The
∆T = TB − Tm is often considered as one of the metrics of the relaxor-type behavior,
indicating the width of the domain that deviates from the CW behavior and is associated
with the appearance of polar nanoregions (PNRs), hypothetically responsible for the unique
behavior [2–4,24]. For the given case, ∆T ≈ 40 K. However, the quality of experimental data
enables an effective distortions-sensitive and derivative-based test of the model portrayal,
avoiding a parasitic scatter. Figure 6 shows such an analysis focusing on the validation
of the mean-field behavior related to the Curie–Weiss Equations (1a) and (13a,b) with the
exponent γ = 1. The analysis based on Equation (27) explicitly confirms such behavior
between T = 285 K and T = 234 K, i.e., for ∼ 50 K in the ferroelectric phase. In the
paraelectric phase, the validation of the CW model description is negative (!).

For the paraelectric phase, the exponential relation Equation (30) gives a much better
description of ε(T) changes than the CW relation in the temperature range from 375 K to 316
K, i.e., covering ∼ 60 K, as shown in Figure 7. The superiority of the exponential relation
(Equation (30)) is demonstrated by the distortions-sensitive analysis (Equations (31) and
(32)), with results presented in Figure 8. The exponential relation with the additional tem-
perature term appears on further cooling towards the paraelectric–ferroelectric transition.
The obtained scaling patterns in the broad surrounding of the paraelectric–ferroelectric
transition are summarized in Table 2.

Table 2. Scaling patterns for temperature changes in “dielectric constant” ( ε′(T)) changes in the
broad surrounding of the paraelectric–ferroelectric transition in the tested Ba0.65Sr0.35TiO3 relaxor
ceramic, specified in Table 1. Note: Tm ≈ 292 K.

Temperature Range 234 K < T < 285 K
(ferro-)

285 K < T < 314 K
(para-ferro)

315 K < T < 375 K
(para-)

Scaling equation ε(T) = AC/(T − TC) ε(T) = Aexp
(
c + aT + bT2) ε(T) = Aexp(b + aT)

Other notable results include the “negligible” distance between the domains represented
by subsequent scaling relations, the smooth passing of Tm when using the (para-ferro) equation
and the fact that the crossover from the (para-) to the (para-ferro) domain is associated with
the inclusion of a single, temperature-dependent term in the exponential relation.

The question arises as to whether the behavior obtained in the (para-) and the (para-
ferro) states might suggest that the “dielectric constant” changes are related to the so-called
Griffiths phase [99,100], which is expected for near-critical systems (especially of mean-
field type) in the presence of random impacts. In the present case, this is the randomness
associated with a random local electric field between grains that can penetrate and affect
their interiors. An additional frustration can be caused by changing the properties of
intergranular layers.

The dynamics in the paraelectric phase of the tested Ba0.65Sr0.35TiO3 system are some-
what beyond the typical pattern observed in relaxor systems, showing the SA-type behavior
commonly represented by the VFT dependence. Such behavior is also observed, but it
terminates at ∼ 340 K. The VFT relation can describe it, but the distortions-sensitive
analysis prefers the activated-critical description (Equation (20)). At lower temperatures,
a new process emerges. The process explicitly shows an Arrhenius-type temperature de-
pendence (Ea = const), extending from T ∼ 330 K to at least T ∼ 230 K. Interestingly,
this unique pattern for the dynamics seems to have a minimal effect on the “dielectric
constant” behavior. The above results are supplemented by tanδ(T, f ) behavior, focusing
on its physical significance and its supporting importance in testing relaxation processes:
see Figures 9, 10 and 14, and Appendix A. Finally, the effect of the electric field on the
“dielectric constant” was tested, revealing its strong changes for the relatively moderate
electric field intensities/voltages. These features are often expressed in terms of tunability
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(Equation (2)) for practical implementations. The knowledge of the relations describing
the broad surroundings of the paraelectric–ferroelectric transitions allowed the derivation
of relations for the electric field-related tunability temperature changes (Table 2), without
“gaps” between subsequent temperature domains.

In conclusion, we would like to emphasize that the discussion presented in this
report has shown the link between relaxor ceramics, Critical Phenomena Physics, and
Glass Transition Physics. It shows the importance of uniaxiality for the emergence of
mean-field type features. This link suggests that the appearance of a random, strong,
intergranular electric field leading to the pseudospinodal behavior [59,86] associated with
“weakly discontinuous” phase transitions may be responsible for unique features of relaxor
ceramics, particularly regarding the “dielectric constant” (ε′(T)). All of this may re-define
the meaning of the Burns temperature and polar nanoregions (PNRs) [2–4], suggesting that
they are somewhat “effective” and heuristic concepts introduced to explain relaxor systems
mystery [2–53].

The proposed model picture also suggests a significant influence of material engineering
characteristics on the dielectric properties of dielectric ceramics. This can be related not only
to the grain size, composition, and structure but also to the grain sintering pattern, including
the relevant temperature, annealing time, and cooling/heating time rates, which can influence
the growth of grains and inter-grain layers, important for the local electric field.
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Appendix A

The complete set of BDS spectra are presented as the real (ε′) and imaginary (ε′′ )
parts of the complex dielectric permittivity in a function of frequency (Figure A1) and the
dielectric loss tangent tan δ as a function of frequency. The tests were carried out for about
250 temperatures. For each temperature, 63 frequencies were tested, detecting impedance
components with 6-digit resolution.

To supplement the discussion related to tanδ in the main text of the report, we would
like to stress that it is linked to energy, which can be disseminated as heat [55,58,94–96]:

ε∗ = ε′ − iε′′ = ε′(1− i× tanδ), (A1)

tanδ =
σ

ωε
=

loss_current
charging current

, (A2)

D = tanδ =
iloss

iloss + I
=

1
ωRC

=
ωε′′ + σ

ωε′
=

1
Q

, (A3)

leading to the power loss:
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The latter relation is supplemented by the discussion presented in Refs. [56,96], and
shows that the maximum of the loss curve (ε′′max, ε

′′
peak, ε

′′
m) directly expresses the maximal

energy loss associated with the given relaxation process.
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98. Fugiel, B.; Ćwikiel, K.; Zioło, J. Gap exponents determined from the pressure measurements of the nonlinear electric permittivity
for triglycine sulfate in the paraelectric region. Phys. Rev. B 1987, 36, 3963–3964. [CrossRef] [PubMed]

99. Griffiths, R.B. Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 1969, 23, 17. [CrossRef]
100. Voyta, T. Phases and phase transitions in disordered quantum systems. AIP Conf. Proc. 2013, 1550, 188–247. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/cryst9090470
https://doi.org/10.1038/s42005-022-00853-y
https://doi.org/10.1016/0025-5408(83)90117-4
https://doi.org/10.1088/0143-0807/21/5/312
https://doi.org/10.1080/00018735400101173
https://doi.org/10.1080/00150193.2020.1822684
https://doi.org/10.1016/0370-1573(83)90106-0
https://doi.org/10.1007/BF01379692
https://doi.org/10.1119/1.11019
https://doi.org/10.1103/PhysRevLett.43.1253
https://doi.org/10.1051/jphyslet:019790040021056500
https://doi.org/10.1209/0295-5075/11/1/003
https://doi.org/10.1016/0378-4371(91)90415-9
https://doi.org/10.1103/PhysRevE.62.8071
https://www.ncbi.nlm.nih.gov/pubmed/11138091
https://doi.org/10.1103/PhysRevE.48.1136
https://www.ncbi.nlm.nih.gov/pubmed/9960699
https://doi.org/10.1063/1.4893979
https://www.ncbi.nlm.nih.gov/pubmed/25194394
https://doi.org/10.1016/0301-0104(87)87017-9
https://doi.org/10.1038/s41598-022-05897-2
https://doi.org/10.1140/epjb/e2020-100130-y
https://doi.org/10.1038/s41598-019-48864-0
https://doi.org/10.1038/s41598-019-42927-y
https://doi.org/10.1063/1.3000626
https://www.ncbi.nlm.nih.gov/pubmed/19045416
https://doi.org/10.1103/PhysRevE.61.1783
https://doi.org/10.1039/C5SM00266D
https://doi.org/10.1103/PhysRevB.36.3963
https://www.ncbi.nlm.nih.gov/pubmed/9943351
https://doi.org/10.1103/PhysRevLett.23.17
https://doi.org/10.1063/1.481840

	Introduction 
	Materials and Methods 
	Results 
	Model Discussion 
	“Critical” View on Dielectric-Constant-Related Behavior in Relaxor Systems 
	“Critical” View on Dynamics in Relaxor Systems 
	“Critical” View on Clausius–Mossotti Local Field in Ferroelectric Systems 

	Experimental Results and Discussion 
	Summary of Results 

	Conclusions 
	Appendix A
	References and Note

