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Abstract: Modifying material properties within a specific spatial region is a pivotal stage in the
fabrication of microelectronic devices. Laser annealing emerges as a compelling technology, offering
precise control over the crystalline structure of semiconductor materials and facilitating the activation
of doping ions in localized regions. This obviates the necessity for annealing the entire wafer or device.
The objective of this review is to comprehensively investigate laser annealing processes specifically
targeting the crystallization of amorphous silicon (Si) and silicon carbide (SiC) samples. Silicon finds
extensive use in diverse applications, including microelectronics and solar cells, while SiC serves as
a crucial material for developing components designed to operate in challenging environments or
high-power integrated devices. The review commences with an exploration of the underlying theory
and fundamentals of laser annealing techniques. It then delves into an analysis of the most pertinent
studies focused on the crystallization of these two semiconductor materials.
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1. Introduction

The rapid diffusion of microelectronics and their advancement toward improved
performance and reduced size has necessitated the development of new technological
processes for selectively modifying material properties in specific regions without affecting
others. For instance, there is a need to locally crystallize amorphous materials to achieve
new properties or activate dopant ions that have been previously implanted in a semicon-
ductor region. This can be accomplished through semiconductor annealing. Traditional
annealing methods involve heating samples to high temperatures (above 1000 ◦C) using
furnaces to repair lattice damage and electrically activate dopants.

Thermal annealing is a critical step in semiconductor device fabrication that is typically
performed after other processes. Subjecting the entire sample to high temperatures can
have undesirable side effects on device functionality, including impurity redistribution
and damage to implanted ion disposition [1]. Moreover, it is incompatible with prior
metal deposition, as the elevated temperature can cause metal connections to melt and
redistribute.

In recent years, various alternatives to thermal annealing in furnaces have been
explored, with laser annealing emerging as one of the most effective technologies [2].
Depending on the light frequency, laser annealing offers the advantage of intense absorption
on a thin surface layer (a few nanometers deep). This capability allows for the generation
of the extremely high temperatures necessary for annealing lattice damage or crystallizing
amorphous films in a precisely localized region. Importantly, this occurs without affecting
the rest of the sample, mitigating the risk of unwanted alterations to the device [3].
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During the laser annealing process, the material phase (crystallinity), optical properties
(refractive index, light absorption), and electrical properties (conductivity, energy bandgap,
direct or indirect bandgap) of the samples are altered through light absorption [4]. The
incident laser energy is absorbed through electronic excitations and rapidly transferred
to the lattice, resulting in the melting of the crystal to a certain depth and inducing lat-
tice damage. Subsequently, liquid phase epitaxial regrowth occurs from the undamaged
substrate underneath, leading to recrystallization of the melted region into nearly perfect
single-crystal material, with dopants occupying substitutional sites in the lattice, thereby
activating the implanted ions [5].

Laser annealing is a versatile technique applicable to various types of semiconductors,
including group IV semiconductors like silicon, germanium [6], and silicon carbide, as well
as III-V compound semiconductors like gallium arsenide [7,8].

Laser thermal annealing is an ultrafast and low thermal budget process solution for
the passivation of backside illuminated sensors and power devices. Laser annealing can be
a solution for the backside contact of those chips with a vertical flow of electrical current,
where an ohmic contact and/or collector on the wafer backside are required [9,10], including
SiC power Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET) [11], Insulated
Gate Bipolar Transistor (IGBT) [12], and high voltage diodes [13,14]. Moreover, this process
can also be useful for the ohmic contact formation process in SiC Schottky diodes, causing
a negligible impact on the device’s front side [15,16]. The laser annealing process has also
been used to activate doping ions in the source and drain region of MOSFET to avoid
damage to the channel region induced by global device heating processes such as rapid
thermal annealing (RTA) [17–19]. A scheme of laser annealing processes in semiconductor
devices is reported in Figure 1. The high-temperature annealing region is restricted to thin
layers while keeping underlying layers at low temperatures. An ultrafast annealing time
and proper laser parameters may achieve high performance and high yields, locking in the
surface properties without damaging buried device layers [20].
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Figure 1. Scheme of the laser annealing process exploited to (a) form ohmic contact on the Schottky
diode, (b) activate doping on the collector layer of IGBT, and (c) activate doping in the source and
drain region and form ohmic contact in a MOSFET (in this case a pMOSFET, although the process is
the same for nMOSFET).

This study aims to provide a comprehensive review of laser annealing processes
specifically focused on the crystallization of amorphous silicon (Si) and silicon carbide (SiC)
samples. Silicon is widely used in microelectronics and solar cell applications, while SiC
is vital for the development of high-power integrated components and devices operating
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in harsh environments and at high temperatures [21,22]. SiC has also garnered attention
for optical applications due to its nonlinear optical properties [23]. The review includes a
brief overview of the underlying theory and principles of laser annealing, followed by a
presentation of the most relevant studies that focus on the crystallization of the amorphous
layer of these two semiconductor materials. This study provides a critical analysis of
various processes reported in the literature. The studies are categorized based on the laser
wavelength employed, and a detailed examination of the process parameters of the systems
involved is conducted. Additionally, the main crystallization results obtained are outlined,
accompanied by a discussion of the outcomes of the primary characterization methods
employed in these studies.

2. Laser Annealing Theory

Laser annealing is a technique that involves using light absorption to deliver energy to
a material. Typically, laser annealing is limited to thin surface layers because the intensity of
the incident light decreases as it penetrates the material, based on the material’s absorption
coefficient, α. The Beer–Lambert law describes this decay of intensity with depth z using
the equation:

I(z)= I0e−αz (1)

where I0 is the intensity on the surface.
The optical penetration or absorption depth, defined as the depth at which the trans-

mitted light’s intensity drops to 1/e (about 37%) of its initial value on the surface, is
denoted as δ = 1/α. Both α and δ depend on the semiconductor type, laser wavelength,
and temperature.

Since energy absorption is primarily confined to the absorption depth, this parameter
is applicable to all beam profiles, even though it was originally developed for plane waves.
Consequently, it is possible to locally modify surface properties without altering the bulk
material by using laser wavelengths with short absorption depths [24].

In continuous wave (CW) or nanosecond laser pulses, it is generally assumed that
single-photon interactions account for most of the absorption. However, in the case of
picosecond (ps) and femtosecond (fs) lasers, the absorption depths can be reduced due to
phenomena such as optical breakdown and multiphoton absorption, which result from the
extremely high instantaneous intensity of these lasers [25].

The absorption of laser light in insulators and semiconductors is typically achieved
through resonant excitations, such as transitions of valence band electrons to the conduction
band (interband transitions, Figure 2) or within bands (intersubband transitions) [26].

Typically, photons interact with the electronic or vibrational states present in a material
based on their energy. Laser photons of energy greater than that of the band gap generate
electron-hole pairs promoted to states of higher kinetic energy in the conduction and
valence band. These excited electronic states can subsequently transfer energy to lattice
phonons, becoming heat. If there are no other factors such as impurity or defect states or
multiphoton absorption, photons with energy lower than the material’s band gap will not
be absorbed. This generally corresponds to light wavelengths within the infrared to visible
spectrum for semiconductors and within the vacuum ultraviolet range (below 200 nm)
for insulators.

The laser field to the electronic system is quickly transferred to phonons in less than
1 picosecond, leading to the melting of the near-surface region [27]. The near-surface region
of a sample can melt and stay molten for a thermalization time depending on the material
treated, during which dopant diffusion in the liquid state and nonequilibrium segregation
occur together with ultrarapid recrystallization [28]. The crystallization process can be
described in terms of models based on macroscopic diffusion equations for heat and mass
transport. The mechanism can be explained in terms of a molten layer that extends all
over the amorphous thickness and whose subsequent solidification occurs on a crystalline
seed, like a liquid phase epitaxy [27]. In this way, the laser treatment allows the annealing
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and treatment of the lattice damage caused by ion implantation, diffuse surface-deposited
dopant films, and recrystallized doped amorphous films deposited on the substrate [28].
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The specific material and its mechanisms determine the time required for excited
electronic states to transfer energy to phonons and thermalize. For non-metals, the thermal-
ization time can be from 10−8 s to 10−6 s, while it is around 10−12–10−10 s for metals [25].
If the laser-induced excitation rate is lower than the thermalization rate, the transient elec-
tronically excited states are not significant and the absorbed laser energy can be considered
directly converted into heat. This process is known as photothermal (pyrolytic) processing
and is commonly observed in semiconductor laser processing with long pulse times (>ns).
During this process, material response can be analyzed purely in thermal terms [24].

However, when the laser-induced excitation rate exceeds the thermalization rate,
significant excitations can accumulate in the intermediate states. This can lead to direct
bond-breaking due to the excitation energies, resulting in non-thermal material modifica-
tions. This phenomenon is referred to as photochemical (photolytic) processing, where
there are no changes in the system’s temperature. Ultrafast femtosecond laser pulses with
short-wavelength light, where the photon energy is comparable to the chemical bond
energy, can trigger photochemical processing [29].

The laser annealing process is significantly influenced by the technology of the imple-
mented system, which determines the wavelength and the shortest pulse duration of the
laser. Several key parameters of the laser system can be adjusted to control the effects of the
annealing process on the material surface. A list of the most crucial system specifications
and parameters involved in laser annealing processes is provided below. These descriptions
aim to enhance understanding of the main results in silicon and silicon carbide annealing
processes described in the following sections.

Laser technology: The laser relies on a certain physical mechanism depending on the
laser material, which affects the other laser parameters (such as its power, pulse duration,
etc.). Possible laser technologies range from gas lasers (such as CO2 laser) to excimer lasers
(based on a combination of a noble gas and a reactive gas, such as KrF and XeCl lasers) and
solid-state lasers (based on doped crystal, such as Nd:YAG lasers).
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Wavelength: This parameter plays a significant role in the annealing process as it
affects light absorption efficiency and the depth of laser effects in the material. Generally,
the penetration depth is proportional to λ/4πk with k, which is the absorption coefficient.
The light wavelength (which is directly related to photon energy by the Planck equation)
must fit with the material bandgap to be absorbed, otherwise, photons pass through
the material. Laser wavelengths used for annealing range from infrared to visible and
ultraviolet (UV) regions.

Power and spot size: A combination of these two parameters defines the power density,
which indicates the energy quantity delivered by the laser beam to the desired target per
unit of area and time. The energy density or fluence represents the energy transferred
per unit area by a single pulse. The use of a magnifying lens can increase the given
number of photons directed to a specific area, raising the laser fluence and thus the target
temperature faster.

Pulse duration. This is the time between the beginning and end edges of an energy
pulse, often measured at full-width half maximum (FWHM). Lasers treated in this review
are characterized by nanosecond or femtosecond pulses. Generally, considering a fixed
frequency, short pulses allow samples to cool down between bursts of light and, hence
protect illuminated samples from overheating. However, in general, short pulses with
high peak powers (as in the case of femtosecond lasers) may ablate the surface material,
avoiding heating the surrounding area. Obviously, this parameter is absent in the case of
continuous wave lasers.

Scanning speed: This parameter represents the velocity of the relative motion be-
tween the laser and the material. Slower scanning speeds result in the laser remain-
ing in a particular spatial position on the material for a longer time, leading to higher
annealing effects.

Beam profile: The laser beam can have various profiles, such as Gaussian, multimode,
or rectangular. The energy distribution of the beam determines the spatial effect of the
annealing process, yielding different results. Gaussian beams, for example, cause stronger
effects near the beam center and weaker effects near the edges, while rectangular beams
provide a more uniform spatial distribution.

Environment: Since laser annealing increases the local temperature of the material,
environmental conditions can impact process outcomes. The presence of air can cause
reactions between the heated material and atmospheric gases, which is not observed in a
vacuum or an argon (Ar) atmosphere.

Manipulating these main parameters is possible by taking advantage of the main
components of the laser annealing equipment, which consists of a laser source composed
of a laser head (which determines the emitted wavelength, frequency, and pulse duration),
lenses, and filters for shaping the laser beam profile.

A laser stage motor is normally responsible for the scan speed. Indeed, the laser head
can be based on the technology called plotter laser, where the laser light is driven by some
fixed internal mirrors, and its movement on the sample surface is controlled by a stage
motor that determines the scan speed and the resolution on the X and Y axes. An alternative
technology is the galvo head, where the laser ray is driven by rotating dynamic internal
mirrors, and a stage motor is used only for large displacement.

3. Silicon Laser Annealing

Silicon is a crucial material for creating microelectronic devices, and various fabrication
processes have been developed to manipulate its properties based on specific applications.
One important technique being studied is its transformation from amorphous silicon to
polycrystalline silicon, which combines the advantages of both single-crystal silicon and
amorphous silicon [30]. While amorphous silicon has lower carrier mobility, it is cost-
effective to manufacture. On the other hand, polycrystalline silicon, though inferior in
mechanical and electrical properties compared to single-crystal silicon, finds extensive use
in the field of optoelectronics.
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Currently, laser annealing is the most commonly employed technology for preparing
polysilicon materials. This method involves the use of a high-power pulsed laser on
an amorphous silicon sample. The surface of the amorphous silicon absorbs the laser
energy, causing the temperature to rise to the phase transition point. After cooling and
solidification, the amorphous silicon is transformed into polysilicon [31,32].

This process exhibits short annealing time and high crystallization efficiency. Addition-
ally, laser annealing keeps the substrate at a low temperature, reducing the requirements
on the substrate material and thus lowering manufacturing costs.

The crystallization of silicon grains is influenced by energy density, pulse duration,
and laser shape; however, laser wavelength is the primary parameter governing the crystal-
lization phenomenon due to its role in optical absorption [33].

Specifically, crystallization occurs when the photon energy (associated with the photon
wavelength) matches the bandgap of the material. The light induces a transition between
the ground and excited states, resulting in the loss of a photon and the production of an
excited state [34]. In the case of silicon, which has a bandgap energy of 1.1 eV, the minimum
wavelength required for electron transition from the valence to the conduction band is
around 1100 nm, corresponding to the infrared (IR) region.

Several experiments have been conducted on silicon laser annealing using IR laser
sources. Salman et al. [35] successfully crystallized a silicon sample using an IR-pulsed laser
with a wavelength of 1064 nm (photon energy of 1.165 eV) and a pulse duration of 200 ns.
The experiment was performed under ambient conditions using a pulsed fiber laser built
on Ytterbium-doped active fiber, with an average optical power of 20 W and a maximum
pulse energy of 0.50 mJ. The repetition rate was set to 20 kHz. Successful crystallization
was confirmed through Raman spectroscopy analysis, showing a main scattering peak at
520 cm−1, which is typical of a crystalline silicon structure (Figure 3a). The crystallization
process was also verified using Fourier Transform Infrared (FTIR) spectroscopy, Scanning
Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Atomic Force
Microscopy (AFM), which are powerful analysis tools for investigating semiconductor
crystalline structures.
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from [35], Copyright (2019), with permission from Elsevier. (b) SEM pictures of crystalline grains
in Silicon samples after femtosecond laser annealing processes with different configurations and
fluences. Reprinted from [36], with the permission of AIP Publishing. (c) Raman spectra of bare glass
substrate and amorphous silicon film without (dash) and with (solid) femtosecond laser processing.
Reprinted from [37], Copyright (2019), with permission from Elsevier.

Previous studies [36,38] have utilized infrared laser radiation with a wavelength of
800 nm, generated by a Ti:Sapphire laser system with femtosecond pulse duration. De-
spite this difference, the presence of crystalline grains can be observed from AFM, SEM
(Figure 3b), and TEM measurements, indicating the successful attainment of polysilicon
through the annealing process.

Other groups [37,39] have demonstrated the effectiveness of IR radiation
(λ = 800 nm by Zhan et al. [37] and λ = 1026 nm by Bronnikov et al. [39]) for silicon
crystallization using laser systems based on different technologies (Yb:KGW laser system).
Before the laser annealing process, the Raman spectra of the as-grown amorphous film
display a broad peak, ranging from 420 to 530 cm−1, associated with the optical vibra-
tion modes of amorphous silicon [40,41]. However, after the annealing step, a distinct
crystalline peak at 513 cm−1 becomes evident (Figure 3c). The sharp peak exhibits a blue
shift of approximately 7 cm−1 compared to the peak of single crystalline silicon due to
phonon confinement in nanocrystalline silicon and mechanical stress induced in the lattice
by femtosecond laser treatment [40].

Laser annealing experiments have also explored more energetic wavelengths in the
near UV range (200–400 nm) [42] and visible range (400–780 nm) [43,44]. For instance, Pan
et al. utilized near ultraviolet (λ ≈ 400 nm) femtosecond laser annealing in a scanning
mode to crystallize amorphous silicon (a-Si) films at room temperature. They investigated
the impact of laser fluence, beam overlap, and number of laser shots on the average grain
size of the resulting polycrystalline silicon. The experiment revealed that increasing either
the beam overlap at a fixed fluence or the fluence for a fixed number of shots generally
leads to larger grain sizes [45]. Additionally, they compared the crystallization degree
of the polysilicon obtained through UV annealing with that produced by IR annealing
(λ ≈ 800 nm) using Raman spectroscopy. Figure 4a demonstrates that the Raman peak
associated with λ = 400 nm is sharper than the peak associated with λ = 800 nm, indi-
cating a higher crystallization degree at λ = 400 nm (near UV) compared to λ = 800 nm
(near-infrared).

In contrast, cross-sectional SEM images showed that the 100 nm thick a-Si film is not
fully crystallized by UV annealing, unlike in the case of IR annealing (see Figure 4b). This
can be attributed to the much shorter penetration depth of 400 nm light in amorphous
silicon compared to 800 nm light.

UV radiation with nanosecond pulse durations has also been tested [46–49], as demon-
strated by Garcia et al. [33]. They employed solid-state laser systems for annealing and
compared the effect of UV radiation with that of visible light. The Nd:YVO4 systems, with
pulse widths of 15 ns and 12 ns at a repetition rate of 50 kHz, were used at different wave-
lengths: fundamental frequency in the IR (1064 nm), doubled to green (532 nm), and tripled
to UV (355 nm). Two fluence thresholds (F1 and F2) governing the melting process were
identified, with their values depending on the wavelength employed. These thresholds
represent the range of fluence within which the annealing process should take place. When
the fluence is lower than F1, the silicon surface is not melted as the energy of the laser pulse
is insufficient for a phase change. On the other hand, exceeding the F2 threshold results in
ablation and material damage. For a UV wavelength of 355 nm, the F1 and F2 values are
70 mJ/cm2 and 374 mJ/cm2, respectively, while for a visible wavelength of 532 nm, F1 and
F2 values are 110 mJ/cm2 and 304 mJ/cm2, respectively [33]. The authors were not able
to crystallize a-Si with their system using a 1064 nm wavelength, because they had to use
a longer laser pulse and higher fluence due to lower absorption in the IR range, causing
material ejection.
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Finally, laser annealing and crystallization of amorphous Si have also been explored
using visible light generated by nanosecond pulsed and continuous wave lasers [50–52].
Son et al. [53] employed a Nd:YVO4 continuous wave (CW) laser with a wavelength of
532 nm (green light), an output power of 7.5 W, and a scanning speed of 270 mm/s to
crystallize the samples. The laser beam had dimensions of 20 µm (short axis, scan direction)
× 800 µm (long axis, transverse direction), with a Gaussian shape in the short axis and
a top-hat shape in the long axis. This conventional laser system was compared with a
system that utilized a cylindrical microlens array. In the latter system, the laser beam was
split into two components: one traveled directly while the other was refracted through
the cylindrical microlens. The two components met and interference occurred due to the
superposition of the split beams, resulting in enhanced intensity and incident power per
unit area on the a-Si due to constructive interference.
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Figure 4. (a) Raman spectra of silicon dies showing the peak at 520 cm-1 (typical of crystalline
Si) for the sample annealed using a 400 nm laser wavelength (sharper, red circles and red curve)
and for the sample annealed using an 800 nm laser (smaller, black open squares) [45]. (b) Cross-
sectional SEM images of samples annealed by femtosecond laser annealing with IR (800 nm,
400 ◦C, 45 mJ/cm2, left) and UV (400 nm, 100 ◦C, 23.3 mJ/cm2, right) radiation, showing the
formation of poly-Si. The scale bars correspond to 100 nm [45]. (c) SEM images of crystallized poly-Si
film treated with (left) conventional CW laser and (right) CW laser equipped with a cylindrical
microlens array. The scale bars correspond to 5 µm. Copyright 2012, Wiley. Reproduced with
permission from Ref. [53]. (d) Raman spectra of a-Si, c-Si, and polysilicon samples treated with BLA,
GLA, and furnace annealing [54].

SEM analysis (Figure 4c) depicted the poly-Si film annealed using the conventional
CW laser and the CW laser equipped with a microlens array. The grains of the poly-Si film
produced by conventional CW laser crystallization were large but had irregular shapes and
orientations. In contrast, the grains obtained by CW laser crystallization using a cylindrical
microlens array were larger and more regular.

In order to provide a comprehensive analysis of annealing in the visible range,
Pyo et al. [54] investigated the polycrystalline silicon obtained through green laser an-
nealing (GLA) using a 532 nm nanosecond pulsed laser and blue laser annealing (BLA)
using a 450 nm continuous wave laser. For GLA, the second harmonic of a Q-switched
Nd:YAG laser was utilized with a scanning speed of 4 cm/s, a pulse repetition rate of
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30 kHz, and a pulse width of 30 ns. The beam profile was approximately Gaussian with
a beam waist of approximately 6 µm, and the peak power was 2.7 W, corresponding to a
pulse energy of 86 nJ and an energy density of 153 mJ/cm2. The CW laser used for BLA
consisted of two GaN-based blue laser diodes emitting at 450 nm. The BLA beam shape was
rectangular, with a spot size of 6 µm × 2 µm and a power of 530 mW. The laser annealing
experiments were conducted at room temperature (25 ◦C) under a nitrogen environment,
with nitrogen pressure maintained at 1.5 times the atmospheric pressure.

After the annealing processes, the crystallinity of the annealed poly-Si was examined
using Raman spectroscopy, as shown in Figure 4d, and compared with a standard furnace
heating process. The Raman spectrum of amorphous Si exhibited a broad distribution
centered at approximately 480 cm−1 in the transverse optic (TO) phonon mode, while
crystalline Si displayed a sharp peak at around 520 cm−1 associated with the TO phonons.
The shift and full width at half maximum (FWHM) of the a-Si and c-Si peaks were used to
analyze the crystallinity of the annealed poly-Si film. Improved crystallinity is indicated by
a shift in the TO phonon peak of poly-Si towards that of c-Si. The Raman shift values for
furnace annealing, BLA, and GLA were 519 cm−1, 517.5 cm−1, and 516.5 cm−1, respectively.
The FWHM values for furnace annealing, BLA, and GLA were 7.5 cm−1, 9.0 cm−1, and
9.5 cm−1, respectively.

By using the relative values of FWHM and the intensity of TO phonon Raman peaks,
it is possible to calculate the crystal volume fraction (fc) of poly-Si [55]. The fc of poly-Si can
be quantitatively evaluated using the following formula:

fc =
Ic

Ic + Ia
(2)

where fc is the crystalline volume fraction. Ic and Ia stand for the integrated Raman
scattering intensity of crystalline and amorphous sections, respectively. Ic can be obtained
by the deconvolution of each Raman spectrum into Gaussian components corresponding
to the crystalline phases. The same can be done for Ia, but with the amorphous phases.
Looking at Figure 4d, when a-Si becomes poly-Si, the TO phonon peak of the crystalline
phase is slowly shifted toward the c-Si peak and FWHM is decreased, resulting in an
increase in fc. The fc values were 90.6% for BLA and 88.2% for GLA, indicating a slightly
higher crystal quality for BLA. This finding is consistent with the longer Raman peak shift
of GLA observed in Figure 4d. As expected, the furnace-annealed poly-Si sample showed
the best crystallinity, while BLA and GLA showed lower crystallinity conversion. On the
other hand, BLA and GLA processes have the advantage of heating only the superficial
part of the sample, with respect to furnace processes, obtaining a successful degree of
crystalline conversion.

A summary of the main parameters used during Si laser annealing processes
described in the literature, which successfully convert amorphous silicon into crystalline or
polycrystalline silicon, is presented in Table 1.

Research has revealed the potential for transforming amorphous silicon (a-Si) into
poly-Si using a range of wavelengths spanning from infrared (IR) to ultraviolet (UV) across
different laser systems. Silicon exhibits reduced absorption of IR light compared to vis-
ible and UV light, necessitating the use of higher power and shorter pulse durations in
these procedures. Despite the challenges associated with crystallization using IR light,
it is feasible even on thicker amorphous layers due to its greater penetration depth; con-
versely, laser annealing processes facilitate crystallization more readily with visible and UV
lasers, proving more effective on thin amorphous layers due to the higher absorption rate
of silicon.
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Table 1. Main parameters of silicon laser annealing processes presented in the literature.

Ref. Laser Type Wavelength Pulse Duration Beam Profile Environment Energy/Power
Density *

[35] Yitterbium
doped fiber IR (1064 nm) 200 ns / ambient

conditions /

[36] Ti-Sapphire IR (800 nm) 50–125 fs / / 38–63 mJ/cm2

[38] Ti-Sapphire IR (800 nm) / / / 160–305 mJ/cm2

[37] Yb:KGW IR(800 nm) 40–200 fs Gaussian / 49–69 mJ/cm2

[39] Yb:KGW IR(1026 nm) 230 fs Gaussian / 150 mJ/cm2

[45] Ti-Sapphire IR (800 nm) 50 fs / / /

[34] Ti-Sapphire UV (400 nm) 50 fs / / 20–30 mJ/cm2

[33] Nd:YVO4 UV (355 nm) 12–15 ns Gaussian / 240 mJ/cm2

[33] Nd:YVO4 Green (532 nm) 12–15 ns Gaussian / 478 mJ/cm2

[53] Nd:YVO4 Green (532 nm) CW Gaussian in short axis,
top-hat in long axis / /

[44] Solid-state
diode Blue (440 nm) CW Elliptically / 4.61 W

[54] GaN-based
diode Blue (450 nm) CW Gaussian room T,

N2 atmosphere /

[54] Nd:YAG Green (532 nm) 30 ns rectangular room T,
N2 atmosphere 153 mJ/cm2

* Since the CW (continuous wave) lasers have no pulses, a power density is defined instead of an energy density.

4. Silicon Carbide Laser Annealing

Silicon carbide (SiC) is a valuable alternative to silicon for applications that involve
high temperatures and harsh, corrosive environments that would damage standard sil-
icon and polymer electronics [56–61]. The literature includes various examples of high-
temperature pressure sensors [62–68], accelerometers [69], and micromotors [70,71] fabri-
cated using SiC.

Furthermore, the bandgap of both amorphous and crystalline forms of silicon carbide
(SiC), which is wider than the Si bandgap, makes it a promising material for optoelectronic
applications [72,73], as well as high-power and RF/microwave electronics [74–77].

The crystalline form of SiC (c-SiC) is particularly suitable for high-power applications
due to its large bandgap (3–3.3 eV), high thermal conductivity (4.9 W cm−1 K−1), high
breakdown electric field strength (2.2 × 106 V cm−1), and high saturated electron drift
velocity (2.0 × 107 cm s−1) [72].

Different arrangements of Si-C bilayers in the [0001] direction give rise to over
200 polytypes of SiC crystal structures [78]. These polytypes, named with the designations
C, H, or R to represent cubic, hexagonal, or rhombohedral symmetry, exhibit significant
variations in properties such as carrier mobility and electronic gap. Among them, 4H-SiC
is often favored for microelectronics applications due to its high carrier mobility.

Lasers have been investigated as tools for both additive (annealing, deposition, surface
alteration, and doping) and subtractive (ablation) SiC processing since the early 1980s;
however, they have not been widely adopted for microelectronics and MEMS applications.
Various types of lasers have been tested for microfabrication on silicon carbide, including
traditional excimer, Nd:yttrium aluminum (Nd:YAG), and CO2 lasers [79–84], as well as
more recent lasers such as N2 [85], Ar+ [86], Cu vapor [87], and promising picoseconds [88]
and femtosecond lasers [89,90].

For MEMS applications, annealing of amorphous and polycrystalline SiC can be useful
for surface recovery after ion implantation damage [75] or to transform amorphous silicon
carbide into a crystalline phase [91,92].
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A subject of ongoing discussion is whether laser-induced recrystallization occurs
through solid-state [93–95] or liquid-phase recrystallization [93,94,96–100]. Different effects
have been reported by different research groups using the same type of laser. For example,
Hishida et al. [95] reported solid-phase recrystallization while Ahmed et al. [99] reported
liquid-phase recrystallization even though both groups used XeCl lasers to anneal Al+

ion-implanted 6H-SiC.
In general, various types of lasers, capable of generating pulsed or continuous wave ra-

diation at different wavelengths, can be used for SiC laser annealing. However, nanosecond-
pulsed UV lasers such as excimer and frequency tripled and quadrupled Nd:YAG lasers
(base emission at 1064 nm) are the most commonly used due to their prevalence and the
high optical absorption of crystalline SiC at UV wavelengths [91,92,101–103].

Basa et al. [104] presented evidence of successful SiC crystallization through laser
annealing. They used a KrF excimer laser emitting nanosecond UV pulses with a wave-
length of 248 nm and a pulse duration of 30 ns to crystallize a SiC film previously deposited
using the PECVD technique in air and at room temperature. The energy density delivered
ranged from 123 to 242 mJ/cm2. X-ray diffraction (XRD) measurements confirmed the
crystallization process. The spectra (Figure 5a) displayed peaks associated with crystalline
silicon at 2θ = 28.3◦ (corresponding to the (111) reflection plane of Si), 2θ = 47.2◦ (for the
(220) reflection plane of Si), and 2θ = 56◦ (for the (311) reflection plane of Si). At energy
densities of 188 mJ/cm2 or higher, a new peak emerged at 2θ = 35.6◦, corresponding to the
(111) reflection plane of cubic silicon carbide 3C-SiC. Moreover, as the laser energy density
increased, the intensities of the Si and SiC peaks also increased, providing clear evidence of
improved crystallinity.

Hedler et al. [94] also utilized a nanosecond-pulsed KrF excimer laser (30 ns pulse
duration) to achieve SiC structure recovery. They employed a wavelength of 248 nm
to enable SiC band-to-band absorption and facilitate the crystallization of a previously
amorphized SiC film by ion implantation. The experiment was conducted in air and at room
temperature using up to 50,000 pulses at a repetition rate of 50 pulses/s and laser fluences
ranging from 150 to 900 mJ/cm2. Subsequent characterization measurements confirmed
the crystallization and revealed that higher laser fluences led to a deeper crystallization
within the film and an oxidation effect due to the laser irradiation in the air. Additionally,
transmission electron microscopy images (Figure 5b) demonstrated that an amorphous
layer remained between the upper annealed polycrystalline 3C-SiC layer and the crystalline
4H-SiC substrate, indicating that no epitaxial growth occurred during the annealing process.

To achieve successful recrystallization of previously amorphized silicon carbide (SiC)
through Al+ ion implantation, Mazzamuto et al. [105] utilized an excimer laser system with
a different emitted wavelength (308 nm) in the UV range and a short pulse duration of
about 160 ns. A higher irradiated fluence allowed for deeper columnar recrystallization
of the SiC film after the melting phase induced by laser treatment. The effectiveness of
the laser annealing process was confirmed through X-ray diffraction (XRD) measurements.
The XRD signal exhibited two prominent peaks at 2θ = 33.5◦, corresponding to the (100)
orientation of 4H-SiC, and 2θ = 71◦, corresponding to the (201) orientation of 4H-SiC.
Following the annealing process, the peak at 2θ = 33.5◦ experienced a slight shift due
to Al doping activation caused by laser treatment. Furthermore, electron energy loss
spectroscopy (EELS) analysis clarified the potential for epitaxial regrowth of crystalline
SiC. Three main regions resulting from the phenomenon of 4H-SiC epitaxial regrowth were
identified: a region consisting of carbon crystallized in thin graphite layers (multi-layer
graphene), a region with crystal silicon, and a region of strained 4H-SiC.
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Figure 5. (a) XRD spectra of SiC samples annealed at different laser energy densities showing peaks
associated with crystalline phases. Reprinted from [104], Copyright (2009), with permission from
Elsevier. (b) TEM image indicating a polycrystalline 3C-SiC surface layer (A), a remaining amorphous
layer (B), and a monocrystalline 4H-SiC substrate (C) after laser annealing treatment. The scale
bar corresponds to 50 nm. Reprinted from [94], Copyright (2003), with permission from Elsevier.
(c) TEM image of a laser-crystallized SiC film. The scale bar corresponds to 50 nm. Reprinted
from [96], Copyright (2001), with permission from Elsevier.

Laser annealing experiments were also conducted under various environmental con-
ditions, including a heated sample [96], an argon (Ar) atmosphere [106,107], and under
vacuum [95] to facilitate crystallization and remove oxidizing agents. Urban et al. [96]
specifically employed a KrF excimer laser with a 25 ns pulse duration and a UV wavelength
of 248 nm to anneal a sample placed on a heating stage at 400 ◦C. A single laser shot with
fluences ranging from 100 to 1000 mJ/cm2 was applied to the material. Optical microscopy,
transmission electron microscopy (TEM), and Raman spectroscopy were used for character-
ization, revealing the presence of a fluence threshold of 250 mJ/cm2. Below this threshold,
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no modifications occurred in the SiC samples, leaving the material in its amorphous phase.
Conversely, when the SiC film was irradiated with a laser fluence higher than 250 mJ/cm2,
the annealing process successfully crystallized the SiC film, resulting in SiC grains with
diameters of 10–20 nm and cubic polycrystalline structures, as depicted by the TEM images
(Figure 5c).

Fluences significantly exceeding the crystallization threshold resulted in the segre-
gation of SiC, as shown in Figure 6a. This was indicated by the appearance of Raman
peaks at 1500 cm−1 (graphite) and 510 cm−1 (crystalline Si), while the typical peaks of
crystalline SiC around 790 or 960 cm−1 were absent. The remaining amorphous SiC near
the substrate contributed to the high background signal. It is worth noting that, considering
the laser parameters used by Urban et al. [96], such as a 25 ns pulse duration, solid-phase
crystallization seems unlikely, suggesting that the annealing process involves a mechanism
associated with a metastable liquid phase of SiC.

There have been attempts to anneal SiC films using infrared (IR) wavelength, as
demonstrated in the study by Goyes et al. [108]. In their experiment, a continuous wave
CO2 laser with a wavelength of 1060 nm and Gaussian beam distribution was employed
to anneal an amorphous SiC film deposited on a silicon wafer under vacuum conditions.
The irradiation time ranged from 10 to 30 min, while the laser power was set to 8 W. X-ray
diffraction (XRD) measurements were taken to compare sample structures before and after
laser treatment. The XRD spectra revealed that the SiC film was initially amorphous, as
evidenced by the absence of peaks. However, laser annealing led to crystallization and
the formation of α-SiC and β-SiC phases. Specifically, after 10 min of annealing, the β-SiC
phase with a (200) orientation was predominant, as it is the most stable phase at high
temperatures. After 30 min of annealing, α-SiC became the dominant crystalline phase,
although β-SiC with a (111) orientation was still present. Silicon carbide absorption of IR
light is negligible, thus crystallization of a-SIC was probably induced by heating the silicon
layers underneath, which absorbed the laser radiation, and by thermal conduction of the
silicon carbide thin film.

The implementation of laser radiation in the visible range has shown some promising
results, allowing it to be considered a possible alternative to UV annealing, as demonstrated
by several studies [93,109,110]. Baeri et al. [93] observed that annealing an amorphous
SiC sample with a Q-switched ruby laser emitting at a wavelength of 694 nm (red) and
fluences ranging from 100 to 1000 mJ/cm2, along with a 25 ns pulse duration, caused a
solid-phase transformation of amorphous SiC into the crystal phase. This process involved
the generation of heat through light absorption near the sample surface, followed by cooling
through heat transport to the colder substrate. The amorphous SiC reached its equilibrium
temperature with the liquid SiC and underwent solidification, resulting in a polycrystalline
structure with an average grain size of approximately 30 nm.

Ambrosone et al. [109] investigated the effects of SiC laser annealing using a pulsed
frequency Nd:YAG laser with a green wavelength (532 nm) and pulse duration and energy
of 10 ns and 2.9 mJ, respectively. The results were compared with those obtained using a
pulsed KrF excimer laser with a UV wavelength (248 nm) and pulse duration and energy
of 30 ns and 290 mJ, respectively. Both laser annealing experiments were conducted in air
at room temperature, with a 60% spatial overlap between successive pulses delivering a
fluence of 242 mJ/cm2. The goal was to crystallize amorphous silicon films with carbon
content (χ) ranging from 0.08 to 0.28. The annealed samples were subsequently character-
ized using XRD spectroscopy to assess how different parameters influence the structure of
the final material. Figure 6b illustrates the XRD spectra of films annealed with green laser
light, displaying three sharp peaks indicative of the presence of crystalline Si, while peaks
associated with crystalline SiC grains were absent. Additionally, it can be observed that the
amplitudes of the crystalline Si peaks decrease as the carbon content increases, resulting
in a decrease in the crystalline volume fraction (evaluated by the integrated area of the
peaks [111]). The film with the highest carbon content (χ = 0.28) exhibited only a small
peak at 28.3◦.
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Figure 6. (a) Raman spectra of silicon carbide films before (a-SiC) and after high fluence irradiation,
showing segregation into c-Si and graphite. Reprinted from [96], Copyright (2001), with permission
from Elsevier. (b) XRD spectra of SiC films, with different carbon content x, irradiated with Nd:YAG
green laser. Reprinted from [109], Copyright (2005), with permission from Elsevier. (c) XRD spectra
of SiC films, with different carbon content x, irradiated with KrF UV laser. Reprinted from [109],
Copyright (2005), with permission from Elsevier.
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On the contrary, the XRD spectra in Figure 6c reveals that the peaks associated with
crystalline Si become sharper and their intensities increase after UV laser annealing, indicat-
ing increasing crystalline volume fractions with higher χ values. Interestingly, crystalline
SiC is also present after treatment. The spectra of films with higher χ (i.e., 0.18 and 0.28)
show a peak at 35.6◦ corresponding to the (111) plane of 3C-SiC [109]. Similar to the peaks
associated with crystalline Si, a higher carbon content (χ) results in a greater SiC crystalline
volume fraction. The average size of the crystalline SiC grains is approximately 30 nm,
calculated using the Debye-Sherrer formula.

This difference between the SiC absorption of green and UV lights can be theoretically
explained; in fact, the energy associated with green light (532 nm) is about 2.3 eV, which
is very similar to the amorphous SiC bandgap (in the range of 2–2.5 eV). This means that
the energy of the green photons is just high enough to allow some electrons on the top of
the valence band to be promoted to the very bottom of the conductive band. Therefore, by
considering that the states in the regions of conductive and valence bands involved in this
process are very few, it is possible to assert that the probability is quite low and, hence, the
absorption is inefficient. Instead, the energy associated with UV photons (248 nm) is about
4.9 eV, which is much higher than the amorphous SiC bandgap; thence, there are many
states involved in the promotion of electrons due to the energy released by UV photons.
The absorption process is therefore very efficient in this case.

In another study by Palma et al. [110], a green laser was used for SiC annealing;
however, instead of nanosecond pulses, continuous-wave radiation was emitted. The
samples were irradiated in the air at room temperature using a beam with a transverse
Gaussian intensity distribution delivered by an Argon laser with power densities ranging
from 5 × 103 to 5 × 106 W/cm2 and a wavelength of 514.5 nm. SEM images clearly showed
that different regions of the sample experienced varying degrees of SiC crystallization
due to the radial intervals of the incident Gaussian energy distribution of the beam. The
central region, where the temperature was higher, had polycrystalline carbon while the
outer region, where the temperature was lower, had poly-Si.

After the annealing process, Raman spectroscopy was used to study the crystallization
outcomes of the SiC film with a carbon content of χ = 0.3. When the sample was irradiated
with a low power density (104 W/cm2), only the Si TO phonon line at around 520 cm−1

was observed in the Raman spectrum [112]. Conversely, irradiating the SiC film with very
high-power density (approximately 106 W/cm2) resulted in the formation of graphite-
related lines in the Raman spectrum, with broad bands at 1350 cm−1 and 1600 cm−1 and a
relatively absent crystalline silicon peak.

However, using laser power density in the range of 2–6 × 105 W/cm2, the Ra-
man spectrum exhibited both a crystalline silicon peak at 520 cm−1 and broad bands at
1350 cm−1 and 1600 cm−1, characteristic of polycrystalline graphite. This indicated the
simultaneous crystallization of both species, known as the phase segregation effect, high-
lighting the difficulty of achieving the crystallization of compound semiconductors and
the stringent experimental conditions required to achieve this goal [8]. The mechanism of
phase segregation in binary systems is not completely understood, but recent studies on
silicon carbide demonstrate that this phenomenon can occur in solid-state binary materials
that include one element that has the lowest surface energy from the liquid state of the
binary system, and this element should have a larger melting temperature than the other
element and the binary compound. Therefore, the presence of carbon in silicon carbide
facilitates the formation of phase separation.

Lastly, it is important to note that with a slightly higher laser power density
(8 × 105 W/cm2), an amorphous SiC film with a specific carbon content of χ = 0.48 can
undergo the crystallization process without the segregation effect. Consequently, the crys-
talline phase of SiC can be obtained after laser annealing. The Raman spectrum displayed
a sharp peak at 790 cm−1, typical of crystalline SiC, and weaker and broader features at
900–1000 cm−1. This analysis confirmed the conversion of amorphous SiC into crystalline
SiC. Specifically, since the hexagonal phase α-SiC would have exhibited a peak at 970 cm−1,
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the Raman analysis demonstrated that the produced polytype is cubic SiC (β-SiC). The
mechanism of phase segregation in a binary system is not fully understood; however, recent
studies on silicon carbide indicate that this phenomenon can occur in solid-state binary
materials containing an element with the lowest surface energy from the liquid state of the
binary system. Additionally, this element should have a higher melting temperature than
both the other element and the binary compound. The presence of carbon in silicon carbide
promotes the formation of phase separation [113]. Stoichiometric SiC (Si:C ratio around 1:1)
preserves phase separation along with precise control of power density to more uniformly
melt the amorphous silicon carbide layer.

A summary of the main parameters used during SiC laser annealing processes reported
in the literature that attempt to crystallize amorphous silicon carbide is presented in Table 2.

Table 2. Main parameters of silicon carbide laser annealing processes presented in the literature.

Ref. Laser Type Wavelength Pulse Duration Beam
Profile Environment Energy/Power Density *

[104] KrF excimer UV (248 nm) Nanosecond (30 ns) / Room T, air 123–242 mJ/cm2

[94] KrF excimer UV (248 nm) Nanosecond (30 ns) / Room T, air 150–900 mJ/cm2

[105] LASSE excimer UV (308 nm) Nanosecond (160
ns) / / 3200 mJ/cm2

[96] KrF excimer UV (248 nm) Nanosecond (25 ns) / T = 400 ◦C, air 100–1000 mJ/cm2

[106] KrF excimer UV (248 nm) Nanosecond (20 ns) / Ar atmosphere 200 mJ/cm2

[95] XeCl excimer UV (308 nm) / / Room T,
vacuum /

[82] XeCl excimer UV (308 nm) Nanosecond
(160 ns) / / 1000–2800 mJ/cm2

[83] XeCl excimer UV (308 nm) Nanosecond
(30 ns) / / 500–600 mJ/cm2

[107] Nd:YAG UV (355 nm) Nanosecond (10 ns) Gaussian Ar atmosphere 100–1200 J/cm2

[109] KrF excimer UV (248 nm) Nanosecond (30 ns) / Room T, air 242 mJ/cm2

[109] Nd:YAG Green (532 nm) Nanosecond (10 ns) / Room T, air 242 mJ/cm2

[93] q-switched
Ruby Red (694 nm) Nanosecond (25 ns) / / 100–1000 mJ/cm2

[110] Argon laser Green (514 nm) Continuous wave Gaussian Room T, air 8 × 105 W/cm2

[5] Nd:YLF Green (527 nm) Nanosecond
(200 ns) / N2 atmosphere 1170–2500 J/cm2

[108] CO2 DIR (1060 nm) Continuous wave Gaussian Vacuum 5.7 W/cm2

* Since the CW (continuous wave) lasers have no pulses, a power density is defined instead of an energy density.

Several attempts to crystallize amorphous silicon carbide through laser annealing
have indicated that the most effective method involves the use of UV wavelengths. This is
because UV wavelengths possess energies well above the bandgap of a-SiC. Conversely,
lasers in the visible range are less effective due to inefficient absorption, as the photon energy
closely aligns with the a-SiC bandgap. However, by carefully tuning process parameters,
crystallization can still be achieved with visible-range lasers. Only one example of an
IR laser process has been presented, but the crystallization was inefficient and linked to
heating the underlying silicon bulk.

A notable distinction from silicon crystallization is that irradiating amorphous SiC
alloys can yield different crystalline results. This outcome depends on the laser energy
delivered and the carbon concentration in the film. The controlled formation of the SiC
crystalline phase is achievable when the alloy composition is within the quasi-stoichiometric
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range (x ≈ 0.4–0.5). However, lower carbon content can result in phase segregation, leading
to the formation of crystalline silicon and graphite.

5. Conclusions

This review underscores the pivotal role of laser annealing in semiconductor technol-
ogy, particularly in transforming amorphous phases into localized crystalline structures,
thereby offering precise control over material properties. Studies in the field highlight the
numerous advantages of laser annealing over conventional furnace processes. Notably,
it allows for localized annealing, preventing unintended damage to delicate regions and
enabling spatial control of crystallization. Additionally, laser annealing facilitates rapid
local temperature increases and operates under thermodynamic non-equilibrium condi-
tions. Conversely, furnace annealing boasts advantages such as a simpler setup and higher
scalability for industrial processes, treating multiple wafers simultaneously. However, it
comes with drawbacks, including slower heating ramps and a lack of spatial selectivity in
treating specific areas of the device.

In the realm of silicon—the most widely utilized semiconductor—a multitude of ap-
proaches has been explored. Various laser technologies, encompassing continuous wave,
nanosecond-pulsed, and femtosecond-pulsed lasers, have been applied, producing ra-
diation wavelengths spanning the infrared (IR), visible, and ultraviolet (UV) spectrums,
yielding diverse but predominantly positive outcomes. Silicon exhibits diminished ab-
sorption of infrared (IR) light compared to visible and ultraviolet (UV) light, necessitating
the use of higher power and shorter pulse durations in procedures involving IR light.
Despite the challenges associated with crystallization using IR light, it remains viable, even
on thicker amorphous layers, owing to its greater penetration depth. Conversely, laser
annealing processes prove more efficacious in fostering crystallization with visible and UV
lasers, especially on thin amorphous layers, due to silicon’s heightened absorption rate in
this spectral range. A review of the literature reveals that laser annealing of silicon layers
has evolved into a well-established technique for crystallization and doping activation.
However, achieving the desired results demands meticulous fine-tuning. Despite this pre-
requisite, there is considerable potential for the successful implementation of this process,
transitioning from research endeavors to an industrial context.

The growing significance of silicon carbide (SiC) in harsh conditions and optical
applications has spurred research on laser annealing as a means to achieve a crystalline
phase transition. However, in comparison to silicon, the exploration of laser annealing
routes for SiC is relatively limited. Excimer lasers, generating nanosecond pulses in the UV
range, have been the predominant technology for SiC annealing, demonstrating effective
crystallization of amorphous SiC. Only a few prior experiments have delved into the use
of continuous wave lasers based on non-excimer technologies or utilized wavelengths
in the visible range. Further exploration of these alternative solutions, along with the
adoption of new laser technologies, can provide detailed insights into achieving efficient
laser annealing of SiC. This advancement would enable precise control over the transition
from amorphous SiC to the desired crystalline polytype. Hence, laser annealing emerges
as a compelling technique for exploring the crystallization of amorphous SiC. However,
its current application is primarily confined to the research fields. The impediments
to its industrial implementation stem from various limitations and complexities. These
challenges encompass the need for higher-energy photons to effectively transfer energy
to the material and the intricacies associated with treating alloy materials. There is a risk
of inducing phase segregation with different crystalline phases of the involved atoms,
necessitating fine-tuning of the laser process to avoid these phenomena.
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