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Abstract: MXene is becoming a “rising star” material due to its versatility for a wide portfolio of
applications, including electrochemical energy storage devices, electrocatalysis, sensors, biomedical
applications, membranes, flexible and wearable devices, etc. As these applications promote increased
interest in MXene research, summarizing the latest findings on this family of materials will help
inform the scientific community. In this review, we first discuss the rapid evolutionary change in
MXenes from the first reported M2XTx structure to the last reported M5X4Tx structure. The use of
systematically modified synthesis routes, such as foreign atom intercalation, tuning precursor chem-
istry, etc., will be further discussed in the next section. Then, we review the applications of MXenes
and their composites/hybrids for rapidly growing applications such as batteries, supercapacitors,
electrocatalysts, sensors, biomedical, electromagnetic interference shielding, membranes, and flexible
and wearable devices. More importantly, we notice that its excellent metallic conductivity with its
hydrophilic nature distinguishes MXene from other materials, and its properties and applications can
be further modified by surface functionalization. MXene composites/hybrids outperform pristine
MXenes in many applications. In addition, a summary of the latest findings using MXene-based
materials to overcome application-specific drawbacks is provided in the last few sections. We hope
that the information provided in this review will help integrate lab-scale findings into commercially
viable products.

Keywords: MXenes; MXene composites; energy storage; electrocatalysts; sensors

1. Introduction

Presently, because of innovations in science and nanotechnology, the knowledge and
applications of nanomaterials and nanomaterial-based composites are constantly chang-
ing. The unique size and composition-specific properties of nanomaterials help solve
many challenges in science. Nanomaterials can be classified based on their morphology,
dimensionality, size, agglomeration state, and composition, which, depending on each
characteristic, makes them suitable for a wide variety of applications. Two-dimensional
(2D) nanomaterials have an atomic thickness, ample active surface sites, a large surface
area-to-volume ratio, and excellent mechanical properties, which make them ideal for
multiple applications, most prominently in energy storage, electronics, sensors, catalysis,
and biomedical applications [1,2]. In that sense, it is further confirmed that the class of
2D nanomaterials is one of the most prominent and widely used/studied materials so far.
Graphene, the first form of 2D nanomaterial, was discovered in 2004 by Novoselov et al. [2].
Subsequently, there have been numerous 2D nanomaterials, including, for instance, hexag-
onal boron nitride, transition metal dichalcogenides, and phosphorene. Among this list,
graphene’s unique honeycomb-like single-atomic structure makes it highly conductive and
stronger [3].
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Although graphene has made more significant progress in science and technology
than all other 2D materials, its simple structure and chemistry limit its further advancement.
Recently, a group of new materials labeled MXenes has significantly influenced inventive
ideas in each field of scientific research. Its complex atomic arrangement and multilay-
ered structure with excessive tunable properties enhance its multifunctional behaviors.
Examples are the breakthroughs made in energy storage devices, catalysts, sensors, anten-
nas and RFID tags, biomedical applications, electromagnetic interference shielding (EMI),
nanocomposite-hybrid materials, environmental and water purification, etc. [4]. With the
emerging applications of MXene in various fields, an idea has arisen among the scientific
community that “MXenes are the future of nanotechnology”. In new research studies, the
ability to tune the surface, electrical and electrochemical properties by tailoring the surface
functional groups of MXene, as in graphene, further supports this notion. Most MXenes
and MXene-based materials have high volumetric capacitance, antibacterial properties,
electrochromic behavior, high electronic conductivity, and optical transparency [4]. There-
fore, MXenes open the door to new applications and modify/improve the performance of
current applications.

For the past 11 years, starting with the discovery of the first MXene in 2011, many
academic researchers have led experiments using a variety of compositions and structures
of MXenes. According to the literature, the MXene family includes carbides, nitrides, and
carbonitrides with the structure of Mn+1XnTx, where M is an early transition metal (Ti, V,
Mo, Ta, etc.), X is C and/or N, Tx represents the surface groups (typically =O, −OH, −F,
and −Cl), and n = 1–4. MXenes are produced by the selective chemical etching of specific
atomic planes from layered carbide/nitride precursors known as MAX phases. Generally,
MAX-phase carbide/nitride precursors consist of an Mn+1AXn chemical formula, where A
represents Al or Si. As shown in Figure 1, depending on the composition of the transition
elements in the MAX phase, 2–5 atomic layers of the transition metal may exist in the
MXene. Every n layers of M atoms are interleaved with layers of pure A; the X atoms
occupy the octahedral sites between the M atoms [5,6].

To date, four different compositions of Mxenes have been synthesized: M2XTx,
M3X2Tx, M4X3Tx, and M5X4Tx (Figure 2a). According to their structure, they can be
identified as mono-transitional metal (TM) MXenes, double-TM solid solution MXenes,
double-TM ordered MXenes and high-entropy MXenes. The recently discovered high-
entropy MXenes, as mentioned in Figure 2b, have added great diversity to the MXene
family. According to Dadashi et al., more than 40 MXene structures were reported by 2021,
and theoretically, more than 100 possible compositions of MXenes have been predicted to
date. Figure 1 shows elements that can be used experimentally and theoretically for the
synthesis of MXenes and MAX phases [5,7–9]. In this review, the future of MXenes and
their potential impact on energy storage, electrocatalysis, sensors, biomedical applications,
and other emerging applications are discussed in depth.
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permission [9]. Copyright 2019, American Chemical Society.
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Figure 2. The HF-based synthesis of MXene from its MAX precursor and its effects as well as
various forms of MXene. (a) A schematic representation of MAX structures from n = 1 to n = 4 and
their etched MXene structures with transition metals, carbon/nitrogen, the majority of A-group
elements, and surface terminations. Adapted with permission [10]. Copyright 2021, John Wiley
and Sons. (b) High-entropy MXenes. Adapted with permission [11]. Copyright 2021, American
Chemical Society.
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2. Methods to Synthesize MXene

MXene has been shown to have intrinsic properties based on its composition and
structure. Therefore, the structures and synthesis routes of previously successfully pro-
duced MXenes are discussed throughout this section. Furthermore, this section provides a
scientific understanding of the production of the most studied and widely used MXene
materials safely and reliably.

2.1. Pure HF-Based Synthesis Routes

Many procedures for the synthesis of MXenes are based on the top-down method, in
which exfoliation of the layered transition metal carbide, Ti3AlC2, occurs by immersing
Ti3AlC2 powders in 50% hydrofluoric acid (HF). During the exfoliation process, Al layers
are selectively etched and replaced by −OH, and −F surface groups. After the etching
process, the Ti3C2Tx 2D layers are held together by hydrogen and van der Waals bonds.
The suspension was centrifuged at 3500 rpm and washed several times using deionized
water to neutralize the HF (etchant). The Ti3C2Tx was separated into multilayered (ML)
powder form. The XRD spectra, Raman spectra, and XPS spectra of Ti3AlC2 before and
after HF treatment are shown in Figure 3, which confirms the successful exfoliation into
MXene. The SEM image of the sample after HF treatment is similar to exfoliated graphite,
which provides a high surface-area-to-volume ratio. Most importantly, the metallically
conducting and hydrophilic behavior of MXenes was found to be remarkable compared to
graphene; therefore, these materials are considered for usage as multifunctional materials,
such as in catalysis, energy storage/pseudocapacitors, and Li-ion batteries [7].

Materials 2023, 16, x FOR PEER REVIEW 4 of 25 
 

 

and surface terminations. Adapted with permission [10]. Copyright 2021, John Wiley and Sons. (b) 

High-entropy MXenes. Adapted with permission [11]. Copyright 2021, American Chemical Society. 

2. Methods to Synthesize MXene 

MXene has been shown to have intrinsic properties based on its composition and 

structure. Therefore, the structures and synthesis routes of previously successfully pro-

duced MXenes are discussed throughout this section. Furthermore, this section provides 

a scientific understanding of the production of the most studied and widely used MXene 

materials safely and reliably. 

2.1. Pure HF-Based Synthesis Routes 

Many procedures for the synthesis of MXenes are based on the top-down method, in 

which exfoliation of the layered transition metal carbide, Ti3AlC2, occurs by immersing 

Ti3AlC2 powders in 50% hydrofluoric acid (HF). During the exfoliation process, Al layers 

are selectively etched and replaced by −OH, and −F surface groups. After the etching pro-

cess, the Ti3C2Tx 2D layers are held together by hydrogen and van der Waals bonds. The 

suspension was centrifuged at 3500 rpm and washed several times using deionized water 

to neutralize the HF (etchant). The Ti3C2Tx was separated into multilayered (ML) powder 

form. The XRD spectra, Raman spectra, and XPS spectra of Ti3AlC2 before and after HF 

treatment are shown in Figure 3, which confirms the successful exfoliation into MXene. 

The SEM image of the sample after HF treatment is similar to exfoliated graphite, which 

provides a high surface-area-to-volume ratio. Most importantly, the metallically conduct-

ing and hydrophilic behavior of MXenes was found to be remarkable compared to gra-

phene; therefore, these materials are considered for usage as multifunctional materials, 

such as in catalysis, energy storage/pseudocapacitors, and Li-ion batteries [7].  

 

Figure 3. (a) XRD pattern, (b) Raman spectra, (c) XPS spectra of the Ti3AlC2 before and after exfoli-

ation. (d) SEM image and (e) Cold-pressed disk of etched and exfoliated material after HF treatment. 

Reproduced with permission [7]. Copyright 2014, John Wiley and Sons. 

In a similar study, Ti2AlC, Ta4AlC3, (Ti0.5,Nb0.5)2AlC, (V0.5,Cr0.5)3AlC2, and Ti3AlCN 

MAX phases were exfoliated into Ti2C, Ta4C3, TiNbC, (V0.5,Cr0.5)3C2, and Ti3CNx MXene 

powders at room temperature. Therefore, many chemically diverse, Al-containing MAX 

phases can be exfoliated using the HF synthesis route. Similar to Ti3AlC2, layered hexag-

onal ternary metal carbides and nitrides of Ti, V, Cr, Nb, Ta, Hf, Zr, and Mo belong to the 

Figure 3. (a) XRD pattern, (b) Raman spectra, (c) XPS spectra of the Ti3AlC2 before and after
exfoliation. (d) SEM image and (e) Cold-pressed disk of etched and exfoliated material after HF
treatment. Reproduced with permission [7]. Copyright 2014, John Wiley and Sons.

In a similar study, Ti2AlC, Ta4AlC3, (Ti0.5,Nb0.5)2AlC, (V0.5,Cr0.5)3AlC2, and Ti3AlCN
MAX phases were exfoliated into Ti2C, Ta4C3, TiNbC, (V0.5,Cr0.5)3C2, and Ti3CNx MXene
powders at room temperature. Therefore, many chemically diverse, Al-containing MAX
phases can be exfoliated using the HF synthesis route. Similar to Ti3AlC2, layered hexagonal
ternary metal carbides and nitrides of Ti, V, Cr, Nb, Ta, Hf, Zr, and Mo belong to the MAX
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phases and can be exfoliated into various types of MXenes via the following chemical
reactions [8].

Mn+1AlXn + 3HF→Mn+1Xn + AlF3 + 1.5H2 (1)

Mn+1Xn + 2H2O→Mn+1Xn (OH)2 + H2 (2)

Mn+1Xn + 2HF→Mn+1XnF2 + H2 (3)

Following this, they reported the chemical intercalation of surface-functionalized
Ti3C2 with an intercalant such as urea, hydrazine monohydrate (N2H4. H2O), N, N-
dimethylformamide (DMF), and dimethyl sulphoxide (DMSO). This facilitated the delami-
nation of stacked Ti3C2 layers into separate 2D nanosheets in the solvent (colloidal solution
of MXene) after sonication. The results of this study concluded that the intercalation of
MXene layers would be an attractive synthetic route to achieve high capacitance and high
cycling rates of MXene-based anodes in energy storage devices [8]. Later, this phenomenon
was confirmed by several studies. Thus, the interlayer electron-transfer process of MXene
is sensitive to the spacing distance between neighboring layers, which varies regarding
temperature, cation intercalation, and flake morphology [12]. Scientists have further mod-
ified HF-based synthesis routes to produce numerous MXene-based compounds in less
hazardous and cost-effective ways. Chemical etching via in situ HF and mixed acids are the
leading techniques among these. Figure 4 shows the timeline of a typical synthetic route
for MXene in the past decade.
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2.2. Mixed HF-Based Synthesis Routes

To date, thin films of MXenes have attracted considerable attention because of their
large applications in the field of electronics, photonics, and sensing applications for prepar-
ing transparent conductive electrodes. Firstly, Halim et al. studied the feasibility of the
preparation of epitaxial Ti3C2Tx films by the room temperature selective etching of Al
from sputter-deposited epitaxial Ti3AlC2 thin films using HF and ammonium bifluoride
(NH4HF2) etchants. The NH4HF2 etching process leads to the simultaneous intercalation
of NH3 and NH4

+ species, which provides larger c-lattice parameters (~25 Å) than films
etched with HF. The c-lattice parameter value corresponds to the interlayer space among
MXene films. The intercalated Ti3C2Tx films have exhibited higher transparencies with
excellent metallic conductivity than their Ti3C2Tx counterparts. In addition, the other
advantage of NH4HF2 is that it is a mild etchant and less hazardous than HF, and it can
be a good substitute for hazardous HF. It is thus confirmed that the NH4HF2 etching is
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a potential pathway for the synthesis of the MXene-based transparent conductive thin
films [14].

By the reaction of the MAX phase with HF, (=O), (−OH), and (−F) functionalities are
introduced in the MXene structure, which expands the layer separation and makes the
material hydrophilic. The fluoride salt etching route enables the MXene to be intercalated
in the exfoliation process. As per the previous literature, a highly hazardous HF synthesis
route can potentially substitute the HF-based synthesis routes. For example, Ghidiu et al.
proposed a new synthesis route to prepare clay-like Ti3C2 MXene by etching Al from the
Ti3AlC2 MAX phase using lithium fluoride (LiF) and hydrochloric acid (HCl) solution. The
resultant clay-like material can be dried and shaped into a highly conductive solid or rolled
into micrometer-thin films. Fluoride salts, such as NaF, KF, CsF, tetrabutylammonium fluo-
ride, and CaF2 in HCl or H2SO4, also showed similar etching behavior to LiF. IN particular,
this single-step etching and intercalation process enhances the volumetric capacitances,
with excellent cyclability and rate performances of MXene-based electrodes compared to
the MXene-based electrodes prepared by the conventional HF synthesis route [15]. Based
on this synthetic method, various fluoride salt etching routes have been modified during
the past years. A study proposed the selective etching of Al from Ti3AlC2 and Ti2AlC, simi-
lar to those reported previously in the literature, using a mixture of iron fluoride (FeF3) and
HCl. Iron (Fe) is the fourth most abundant element in the Earth’s crust, and the FeF3 + HCl
mixture is less expensive and safer than working with HF. Furthermore, the etching process
of FeF3 + HCl can significantly alter the hydrophilic properties of MXene by controlling
the surface functionalization. This offers new opportunities to fabricate high-performance
materials based on MXenes for catalytic, electrocatalytic, and capacitance applications [16].

Another efficient method to synthesize MXene is the mixed-acid method. In 2018, a
neuroelectronic device was constructed by a high-throughput microfabrication process
using Ti3C2 MXene microelectrodes. The device exhibits superior impedance and in vivo
neural recording performance compared to standard metal microelectrodes. They synthe-
sized Ti3C2 MXene by selectively etching atomic layers of aluminum from Ti3AlC2 in an
aqueous HF and HCl solution for 24 h. The notable difference was that manual agitation
with a mixed acids system was carried out to create a homogeneous dispersion of large
Ti3C2 flakes that stimulate conductivity [17]. An additional subfamily of M5X4Tx MXenes
with five layers of TM was found in 2019. As the first M5X4Tx MXene, Mo4VC4Tx was
synthesized with a phase-pure Mo4VAlC4 MAX phase by the top-down method. Due
to their higher thickness, M5X4Tx MXenes could have the potential to be useful in many
applications, including, but not limited to, structural materials, optoelectronic devices with
high figures of merit, and electronics. Additionally, the Mo4VAlC4 MAX phase exhibits
twinning on the center TM layers of atoms, which makes Mo4VC4 MXene different from
all other known MXenes [4].

New compositions and structures of MXenes can be obtained through additional
tuning of the precursor chemistry of MXenes. The concept of high-entropy metal alloys is a
material synthesis strategy that has successfully led to the creation of high-entropy MAX
phases. Figure 5 depicts the schematic representation of various stages of the synthesis of
two high-entropy MXenes (TiVNbMoC3Tx and TiVCrMoC3Tx) from the TiVNbMoAlC3
and TiVCrMoAlC3 MAX phases [11]. High-entropy MAX phases were synthesized through
the reactive sintering of elemental powders. Tetramethylammonium hydroxide (TMAOH)
was used to delaminate the extracted high-entropy MXenes into single flakes of 2D MXenes.
This study reports the latest modification of the fabrication pathway reported in this
field [11]. Furthermore, the consequence of this synthesis route provides the enormous
contribution and positive results of two interrelated aspects of “atoms and ions” and
“crystal structure” while adding another milestone of tuning to this rapidly growing field.
Due to its increasing popularity among new researchers, Shuck et al. published a research
paper on the safety risks associated with each step of the MXene synthesis pathways and
the precautions to be followed for safe, reproducible, and reliable synthesis [18].
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by hydrofluoric acid to synthesize multilayer high-entropy MXenes. (d) Delamination of multilayer
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flakes of high-entropy MXenes TiVNbMoC3Tx and TiVCrMoC3Tx. Adapted with permission [11].
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3. Mxenes for Energy Storage Devices

As the world accelerates toward digitalization, the demand for efficient energy storage
devices (ESDs) has ramped up incredibly in a short period. Batteries and supercapacitors,
among all ESDs, have been identified as important contenders for efficient energy storage
due to their viable electrochemical characteristics. According to reported data, batteries
have a high energy density compared to supercapacitors. Supercapacitors have a high
power density compared to batteries. Due to their high energy density, batteries deliver
low power for long periods and are used in applications ranging from power electron-
ics to mobility and grid storage. However, limitations in low power and the lifetime of
charge-storage mechanisms in batteries constrain their expansion. The energy density of
batteries is size-dependent, which limits their use in microscale and wearable devices as
well. Supercapacitors are massively employed to store pulse power because of their high-
rate capability and long-term cyclability. Moreover, their environmental friendliness and
simple adsorption and desorption mechanism in terms of electrostatic interactions make su-
percapacitors a better choice than traditional batteries. In that sense, both devices have their
weaknesses. For this reason, there is a great quest for sustainable, low-cost, eco-friendly
alternative materials to produce high-performance batteries and supercapacitors [19].

MXenes have been largely investigated in energy storage applications since their
discovery due to their outstanding electrical and electronic properties. The atomic thickness,
crystalline nature, and layered structure of MXene facilitate a high specific surface area,
a low energy barrier for electron transport, and a short ion-diffusion path. In addition,
both theoretically and experimentally, it has been proved that the electronic properties of
MXenes can be modified by altering their surface terminations. Thus, recent energy storage
studies have been exploring new ways of using MXene and MXene-based resources to
reach efficient ESDs in the next fifty years. The MXenes and MXene-based composites
have been introduced into various components of ESDs, including electrodes, electrolyte,
and their interface areas, in several studies, particularly in those developing new portable
and flexible ESDs [20–22]. Therefore, this section focuses on recent studies related to the
application of MXene-based materials for batteries and supercapacitors. A summary of the
electrochemical performance of MXene-based materials in batteries and supercapacitors is
shown in Tables 1 and 2, respectively.
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3.1. MXenes for Batteries

The battery manufacturing industry has grown tremendously over the decades. Re-
cently, lead acid, lithium ion, nickel metal hydride, and nickel-cadmium batteries have
gained significant attention as energy storage and supply devices in terms of usage and
applications in the global battery market. However, technological advancements in terms of
improved efficiency, cost-effectiveness, and product innovation have led to the proliferation
of lithium-ion batteries (LIBs). In the future, LIBs are expected to infiltrate other battery
applications and capture more market share due to their high energy density and low cost.
However, the large number of compounds available has created a tremendous opportunity
for materials scientists to discover new battery electrodes. Many studies have been con-
ducted recently to improve the Coulombic efficiency and cyclic ability by inhibiting the Li
dendrite growth of lithium-ion batteries using MXenes. Moreover, batteries incorporating
MXene-based materials such as lithium-sulfur, aluminum, and zinc-ion batteries are also
developing vigorously [22,23].

MXenes have high lithium capacity, wider interlayer spacing, a low diffusion barrier for
Li ions, high electrical conductivity, and a low operating voltage (−0.2 to 0.6 V vs. Li/Li+),
which can provide excellent rate performance and cycling stability [24]. Numerous MXene
materials, such as Ti3C2Tx, Mo2TiC2Tx, Nb2CTx, V2CTx, Nb4C3Tx, and Mo2CTx, have
been examined as potential anodes for LIBs. In a study, multi-walled carbon nanotubes
(MCNTs) have been uniformly grown on a Ti3C2 MXene network by an in situ facile
microwave irradiation method under ambient conditions. The MCNTs@Ti3C2 composite
material was assembled as the anode in an LIB to improve the cyclic stability of the
LIB. The MCNTs@Ti3C2 composite exhibited high reversible capacities of 430 mAh/g at
1 A/g and 175 mAh/g at 10 A/g, which was attributed to the synergetic effects of the
connective MCNT bridges, large-capacity metal/metal oxides and the fine conductive
MXene matrix [25].

With current LIB technology, lithium-sulfur batteries (LSBs) are also moving forward
competitively for wider commercialization with their high specific energy. According to
the literature, the theoretical capacity and specific energy density of LSBs are 1675 mAh/g
and 2600 Wh/kg, respectively, which is four times higher than that of LIBs. However, their
wide application is severely hampered by the low electrical conductivity of sulfur and its
discharge products Li2S2/Li2S, as well as the migration of soluble polysulfides (Li2S4

−8)
across the separator during the charge/discharge process (“shuttle effect”) (Figure 6). Many
approaches using MXene-based materials have been developed to address these issues,
and it has been proven that the highly functionalized 2D surface of MXenes can effec-
tively immobilize soluble polysulfides through metal–sulfur interactions while maintaining
high electrical conductivity [26,27]. One approach is to design nanostructured cathodes
by confining sulfur within conductive frameworks. MXene-based conductive compos-
ites can improve the intimate conductive contact between the insulating sulfur particles
and enhance electrochemical performance. Further, the MXene component can limit the
dissolution and occlusion of polysulfide intermediates through physical adsorption or
chemisorption [28,29]. Another approach has been made by restricting the migration
of dissolved polysulfides across separators [30]. The methods involve introducing an
MXene-based functional interlayer between the separator and sulfur cathode or a coating
layer on the cathode side of the separator [31]. According to reported studies, as a sepa-
rator/electrode composite material, Ti3C2Tx MXene can provide a physical and chemical
barrier to suppress polysulfide migration and remarkably increase the Coulombic efficiency
and lifetime of LSBs. On the other hand, due to the excessive use of lithium metal, access to
lithium metal resources, high cost, and environmental concerns are also likely to arise.
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Aluminum batteries (ALBs) are another potential candidate for energy storage because
Al is safer and cheaper than Li. However, (a) the high charge density of Al3+ cations and
their strong interactions with the host lattice and (b) the low potential window limit
their cyclic stability and energy density, respectively. In a study, Vahidmohammadi et al.
reported that V2CTx MXene can reversibly intercalate Al3+ cations into their structures
to fabricate an intercalation-type cathode material for Al batteries that has excellent cycle
stability and high energy density [22]. V2CTx MXene electrodes show one of the best
performances among the reported cathode materials for Al batteries so far. In this work,
multilayered V2CTx powder was synthesized by the chemical etching of Al atoms from
V2AlC (MAX phase) by immersing an HF solution at room temperature. Thus, ALB was
prepared using the layered vanadium carbide MXene (TBAOH-FL-V2CTx) as the cathode,
aluminum metal as the anode, and a nonflammable aluminum chloride-based ionic liquid
as the electrolyte. Figure 7 shows the schematic illustration of the procedure they followed
to prepare the novel ALB with the proposed charge–discharge process at the liquid–solid
interface. The TBAOH-FL-V2CTx cathode delivered exceptionally high specific capacities
of more than 300 mAh/g at a current density of 100 mA/g [22]. Thus, this research opened
a new pathway to improving the performance of ALBs. Consequently, in another study, an
ALB containing an MXene-based-composite cathode (F-Ti3C2Tx@Ag) was prepared. The
discharge-specific capacity of the new ALB was about 150 mAh/g after 2000 cycles at a
current density of 0.5 A/g [32].
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Apart from the common battery types mentioned above, rechargeable zinc-ion batter-
ies (ZIBs) are also a battery technology that has gained significant attention. In 2020,
Venkatkarthick et al. synthesized a vanadium carbide MXene-based composite with
vanadium-based oxides (V2Ox@V2CTx) that could serve as an efficient cathode mate-
rial for an aqueous ZIB. The prepared V2Ox@V2CTx electrodes delivered an ideal rate
performance with an average reversible capacity of about 304 mAh/g at a current density
of 0.05 A/g [33].

3.2. MXenes for Supercapacitors

Supercapacitors (SCs), also known as electrochemical capacitors, are energy storage
devices with high power densities, fast charge/discharge capabilities, high cyclic efficien-
cies, and long lives. A conventional SC consists of two solid electrodes immersed in a
liquid electrolyte and divided by a membrane separator. Two electrodes are polarized by
applying a voltage. According to the energy storage mechanism/potential, SCs can be
subdivided into three classes: electrochemical double-layer capacitors (EDLCs), pseudo-
capacitors (PCs), and hybrid capacitors (HCs). EDLCs store energy based on the physical
electrostatic adsorption of ions on the surface of the electrodes, while PCs use rapid electron
transfer reactions occurring on the surfaces of electrodes and the electrolyte. Both energy
storage mechanisms are applied in HCs. Overall, the electrode materials, electrolytes, and
operation mechanisms are the main factors that determine the SC’s performance. Consider-
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ing the energy density of SCs, they usually exhibit a lower value (~5 Wh/kg) compared to
that of Li-ion batteries or Li-S batteries (≥50 Wh/kg) due to the low areal capacitance of
the electrode materials and narrow operating potentials. The energy density equation can
be expressed as W = CV2/7200, where W is the volumetric (or areal) energy density, C is
the volumetric (or areal) capacitance, and V is the cell voltage [34]. In that sense, increasing
the volumetric capacity and widening the voltage operating window are two effective
ways to improve the volumetric energy density of the device. Engineered active materials
with controlled nanoscale morphologies are considered to be the most effective strategy
to achieve high volumetric capacity and wide operating windows in SCs because they
have many reaction sites and short diffusion lengths of ions and/or electrons. Interestingly,
well-designed 2D nano-MXene electrodes have shown higher supercapacitance due to their
unique properties. For instance, their transition metal with variable oxidation numbers
along with their unique stacked structure of MXenes makes them intrinsically conductive.
Furthermore, large specific surface areas and more available redox sites in MXenes im-
prove their electrochemical properties compared to other conventional materials, such as
activated carbon, graphene, conducting polymers, and transition metal oxides, used in
SCs [35].

Since the discovery of MXenes in 2011, much research work has been conducted
around MXene-based SCs for energy storage purposes. Lukatskaya et al. studied the
changes in the performances of Ti3C2Tx electrodes in SCs in acidic and basic electrolytes.
They found that binder-free Ti3C2Tx paper exhibited 442 F/cm3 of volumetric capacitance
at 2 mV/s in a KOH electrolyte, while a Ti3C2Tx clay electrode showed a higher amount
of capacitance (900 F/cm3) at the same scan rate in an H2SO4 electrolyte [36,37]. These
results lead to motivating innovations. In MXene electrodes, interlayer spacers such as
metal oxides, carbon nanotubes, and reduced graphene oxides are used to increase the
gap of the MXene nanosheets. Although these prevent the attachment of individual layers,
on the other hand, they contribute to increasing the performance of SCs. Herein also, the
electrochemical performance of the MXene composite is much higher than that of pristine
MXene electrodes. Geng et al. discovered that a highly flexible and conductive composite
with a better performance of the composite was shown by Ti3C2Tx/MnO2 [38]. Another
study created abundant channels in a highly conductive MXene network to accommodate
fast electron transport and ion diffusion kinetics while maintaining a high electrode tap
density. The fabricated supercapacitor was highly compact, with flexible MXene hybrid
paper intercalated by Fe2O3 nanoparticles (Fe2O3 NPs@MX). The uniformly dispersed
Fe2O3 NPs effectively expanded the interlayer spacing of MXene nanoflakes, shortened ion
diffusion paths, and exposed more active sites. At the same time, the conductive MXene
skeleton appropriately suppressed the volume expansion of Fe2O3 NPs during redox
reactions. Thus, the synergistic effect of MXene and Fe2O3 NPs resulted in an extremely
high volumetric capacitance of 2607 F/cm3 (584 F/g) and excellent cycling performance [39].
Those examples confirmed that composites of metal oxides with MXenes provide superior
pseudocapacitive performance in SCs. Apart from titanium carbide MXene, a polyaniline
and V2C MXene composite was found for the first time by Wang et al. Using this material
combination, they were able to synthesize SCs with a high-density and high-sensitivity
ammonia sensor [40].
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Table 1. Summary of electrochemical performance of MXene-based materials in batteries.

Type of Battery MXene-Based
Material Function Capacity Rate Remarks Ref.

Zinc-ion
batteries

V2Ox@V2CTx Cathode 304 mAh/g 0.05–2 mA/g Retained battery capacity constant for
200 cycles. [33]

Ti3C2Br2 Cathode 97.6 mAh/g 0.5 A/g Retained 80% of battery capacity (at
4 A/g) for 1000 cycles. [41]

Aluminum
batteries

TBAOH-FL-
V2CTx

Cathode >300 mAh/g 150 mA/g

Maintained a capacity of about
150 mAh/g with a Coulombic

efficiency of 95% at a high current
density of 300 mA/g.

[22]

Lithium-ion
batteries

Ti3C2Tx Anode >200 mAh/g 0.1 C Retained 80% of battery capacity (1 C)
for 500 cycles. [24]

CNTs@Ti3C2 Anode 430 mAh/g 1 mA/g Dropped and regained after 500 cycles. [25]

TiO2/Ti3C2Tx Anode 267 mAh/g 0.2 mA/g Dropped and regained after
2000 cycles. [42]

Ti3C2Tx Anode 1 mAh/cm2 1.0 mA/cm2 Retained 98.8% of battery capacity for
450 cycles. [43]

Ti3C2Tx/NiCo2O4 Anode 1330 mAh/g 0.1 C Retained after 100 cycles. [44]

Lithium−sulfur
batteries

Ti3C2Tx Separator 860.7 mAh/g 0.2 C Constant up to 30 cycles. [26]

Ti3C2 Separator 1201 mAh/cm3 0.1 C Constant up to 2000 cycles at 2C. [30]

Co-
CNT@MXene/S Cathode 900 mAh/g 1 C Constant up to 840 cycles. [28]

TiO2/H–Ti3C2Tx Cathode 740 mAh/g 2C Retained 81% of battery capacity (at
1 C) for 500 cycles. [45]

Table 2. Summary of electrochemical performance of MXene-based materials in supercapacitors.

Electrode Electrolyte Capacitance Stability Ref.

Ti3C2Tx 1 M H2SO4 910 F/cm3 at 2 mV/s 100% after 10,000 cycles [15]

Ti3C2Tx-Li film 1 M H2SO4 892 F/cm3 at 2 mV/s 100% after 10,000 cycles [46]

MXene/rHGO 3 M H2SO4 1445 F/cm3 at 2 mV/s 93% after 10,000 cycles [47]

Ti3C2Tx/PANI 1 M H2SO4 272.5 F/g at 1 A/g 71.4% after 4000 cycles [48]

Mo1.33C MXene/PEDOT:PSS 1 M H2SO4 1310 F/cm3 at 2 mV/s 90% after 10,000 cycles [49]

Fe2O3 NPs@ Ti3C2Tx 3 M H2SO4 2607 F/cm3 at 1 mV/s 121% after 13,000 cycles [39]

EE- Ti3C2Tx film 3 M H2SO4 1160 F/cm3 at 1 mV/s 100% after 5000 cycles [50]

Ti3C2Tx/AC/TEAPW12 1 M TEABF4 in acetonitrile 76 F/g at 1 mV/s 102% after 10,000 cycles [51]

Ti3C2Tx/CMC Polyvinyl alcohol/LiCl hydrogel 113.13 mF/cm2 at 0.2 mA/cm2 97.2% after 5000 cycles [52]

V2NTx 3.5 M KOH 112.8 F/g at 1.85 A/g 96% after 10,000 cycles [53]

4. MXene-Based Electrocatalysts

The global demand for highly efficient energy conversion devices/pathways such as
fuel cells, metal-air batteries, and electrochemical water splitting is boosting the develop-
ment of electrocatalysts for oxygen reduction reactions (ORR), oxygen evolution reactions
(OER), and hydrogen evolution reactions (HER). Often, a noble-metal-based electrocata-
lyst (Pt, PtIr, IrO2, RuO2, etc.) is used for these reactions to proceed at a significant rate.
The scarcity and high cost of these noble metals have hindered their large-scale use and
hindered their commercialization [54,55].

Electrochemical water splitting for hydrogen/oxygen generation is a strong platform
for sustainable clean energy production. Water reacts to form oxygen and protons at
the anode (OER) and hydrogen at the cathode (HER). OER is highly pH dependent, and
strongly different pathways are observed in acidic or alkaline conditions. The two types
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of equilibrium half-cell reactions in OER with electron potentials (at 1 atm and 25 °C) are
given in the following equations [56]. Kinetically, this process occurs through multi-step
reactions with only one electron transfer in each step, and each of these steps requires
specific activation energy. Therefore, it makes OER kinetics very slow and recreates a large
overpotential (Equations 4 and 5). In addition, the partial oxidation of catalysts during
the electrochemical reaction is practically unavoidable. Therefore, the main challenge
for a suitable OER process is to develop catalysts that combine high activity and good
stability. Furthermore, OER has attracted increasing attention in the past few years because
of its key role in rechargeable metal-air batteries. As illustrated by Equations (6) and
(7), the HER reaction proceeds through the reduction of protons or water molecules to a
hydrogen gas [57]. The standard reduction potential of the HER is defined as 0 V relative
to a standard hydrogen electrode at pH 5. However, all electrochemical processes must
overcome a certain overpotential. Therefore, electrocatalysts are needed to lower the HER
overpotential and promote the reaction kinetics as required. Hence, OER is the limiting
reaction of water splitting due to its relatively large overpotential [58,59].

Oxygen evolution reaction

4OH− ↔ 2H2O(l) + O2(g) + 4e− 0Ea = 0.404 V (in alkaline solution) (4)

2H2O(l) ↔ 4H+
(l) + O2(g) + 4e− 0Ea = 1.230 V (in acidic/neutral solution) (5)

Hydrogen evolution reaction

2H2O(l) + 2e− ↔ H2(g) + 2OH−(aq) (in alkaline solution) (6)

2H+
(aq) + 2e− ↔ H2(g) (in acidic/neutral solution) (7)

In many cases, MXene nanomaterials have attracted considerable attention among
researchers due to their good metallic conductivity, low weight, high surface area, and dura-
bility. In this sense, MXene-based materials can also be successfully used as electrocatalysts.
Moreover, it is feasible to optimize the specific electroactive sites of MXenes by controlling
the surface chemistry of MXene during the selective etching process. The delamination and
exfoliation of MXenes into a single or few layers using intercalants expose a large surface
area for catalysis. Mxene hybrid and composites exhibit significantly enhanced catalytic
activities and stability compared to pristine MXene due to synergistic coupling between
MXenes and their secondary materials. Currently, numerous organic and inorganic materi-
als such as TM carbides, TM phosphides [60], TM chalcogenides, TM oxides [61], layered
double hydroxides, metal-organic frameworks [62–64], graphitic carbon nitride [65], carbon
nanotubes [66], quantum dots, metallic alloys, polymers, etc. have been combined with
MXenes to form MXene hybrids/composites [55,61,67].

For example, P and O-doped Mo2CTx MXenes were able to improve the HER electro-
catalytic performance compared with pristine Mo2CTx MXenes, with a dramatic decrease
in overpotential (more than 100 mV at 10 mA/cm2). The enhanced catalytic performance
of phosphorized Mo2CTx MXenes can be attributed to: (a) increased active sites due to the
expanded interlayer distance, (b) the formation of new P and O active sites for hydrogen
absorption, and (c) the improved metallic band structure of Mo2CTx due to P incorporation.
The synthesis of Mo2CTx and P-Mo2CTx is illustrated in Figure 8. The Mo2CTx MXenes
were prepared by selectively etching the Ga layer from Mo2Ga2C MAX powders in a mixed
solution of LiF and HCl. Mo2CTx Mxenes were then subjected to a simple phosphorization
to prepare P−Mo2CTx [68].
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Figure 8. (a) Schematic illustration of the preparation of Mo2CTx and P−Mo2CTx and (b) HER
polarization curves of Mo2CTx, P−Mo2CTx, and commercial Pt/C (20 wt % Pt). Adapted with
permission [68]. Copyright 2018, American Chemical Society.

Furthermore, a binder-free Ti3C2Tx Mxene-supported low-Pt loading electrocatalyst
(PtNP/Ti3C2Tx) was prepared to catalyze HER by Jian et al. PtNP/Ti3C2Tx showed a
low overpotential of 12 mV at a current density of 10 mA/cm2 in an acidic medium.
This value is comparable to other noble metal-based HER electrocatalysts reported in
recent literature under the same conditions (Figure 9). Thus, this study opens a new and
convenient avenue for the preparation of highly efficient binder-free Mxene-supported
metal electrocatalysts [69].
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Theoretical and experimental studies proved that transition-metal phosphides, espe-
cially Co−P, Ni−P, or their bimetallic phosphide, can accelerate the HER and OER [60,70].
Since transition-metal phosphides usually possess poor conductivity, conductive carbon
supports are integrated with metal phosphide catalysts for efficient electrocatalysis. A
group of scientists then constructed well-defined hierarchical 2D sandwich structures
for electrocatalytic water splitting by combining exfoliated Ti3C2 Mxene (as a substrate)
with mesoporous nickel cobalt phosphide nanosheets (mNiCoP NS). Taking advantage
of its unique properties, including its good conductivity, high surface area (143.5 m2/g),
abundant exposed active sites, and good structural/chemical stability, Ti3C2@mNiCoP NS
exhibits superior overall water splitting performance over its building-block counterparts
(Figure 10) [70]. These results highly suggest that MXene-based materials can be used to
develop low-cost and robust electrocatalysts with intrinsic active sites capable of catalyzing
HER and OER processes. ORR is the key reaction at the cathode of proton exchange mem-
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brane fuel cells, direct methanol fuel cells, and metal-air batteries. Similar to OER, the ORR
also suffers from sluggish reaction kinetics, resulting in a decreased power density and a
large overpotential. This obstacle can be effectively addressed by preparing MXene-based
electrocatalysts [71].
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trochemical test results, including a comparison of (b) polarization curves, (c) overpotentials, and
(d) a photo of a water-splitting cell. Adapted with permission [70]. Copyright 2020, American
Chemical Society.

5. MXene-Based Sensors

Excellent surface chemistry and electroconductivity are the required primary proper-
ties of a material that is used for sensor fabrication. The characteristic features of MXenes
and MXene-based materials, including their higher sensitivity, linear responses to signals,
low hysteresis, ability to quickly recover for repetitious use, and low fabrication cost, have
indicated the use of these materials for a broad range of sensor fabrications, for instance,
toxic compound identification, human health monitoring, humidity and gas sensing, etc.
Secondary nanoparticles, including graphene oxide (2D), carbon nanotubes (1D), and silver
nanoparticles (0D), have been mixed with MXene to create better MXene-based heterostruc-
tures [72,73]. Electrostatic attractions play an important role during the mixing of 2D, 1D,
and 0D secondary nanoparticles with MXene. 2D + 2D MXene-based heterostructures are
widely used for sensing applications, 2D + 1D MXene-based heterostructures are used
for catalysis, and 2D + 0D MXene-based heterostructures are used for energy storage
and conversion.

The sensitivity performance of MXene materials depends on the types of functional
groups on the surface and their concentration. For instance, hydroxyl-terminated MXene
nanocomposites exhibited better sensing performance for ethanol detection, and oxygen-
terminated MXene surfaces exhibited excellent performance for ammonia sensing. Polyani-
line/MXene (PANI/Ti3C2Tx) nanocomposites are used as a high-sensing material for
room-temperature gas detection [74–76]. A PANI/Ti3C2Tx nanocomposite was synthesized
using in situ polymerization at low temperatures to securely anchor PANI nanoparticles
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on the MXene nanosheets. PANI nanoparticles prevented the staking of Ti3C2Tx MXene
nanosheets, and different functional groups (-OH, -F, -O) in MXene nanosheets provide an
absorption surface for gas molecules. The PANI/Ti3C2Tx nanocomposite exhibited high
ethanol sensitivity (41.1%, 200 ppm) and faster response/recovery time (0.4/0.5 S) at room
temperature. Moreover, stable sensitivity, mechanical stability, and ultrafast response rates
were shown by PANI/Ti3C2Tx-based flexible sensors after continuous bending from 0◦ to
120◦ [74].

The enzyme immobilization potential of MXene is another characteristic property that
is highly effective for biosensors, and MXene provides a microenvironment for an enzyme
to maintain its stability and activity [77]. Ti3C2 Mxene mixed with the enzyme acetyl-
cholinesterase (AChE) and chitosan to fabricate nanocomposite biosensors can be appropri-
ate for the detection of organophosphate pesticides (Ops) in water. A cshitosan/Mxene
nanocomposite exhibited a low detection limit (0.3 × 10−14) with a linear dynamic range.
Therefore, that sensing material was successfully applied to detect toxic pesticides in water,
and it could be used to test if food products are contaminated with Ops. The concentration
of chitosan provides a resistance to the chitosan/Mxene nanocomposite. To avoid that
condition, a high concentration of HF etching was used as an effective method during
the synthesis of the chitosan/Mxene nanocomposite to immobilize enzymes in chitosan
because it provides a high surface area without increasing the resistivity [73]. Additionally,
a hemoglobin-immobilized Nafion/MXene composite exhibited a wide linear range of
detection from 0.5 µM to 11,800 µM with a low detection limit for nitrite ions [78].

Attention toward wearable pressure sensors has grown due to broad applications,
including the physiological monitoring of body organs, human-machine interfaces, and
e-skin development. Secondary nanoparticle-embedded MXene materials and MXene-
based piezoresistive sensing materials are used for pressure sensor fabrications due to their
high sensitivity and excellent flexibility [79,80]. However, challenges, including limited
deformability and biofunctionality for external stimuli, large hysteresis, and long response
time, have mainly limited the applications of these pressure sensors in different fields.
To overcome these challenges, scientists have searched for functional materials or struc-
tures that can be embedded with MXene materials to convert pressure differences into an
electrical signal. Moreover, scientists have observed that naturally evolved 3D architec-
tural biological materials have distinctive properties that are sensitive to environmental
changes [81].

Interlocked microstructures located between dermal and epidermal layers in the hu-
man skin act as a sensing area, and identified pressure stimuli can effectively transduce to
cutaneous receptors located beneath the dermal layer. Imitating this phenomenon, scien-
tists introduced biomimetic interlocked structures by assembling natural microcapsules
in 2D Ti3C2 MXene nanosheets. Biomimetic interlocked structures exhibit enhanced me-
chanical stimulus sensing performance due to their higher deformability. The pressure
sensitivity of biomimetic interlocked structures was improved by over 9.4 times compared
to a planar Ti3C2-based flexible film without biomimetic interlocked structures. Moreover,
their low detection limit, fast response, and excellent mechanical reversibility confirmed the
superiority of the pressure sensor and opened doors for applications in various fields [81].

The surface modification of MXene and its self-healing properties are essential to
improve the affinity between the polymeric phase and MXene. The performance stability
of electronic sensors decays due to inevitable cracks and scratches during continuous
deformation. To avoid this problem, scientists have developed sensing materials with self-
healing properties to enhance their reliability and lifespan. As the brittle and rigid structure
of MXene is susceptible to mechanical deformation and limits its applications in electronics,
the incorporation of MXene with soft polymers has been pursued to improve its sensing
and mechanical properties. Notwithstanding, MXene/rubber-based sensor materials have
experienced poor performance stability and response reliability due to less interfacial
interactions between the polymer matrix and the MXene surface. Therefore, the MXene
nanosheet surface was modified through an esterification reaction. A nanostructured
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Ti3C2 MXenes/rubber-based supramolecular elastomer (NMSE) was used as a robust,
self-healing, flexible sensor for electronics. The preparation of the NMSE was inspired
by amino acid interactions in proteins. A polypeptide, which is formed through different
interactions between amino acids, including hydrogen bonding, van der Waals interactions,
and hydrophobic interactions, can self-assemble to form a large protein. In addition,
supramolecular interfacial interactions formed by amino acids provide a dynamic bonding
interface to create new bonds for self-healing materials.

The MXene nanosheet surface was modified using an esterification reaction between
hydroxyl groups and carboxyl groups on serine. Afterward, serine-grafted epoxidized
natural rubber (S-ENR), which formed after reacting ENR’s epoxy group and amino groups
of serine molecules, was merged with surface-modified MXene by the latex assembly pro-
cess. Finally, surface-modified MXene nanosheets moved to the S-ENP latex microspheres
and formed a segregated 3D conductive network (Figure 11). The formed 3D conductive
network facilitated the formation of supramolecular hydrogen interactions between the
unreacted hydroxy and carboxyl groups of S-ENR and the amino and hydroxyl groups
of surface-modified MXene. Supramolecular hydrogen bonding between the esterified
MXene surface and the elastomer chain facilitated the self-healing property of NMSE at
room temperature. Moreover, hydrogen bonding decreased the percolation thresholds of
MXene due to the formation of a segregated 3D conductive network and improved the
mechanical property and twist ability of the sensor [82].
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Environmental monitoring and non-invasive epidermal sensing bring forward the
requirement for fast humidity sensors. However, the fabrication of fast humidity sensors
is challenging because the response of the sensor depends on the sensing method, the
diffusion of water, and water sorption in the sensing material. MXene/polyelectrolyte
multilayer forms are successfully used as a sensing material to detect humidity. When
humidity changes (water molecules intercalate with multilayer forms), the thickness and
sheet-to-sheet distance of MXene/polyelectrolyte multilayers change, and these changes
cause changes in the tunneling resistance between MXene nanosheets. Hydrophilicity
and higher conductivity nature are directed to the use of MXene as a sensing material for
humidity sensors. The layer-by-layer method was used to fabricate MXene/polyelectrolyte
multilayers, and higher response and recovery times were achieved [83].

6. Other Emerging Applications of MXene

Recently, many research works have explored the application of MXenes in electromag-
netic interference shielding (EMI), biomedical applications, flexible and wearable devices,
and membranes. In particular, the discovery of MXenes has revolutionized these appli-
cations. In this section, recent progress in these fields regarding MXene-based materials
is summarized.

Mxene’s mechanical flexibility, hydrophilicity, and biocompatibility contribute to its
use as a material for biomedical applications, including in tissue engineering, drug deliv-
ery [84,85], bioimaging, sensors, and as an antibacterial [86]. Regarding tissue engineering,
MXene can be used as a material mainly for bone tissue engineering [87,88], myocardial
tissue engineering [89], and nerve tissue engineering [90]. MXene/PLLa-PHA compos-
ite nanofibers prepared through electrospinning and the doping strategy were used as
a smart biomaterial for cell cultures. MXene/PLLa-PHA nanofibers exhibited improved
hydrophilicity due to the presence of hydrophilic groups. Those functional groups and
nanosurfaces created an excellent microenvironment for bone marrow-derived mesenchy-
mal stem cell growth. Cell testing of an MXene composite nanofiber confirmed the presence
of good biocompatibility and the excellent improved cellular activity of the MXene compos-
ite nanofiber [91]. Controlled and slow-release drugs are a newly emerging research area
in cancer chemotherapy because controlled drug release can minimize the cytotoxic effect
of the most common anticancer drugs, including cisplatin, paclitaxel, etc. MXene-based
materials have been used as drug carriers due to having functional group-rich surfaces, bio-
compatibility, and planar structures. Surface-modified nanosized Ti3C2 with a negatively
charged surface of MXene was used to deliver cationic anticancer drugs because nanosized
Ti3C2 has an enhanced permeability and retention effect and can accumulate at the tumor
site. Tumor sites have lower pH than other normal tissues, and this acts as a driving force
to break the electrostatic interaction between the drug and MXene [92]. Moreover, MXene
is used as a material for photothermal therapy (PTT), photodynamic therapy (PDT), and
thermodynamic therapy to treat cancer cells. PTT is a minimally invasive treatment method
that can remove cancer cells by absorbing near-infrared radiation at the site of the cancer
cells and converting it into heat. The higher photothermal conversion efficiency and larger
surface area of MXene mainly indicate its use as a material for PTT. PDT is a non-invasive
and effective treatment strategy. Due to the optical and electrical properties of MXene, it
can be used as a photosensitizer in PDT [86].

EMI occurs when an electronic device is exposed to an electromagnetic field. With the
ever-increasing use of more complex, sophisticated, and miniaturized electronic devices,
EMI can create detrimental effects on the performance of that device. In this regard, to
protect electrical and electronic equipment from EMI, it is necessary to develop an efficient
shielding material with minimal transmittance. MXenes and MXene-based composites
have a more excellent EMI shielding effect than conventional materials; for instance, 2D C-
based materials (e.g., expanded graphite, graphene, reduced graphene oxide), metals (e.g.,
silver, aluminum, copper), and metallic fillers [93]. Three MXene films have been exten-
sively investigated for EMI shielding applications, including single-metal Ti3C2Tx, ordered
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double-metal Mo2TiC2Tx, and Mo2Ti2C3Tx MXene. Their excellent capping performance,
outstanding metal conductivity, low density, large specific surface area, tunable surface
chemistry, and solution processing capability drive their use. Meanwhile, Ti3C2Tx outper-
formed Mo2TiC2Tx and Mo2Ti2C3Tx. Many MXene composites and hybrids with other
conducting or magnetic ingredients have been explored to further improve the inherent
EMI shielding properties of MXenes [94].

Wearable and flexible devices (WFDs) can be applied to almost every critical aspect
of our lives, including physical activity monitoring, health monitoring, treatment referral,
communication, etc. Thus, many studies have been conducted frequently on the prepa-
ration, design, and application of WFDs. Most importantly, a WFD should be flexible,
lightweight, highly durable, skin-friendly, and mechanically robust. Various types of
WFDs, such as supercapacitors, electronics, sensors, and EMI shields, have been researched
over the years to combine and improve the above-mentioned features. MXene is consid-
ered a favorable material for hybrid applications due to its unique properties, such as its
outstanding electrical conductivity, large specific surface area, distinctive layered structure,
excellent dispersibility in aqueous solutions, and abundant, tunable terminal groups. How-
ever, its poor mechanical properties, easy restacking, relatively small lateral size, and poor
stability in an oxygen atmosphere greatly limit its usage as pristine MXenes. Interestingly,
the desired characteristics can be achieved by combining MXene into composites with
other materials [95,96]. As an outstanding representative of the MXene family, Ti3C2Tx has
broad prospects for WFDs. Its unique and controllable surface chemical structure, high
metallic electrical conductivity and double layer capacity, excellent biocompatibility, and
large specific surface area help to suit wearable and flexible applications [97].

Owing to the hydrophilic behavior, high adsorption capacities, and tunable surface
chemistry of MXene, it has been used as a membrane for water purification and in the
remediation of environmental pollution, such as in the adsorption/photodecomposition
of dyes and the adsorption of heavy metals in wastewater. For example, Shahzad et al.
investigated the adsorption and removal of copper (Cu), which is in an aqueous medium,
using delaminated Ti3C2Tx MXene nanosheets as the membrane material. They showed
that delimitated Ti3C2Tx can uptake Cu with a 78.45 mg/g adsorption capacity. This result
was 2.7 times higher than commercially available activated carbon [98]. Nanofiltration (NF)
membranes have attracted increasing attention in mono/divalent ion separation. The most
advanced NF membranes are prepared via the interfacial polymerization of polyamide
on a porous support layer. The interfacial polyamide layer controls the physicochemical
properties and separation performance of the NF membranes. Embedding MXenes into
polyamide thin-film membranes is an effective modification technology to enhance mem-
brane performance. In 2021, a group of scientists synthesized polyamide nanocomposite
NF membranes by ultrasonically dispersing Ti3C2Tx MXene in an organic phase (n-hexane)
for desalination. The organic phase-enabled MXene nanosheets were deposited on the
membrane surface, which directly corresponded to enhancing the negative charge on the
surface (due to the abundant oxygen-containing and fluorine-containing surface func-
tional groups). MXene embedded in the organic phase increases the crosslinking degree of
polyamide and lowers the effective pore size of the membrane. Therefore, Ti3C2Tx MXene
shows potential advantages in improving the desalination performance of NF membranes.
This recent finding could provide theoretical guidance for future research in this field [99].

7. Perspectives of MXene-Based Nanomaterials

Anasori and Gogotsi confirmed that the use of MXenes in biomedical, mechanical,
electronic, and electromagnetic fields greatly expands this period from an application
perspective. The utilization of MXene for new applications is increasing day by day
beyond our expectations. One example is the use of MXenes to produce lubricants to
reduce friction and wear. In addition, new computational quantum mechanical studies
are projected to improve the electronic and magnetic properties of MXenes (especially
rare-earth metal carbides) needed to fabricate 2D magnets. As a result of these theoretical
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and experimental discoveries, many new compounds belonging to the MXene subfamily
of high-entropy 2D metal carbides will emerge in the coming years. With the most recent
discovery of oxycarbide MXenes in late 2022, researchers confirmed the existence of a
new subfamily of MXenes [100]. Successful applications of this subclass of compounds
are still being researched. The entire scientific world is waiting to see how this “game-
changing compound in the world of materials” will contribute to the development of
new technologies. The details provided in this review will be very beneficial in gaining a
comprehensive knowledge of employing MXene in multifunctional applications.

8. Conclusions

This review emphasised MXene’s adaptability in electrochemical energy storage de-
vices, electrocatalysis, sensors, electromagnetic shielding, biomedical applications, mem-
branes, and flexible and wearable devices. The unique compositional variables of MXenes
are most helpful in achieving high performance in the aforementioned applications due to
their various combinations and surface terminations. Typically, the top-down separation
of stacked MXene sheets from the MAX phase is the most typical synthesis method, and
the MAX phase, etching procedure, functional groups (Tx), intercalants, and delamination
process affect MXene materials. Compared to pristine MXenes, MXene composites/hybrids
have excellent capacities, superior cyclability, and excellent cyclic stability due to the large
specific surface area of carbon-based materials and the electroactive sites of MXene in the
composite, which greatly enhance electronic/ion transport capabilities and supercapaci-
tance with the synergistic contributions of both double layers and Faradaic capacitances.
Moreover, MXene-based materials are also effective electrocatalysts for HER, OER, and
ORR; for example, the Pt@Ti3C2Tx MXenes demonstrated outstanding HER activity (below
50 mV@10 mA/cm2). On the other hand, MXenes’ mechanical flexibility, hydrophilicity,
higher photothermal conversion efficiency, and biocompatibility properties point to the use
MXenes for biomedical applications, including as tissue engineering, sensors, therapeutics,
and drug delivery systems. Moreover, Mxene-based cancer therapies, including controlled
drug release, PTT, and PDT, have become hot topics in the biomedical field due to their
excellent properties. Moreover, single-metal Ti3C2Tx, ordered double-metal Mo2TiC2Tx,
and Mo2Ti2C3Tx MXene are mainly used for EMI shielding due to their unique properties
compared with other conventional materials. Despite the fact that MXenes have shown
excellent performance in a variety of applications, several considerations, such as (i) un-
derstanding the structure-property relationships, (ii) the combination of computational,
machine learning, and experimental studies, and (iii) the utilization of in situ SEM/TEM
techniques, should be taken into account for the continued development of MXene-based
materials.
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