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Abstract: In sheet metal forming, the material is usually subjected to a complex nonlinear loading
process, and the anisotropic hardening behavior of the material must be considered in order to
accurately predict the deformation of the sheet. In recent years, the homogeneous anisotropic
hardening (HAH) model has been applied in the simulation of sheet metal forming. However,
the existing HAH model is established in the second-order stress deviator space, which makes the
calculation complicated and costly, especially for a plane stress problem such as sheet metal forming.
In an attempt to reduce the computational cost, an HAH model in plane stress state is proposed,
and called the HAH-2d model in this paper. In the HAH-2d model, both the stress vector and
microstructure vector contain only three in-plane components, so the calculation is significantly
simplified. The characteristics of the model under typical nonlinear loading paths are analyzed.
Additionally, the feasibility of the model is verified by the stress–strain responses of DP780 and EDDQ
steel sheets under different two-step uniaxial tension tests. The results show that the HAH-2d model
can reasonably reflect the Bauschinger effect and the permanent softening effect in reverse loading,
and the latent hardening effect in cross loading, while the predictive accuracy for cross-loading
softening remains to be improved. In the future, the HAH-2d model can be further modified to
describe more anisotropic hardening behaviors and applied to numerical simulations.

Keywords: homogeneous anisotropic hardening model; sheet metal; nonlinear loading path;
plane stress

1. Introduction

With increasing requirements for lightweight materials in the aerospace, aviation,
and automotive industries, integrated thin-walled components with complex shapes are
finding broader applications [1,2]. During the forming of an integrated component, the
material often undergoes complex nonlinear loading paths, even including multi-step
pre-deformation. The deformation behavior of sheet metal often exhibits strong path
dependence [3–5] and pronounced anisotropic hardening behaviors in nonlinear loading
paths; these may be, for example, the Bauschinger effect, the permanent softening effect
and the latent hardening effect [6,7].

The Bauschinger effect is the phenomenon wherein the yield stress under reverse
loading decreases after a certain amount of pre-deformation [8,9]; the permanent softening
effect is another phenomenon during reverse loading wherein the reloading flow stress
remains lower than the flow stress of monotonic loading [10]. Meanwhile, there is a
wide range of strain path changes between monotonic loading and reverse loading. For
some materials, the reloading flow stress at an angle with respect to the first loading may
overshoot the monotonic stress–strain curve; this phenomenon is referred to the latent
hardening effect [11,12].
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Practically, the anisotropic hardening behavior significantly affects the spring-back
and forming limit [13–15], and the reduction of spring-back and the avoidance of necking or
fracture are of paramount importance in the forming of an integrated component. In order
to guide process formulation and reduce the cost of process development, it is necessary
to predict the deformation process and optimize the forming process by simulation. At
present, the isotropic hardening assumption is commonly used in general simulations
of metal forming, i.e., the subsequent yield surface expands uniformly based on the ini-
tial yield surface. However, an isotropic hardening model cannot reasonably capture the
anisotropic hardening behavior under nonlinear loading paths [16,17]. Therefore, establish-
ing advanced anisotropic hardening models to accurately predict the plastic deformation
behavior of thin-walled metals under nonlinear loading conditions is an important research
direction [18].

A variety of anisotropic hardening models have been proposed [19,20], for example,
the kinematic hardening model established by introducing a back stress tensor into the
isotropic hardening model. The kinematic hardening model was first proposed by Prager
to capture the Bauschinger effect, wherein the yield surface translates with the deformation
but its shape remains the same [21]. Subsequently, some kinematic hardening models
with a nonlinear relationship between the increments of back stress and plastic strain
were proposed to more accurately capture the flow stress under reverse loading or cyclical
loading conditions [22,23]. In fact, the typical hardening behavior of metals is often a
mixture of isotropic hardening and kinematic hardening, i.e., the yield surface changes
both in size and position. Hence, the mixed hardening mode was proposed [24,25].

As an alternative to the kinematic hardening model, Barlat et al. [26] proposed the
homogeneous anisotropic hardening (HAH) model, which is a distortional hardening
model without a back stress tensor. In the HAH model, a fluctuating component is added
into the traditional yield function to change the shape of yield surface, and a microstructure
deviator related to the loading history is introduced to reflect the state of the microstructure.
In order to further describe the latent hardening, more variables were introduced into
the model [27,28]. More importantly, the HAH model can be regarded as a theoretical
framework for the anisotropic hardening model, in which any homogeneous yield function
and hardening law can be used, and the yield surface can be distorted depending on the
specific loading path [17]. Some researchers have successfully implemented the HAH
model in numerical simulations, and the prediction accuracy has improved clearly [29–31].

More recently, in order to capture complex and varied anisotropic hardening behavior
and improve prediction accuracy, more parameters were introduced, for example, the
HAH-20 model (using, at most, 23 coefficients [17]) and the HEXAH model (using, at
most, 15 coefficients [32]). On the other hand, in order to reduce the computational cost in
numerical simulation, some efficient algorithms were implemented, including a multi-step
return-mapping algorithm for the HAH model [33], a fully implicit numerical algorithm
that can solve a complete set of residuals [34], and a fast and robust stress-update algorithm
based on the general cutting-plane method [35].

It should be pointed out that the HAH model and these improvements were proposed
based on the second-order stress deviator with six independent components, corresponding
to the fully 3D (three dimensional) stress state. However, in the plastic forming of thin-
walled components, the normal stress is usually much smaller than the in-plane principal
stresses, which means that the stress condition can be simplified to the plane stress state
with only three components. Therefore, shell elements and material constitutive models for
plane stress states are widely used in numerical simulations of sheet metal forming. When
the HAH model is selected to analyze the deformation of sheet metals under nonlinear
loading paths, it is required to transform the in-plane stress components to a stress deviator,
then calculate the strain increments and new stress deviator after a deformation increment
using an iterative method, and lastly, transform the new stress deviation tensor into in-
plane stress components for output. Obviously, the plane stress problem is transformed
into a more complex 3D stress problem, which makes the calculation complicated and
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costly. Therefore, it is of great significance to establish an anisotropic hardening model in
plane stress state to analyze the deformation of sheet metals subjected to complex loading.

In this paper, an anisotropic hardening model for plane stress problems such as
thin-walled metal forming will be proposed based on the framework of the HAH model.
For convenience, the proposed model is named the HAH-2d model in this work. In the
meantime, the performance of the HAH-2d model in predicting the evolution of yield
loci and the stress–strain curve will be analyzed under typical nonlinear loading paths.
Moreover, the new model will be verified by experimental results from two-step uniaxial
tension tests.

2. Fundamentals of the HAH Model

The original HAH model was proposed by Barlat et al. in the second-order stress
deviator space [26]. The yield function, as well as the plastic potential, is as follows:

Φ(s) =
[
φq + φ

q
h

] 1
q
=

[
φq(s) + f q

1

∣∣∣∣^h : s−
∣∣∣∣^h : s

∣∣∣∣∣∣∣∣q + f q
2

∣∣∣∣^h : s +
∣∣∣∣^h : s

∣∣∣∣∣∣∣∣q
] 1

q

=
−
σ
(−

ε
)

(1)

where, s and
^
h are the stress deviator and microstructure deviator, respectively, and “:”

denotes the double dot product.
The yield function Φ(s) consists of a stable component φ and a fluctuating component

φh. Any yield function may be used as the stable component after being reduced to a

homogeneous function of degree 1 with the form of φ(s) =
−
σ.
−
σ
(−

ε
)

is a hardening law,

where
−
σ and

−
ε are the equivalent stress and equivalent plastic strain, respectively. f1 and

f2 are state variables related to deformation history leading to the distortion of the yield
surface, and q is a constant exponent. If f1 = f2 = 0, Equation (1) reduces to a conventional

yield function, Φ(s) = φ(s) =
−
σ
(−

ε
)

.

The microstructure deviator
^
h, a normalized tensorial state variable, is proposed to

capture the deformation history and reflect the microstructure evolution of the material. It

defines an axis, not a direction; namely,
^
h and −

^
h represent the same microstructural state.

Its initial value
^
h

0

is defined as the normalized stress deviator
^
s

0
corresponding to the initial

yield, as in the following equation, where the factor 8/3 is used for convenience [26,27].

^
h

0

=
^
s

0
=

^
s

0√
8
3 s0

ijs
0
ij

(2)

If the material is reloaded in a different stress state,
^
h will rotate gradually towards the

new stress deviator s when cos χ ≥ 0, or towards −s when cos χ < 0. Additionally, cos χ

determined by Equation (3) is the cosine of the angle between s and
^
h, representing the

variation of the loading path [27,28]. Monotonic, reverse and cross-loading sequences are,
respectively, represented by cos χ = 1, −1 and 0.

cos χ =
s :

^
h

‖s‖ · ‖
^
h‖

(3)

where, ‖s‖ =
√

s : s =
√sijsij denotes the norm of the second-order tensor s.
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3. HAH-2d Model in Plane Stress State
3.1. Stress Vector and Microstructure Vector

During the forming process of sheet metal, the material is mainly in plane stress
state; the three in-plane stress components can be simply expressed as a stress vector
σ = (σ11, σ22, σ12)

T, while the other stress components such as σ33, σ13 and σ23 are equal
to 0. In order to describe the microstructure evolution of the sheet metal under plane stress

conditions, a normalized microstructure vector
^
H = (

ˆ
H11,

ˆ
H22,

ˆ
H12)

T

is defined in terms

of stress vector in this paper. Its initial value
^
H

0

also corresponds to the normalized stress

vector
^
σ

0
leading to the first increment of plastic deformation.

^
H

0

=
^
σ

0
=

σ0
√
σ0 : σ0

(4)

Considering that the plastic deformation of metals is driven by the stress deviator s,
it is still necessary to discuss the variation of loading path based on stress deviator when
analyzing plastic deformation processes under plane stress conditions. The second-order
deviatoric tensors, s and h, corresponding to the stress vector σ and the microstructure

vector
^
H, can be obtained through the following two equations, respectively.

s =

σ11 σ12 0
σ12 σ22 0
0 0 0

− σ11 + σ22

3

1 0 0
0 1 0
0 0 1

 (5)

h =


ˆ

H11
ˆ

H12 0
ˆ

H12
ˆ

H22 0
0 0 0

−
ˆ

H11 +
ˆ

H22

3

1 0 0
0 1 0
0 0 1

 (6)

Then, the double dot product s : h can be expressed as:

s : h =
1
3

(
2σ11

ˆ
H11 + 2σ22

ˆ
H22 − σ11

ˆ
H22 − σ22

ˆ
H11 + 6σ12

ˆ
H12

)
= σTD

^
H (7)

where the matrix D = 1
3

 2 −1 0
−1 2 0
0 0 6

.

Therefore, the value of cos χ can be calculated through vectors σ and
^
H, as follows:

cos χ =
σTD

^
H

√
σTDσ

√
^
H

T

D
^
H

(8)

Moreover,
^
H defines an axis in the vector space of plane stress. When the sheet metal

undergoes loading-path changes,
^
H will remain the same if cos χ = ±1, or rotate gradually

towards the new stress vector σ if 0 ≤ cos χ < 1, or rotate towards −σ if −1 ≤ cos χ < 0.

In this work, a possible evolution for
^
H is given as follows:

d
^
H = k

(
^
σ−

^
H
)

d
−
ε , cos χ ≥ 0

d
^
H = k

(
−^
σ−

^
H
)

d
−
ε , cos χ < 0

(9)
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Hi+1 =
^
H

i

+ d
^
H (10)

^
H

i+1

=
Hi+1√(

Hi+1
11

)2
+
(

Hi+1
22

)2
+
(

Hi+1
12

)2
(11)

in which
^
σ is the normalized stress vector of σ, k is a constant that controls the rate of

rotation, and d
−
ε is the increment of equivalent strain

−
ε , which can be calculated according

to the plastic work increment dWp:

−
σd
−
ε = σ · dε = dWp (12)

dε = (dε11, dε22, dγ12)
T (13)

where dε is the plastic strain increment vector, dε11 and dε22 are strain increments along
directions 1 and 2, and dγ12 is the shear strain increment.

The evolution of
^
H is shown schematically in Figure 1.

^
H rotates in the plane deter-

mined by
^
H

i

and
^
σ, and finally,

^
H takes the direction of

^
σ or −^

σ.
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^
H.

3.2. Formulation of the HAH-2d Model
3.2.1. Distortional Yield Function

The distortional yield function of the HAH model in the plane stress space (HAH-2d
model) is as follows:

Φ(σ) =
1
FL

[φq + φh
q]

1
q =

1
FL

[
φq(σ) + f q

1

∣∣σp −
∣∣σp
∣∣∣∣q + f q

2

∣∣σp +
∣∣σp
∣∣∣∣q] 1

q
=
−
σ
(−

ε
)

(14)

σp = ‖s‖ cos χ =
σTD

^
H√

^
H

T

D
^
H

(15)

The stable component φ can be any homogeneous yield function of degree 1 for
plane stress. The fluctuating component φh is adopted to cover the Bauschinger and
permanent softening effects, and the multiplier component 1/FL is used to capture the
latent hardening effect. Correspondingly, Φ(σ) is also a homogeneous function of degree
1, i.e., Φ(aσ) = aΦ(σ) holds for any real number a. In addition, σp is the projection of the
stress deviator s in the direction of the microstructure deviator h.
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It is important to note that the associated flow rule is applied in this paper, the yield
function also serves as the plastic potential. In other words, the plastic strain increment
vector dε is defined as

dε =
∂Φ(σ)

∂σ
dλ (16)

where dλ ≥ 0 is the plastic multiplier.

3.2.2. Bauschinger Effect and Permanent Softening Effect

A schematic diagram of yield loci in the σ11 − σ22 plane with f1 > 0, f2 > 0 and
FL = 1 is shown in Figure 2. σ f and σr are yield stress vectors on the current distortional

yield locus along the positive and negative directions of
^
H, respectively, and σiso is the

yield stress vector on the isotropic yield locus. State variables g1 and g2 are defined as
Equation (17) to represent the relationship between σ f , σr and σiso, and the parameters f1
and f2 in Equation (14) can be expressed as Equation (18).{

g1 = −σr/σiso ≤ 1
g2 = σ f /σiso ≤ 1 (17)

fi =

√
6

4
(

gi
−q − 1

) 1
q , i = 1, 2 (18)
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For a sheet metal exhibiting the Bauschinger effect, the normalized yield surface in the
opposite direction of loading tends to contract during forward loading, and the value of f1
should increase from 0 towards a finite value. As a result, the yield stress of reverse loading
is reduced compared with the final forward-loading stress, which is the Bauschinger effect.
During reverse loading, the flat yield surface at the side of reverse loading tends to recover

the yield surface determined by the isotropic hardening function φ(σ) =
−
σ. At the same

time, the yield surface opposite to the reverse loading contracts, and f2 starts to increase
in the same way as f1. If the yield surface at the side of reverse loading cannot recover to
the level of isotropic hardening, the permanent softening effect will occur during reverse
loading correspondingly.

A possible evolution for g1 and g2 is given in Equation (19) which has been successfully
applied in existing HAH models [26–28]. State variables g3 and g4 represent the maximum
saturation values of g2 and g1, respectively. Material coefficients k1 and k2 control the
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evolution rate of g1 and g2, and k3 controls their lower bound; k4 controls the minimum
value of g3 and g4, and k5 controls their evaluation rate. Meanwhile, the value of k4 is
usually slightly less than 1, according to the permanent softening effect. When the initial
values of g1 and g2 are both 1 and k1 = k2 = 0, the ability to describe the Bauschinger effect
will be suppressed, and when g3 = g4 = 1 and k4 = 1 (or k5 = 0), the ability to describe
the permanent softening effect will be suppressed.

If cos χ ≥ 0

dg1

d
−
ε
= k2

k3

−
σ(0)
−
σ

(
−
ε

) − g1


dg2

d
−
ε
= k1

g3−g2
g2

dg4

d
−
ε
= k5(k4 − g4)

If cos χ < 0
dg1

d
−
ε
= k1

g4−g1
g1

dg2

d
−
ε
= k2

k3

−
σ(0)
−
σ

(
−
ε

) − g2


dg3

d
−
ε
= k5(k4 − g3)

(19)

3.2.3. Latent Hardening Effect

For some materials, the flow stress during reloading may overshoot the stress during
monotonic loading under the condition of the same equivalent strain. The phenomenon
of overshooting was explained as the latent hardening effect. Additionally, the degree of
overshooting is usually maximum for cross loading, in which the angle between the two

corresponding normalized stress deviators
^
s1 and

^
s2 is 90◦ (

^
s1 :

^
s2 = 0). As the degree of

plastic deformation increases in the second step,
^
h rotates gradually towards

^
s2 or −^

s2.

Suppose sv and s’
v are the stress deviators vertical to

^
h on the distortional yield surface

and the isotropic one, respectively. Additionally, the corresponding plane stress vectors
are σv and σ’

v. Then, a state variable gL can be defined as Equation (20), which represents
that the distortional yield surface at cos χ = 0 expands to gL times the yield surface under
monotonic loading, and its minimum value is 1.

gL =
φ(σv)

φ(σ’v)
=

sv

s’v
(20)

Because the degree of the latent hardening effect is different under different strain
path changes, it is important to determine the yield surface expansion for arbitrary χ. The

stress deviator s can be decomposed into s‖ parallel to
^
h and s⊥ perpendicular to

^
h, as

shown in Figure 3 [28]. Considering that the latent hardening effect is mainly caused by
the vertical component s⊥, a new deviator s’ is composed as

s’ = s⊥/gL+s‖ (21)

Then, the expansion ratio of the yield surface for arbitrary χ can be represented by

FL =
‖s‖
‖s’‖ =

gL√
(gL2 − 1) cos2 χ + 1

(22)

Thus, the surface of φ(σ)/FL =
−
σ
(−

ε
)

expands faster than that of φ(σ) =
−
σ
(−

ε
)

under
any strain path change except cos χ = ±1. Furthermore, the evolution equation of gL is as
follows [27]:

dgL

d
−
ε

= kL


−σ

(−
ε
)
− −σ(0)

−
σ
(−

ε
)

(√L(1− cos2 χ) + cos2 χ− 1
)
+ 1− gL

 (23)
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where L and kL are constants controlling the upper bound and evolution rate of gL, respec-
tively. When the initial value of gL is 1 and L = 1, FL will be identical to 1, and the latent
hardening effect is suppressed.
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( ) ( )
( ) ( )2 20

(1 cos ) cos 1 1L
L L

dg
k L g

d
σ ε σ

χ χ
ε σ ε

  −
 = − + − + −       

(23)

where L and Lk  are constants controlling the upper bound and evolution rate of Lg , 
respectively. When the initial value of Lg  is 1 and L = 1, LF  will be identical to 1, and the 
latent hardening effect is suppressed. 
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Figure 3. Schematic of the decomposition and composition of stress deviator [28]. Redraw with
reference to International Journal of Plasticity, Vol 58, Barlat, F.; Vincze, G.; Grácio, J.J.; Lee, M.G.;
Rauch, E.F.; Tomé, C.N., Enhancements of homogenous anisotropic hardening model and application
to mild and dual-phase steels, 201–218, Copyright Elsevier (2014), with permission from Elsevier.

3.3. Coefficient Identification

It is recommended to identify the coefficients in the HAH-2d model in the following

order: yield function φ(σ), isotropic hardening law
−
σ
(−

ε
)

, and distortional hardening [27].

The coefficients of φ(σ) and
−
σ
(−

ε
)

can be determined independently in a conventional
way; for example, the coefficients of φ(σ) can be calculated based on the yield stresses
and anisotropy coefficients along different directions of the sheet, and the coefficients of
−
σ
(−

ε
)

can be obtained by fitting a monotonic stress–strain curve. Additionally, the nine
coefficients related to the distortion, namely, q, k, k1, k2, k3, k4, k5, kL and L, can be identified
using an optimization method in which the input experimental data should come from
reverse-loading and cross-loading tests.

When the stress–strain data of forward-reverse loading are available, coefficients k1, k2,
k3, k4 and k5 can be determined independently. Otherwise, the five coefficients have to be
evaluated together with k, kL, L and q. In particular, the Bauschinger, permanent softening
and latent hardening effects can be expressed simultaneously in the stress–strain curve
from a two-step tensile test with −1 < cos χ < 0, for example, re-tension in the direction
orthogonal to the fist tensile direction (cos χ = −0.5). Given that the orthogonal two-step
tensile test is easy to carry out, all the coefficients associated with the distortion could be
identified based on the stress–strain curve.

4. Hardening Behavior Predicted under Typical Nonlinear Loading Paths

In this section, the stress–strain curves and yield locus evolutions of a generic sheet
material under several typical nonlinear loading paths were predicted by the HAH-2d
model. The typical nonlinear loading paths in the range of −1 ≤ cos χ < 1 include reverse
loading (cos χ = −1), cross loading (cos χ = 0) and two-step tensions conducted at 45◦

(cos χ = 0.25) and 90◦ (cos χ = −0.5) from the first loading direction.
The initial yield condition of the generic sheet material is assumed to satisfy the Mises

isotropic yield criterion, see Equation (24), and the hardening satisfies the Swift hardening
law [36], see Equation (25). The material has a Bauschinger effect, permanent softening
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effect and latent hardening effect simultaneously. The coefficients of the swift hardening
law and coefficients associated with the distortion are listed in Table 1.

φMises(σ) =
√

σ2
11 + σ2

22 − σ11σ22 + 3σ2
12 =

−
σ (24)

−
σ = K

(−
ε + ε0

)n
(25)

where K, ε0 and n are material coefficients.

Table 1. Coefficients of the generic material.

Coefficients
Swift Hardening Law Coefficients Associated with the Distortion

K (MPa) ε0 n q k k1 k2 k3 k4 k5 L kL

Values 500 0.01 0.25 2 20 100 50 0.5 0.9 20 2.0 300

4.1. Reverse Loading

The evolution of the normalized yield locus of the generic material, predicted by the
HAH-2d model under a reverse loading, namely, uniaxial compression (UC) to true strain
of 0.10, followed by uniaxial tension (UT) in the reverse direction, is shown in Figure 4.

The microstructure vector
^
H maintains (−1, 0, 0) during the whole deformation. The

normalized yield loci in σ11 − σ22 plane are divided into left and right sides by the line
σ22/σ11 = 2.0. This line is chosen because the two stress deviators corresponding to stress
vectors (1, 2, 0)T and (1, 0, 0)T are orthogonal. During the compression step, the yield
locus on the left side remains unchanged, while the yield locus on the right side contracts
inward, which will result in a reduction in re-loading yield stress when tension occurs in
the opposite direction. As the tensile strain increases in the second step, the yield locus on
the left side contracts inward instead. The yield locus on the right side recovers towards the
isotropic hardening yield, but not completely, because of the permanent softening effect.
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The predicted stress–strain curve during reverse loading is given in Figure 5. The
reloading yield stress after compression pre-deformation is significantly lower than the
monotonic flow stress under the same deformation level, which is the Bauschinger effect.
When k4 = 0.9, the stress will not reach the monotonic uniaxial tensile curve, which is the
permanent softening effect. Additionally, the permanent softening phenomenon disappears
when k4 = 1.0. Therefore, the HAH-2d model can describe the Bauschinger effect and
permanent softening effect during reverse loading.
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Figure 5. True stress–strain curves of the generic material predicted by the HAH-2d model in a
uniaxial compression-tension loading path.

The sensitivity of the HAH-2d model to parameters k1, k2, and k3 should be considered
when predicting the Bauschinger effect during reverse loading. The state of the yield
surface associated with the Bauschinger effect is reflected by state variables g1 and g2, and
their evolutions follow the same rule. Therefore, the effects of k1, k2, and k3 on the predicted
responses, such as the evaluations of g1 and the stress–strain curves, were analyzed as
shown in Figure 6. It can be found from Figure 6a,b that k1 affects the evaluation rate of
g1 during reloading. The greater k1 is, the greater the increase rate of g1, and the faster
the flow stress reaches the saturation state. Figure 6c shows that k2 affects the evaluation
rate of g1 during preloading. However, the corresponding stress–strain curves of reloading
under the condition of 30 ≤ k2 ≤ 50, k1 = 100 and k3 = 0.5 are almost coincident, as shown
in Figure 6d. The reason is that there is little difference in g1 after a pre-strain of 0.1, and
the difference is quickly covered by the evolution during reverse loading. For the same
reason, the difference among the curves in Figure 6f under different k3 is not obvious too.
Even so, it should be noted that the value of g1 during preloading and the reloading yield
stress are significantly affected by k3; the smaller the value of k3, the smaller the value of g1
and the reloading yield stress.

Figure 7 shows the effects of k4 and k5 on the predicted responses of the permanent
softening effect during reverse loading, where the state variable g4 represents the maximum
saturation value of the reloading stress. It can be seen that the permanent softening effect
is mainly affected by k4, and the smaller the value of k4, the lower the value of g4 and the
saturation value of reloading stress. In the meantime, when using a value of k4 less than
1.0, the larger the value of k5, the faster the value of g4 approaches the saturation value, and
the lower the reloading stress–strain curve will be after a certain pre-strain. Of course, if
the pre-strain is large enough, the influence of k5 on the reloading stress–strain curve will
be significantly reduced or may even disappear.
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4.2. Cross Loading

It is known that the two stress deviators corresponding to
^
σPT = (1/

√
5, 2/

√
5, 0)

T

and
^
σUT = (1, 0, 0)T are orthogonal to each other, and the corresponding deformation

types are plane strain tension and uniaxial tension, respectively. Therefore, the loading
sequence of a plane strain tension (PT) followed by a uniaxial tension at an angle of 90◦

from the first tension direction is a typical cross loading path, and cos χ = 0 at the start of
the second loading.

The evolution of the normalized yield locus of the generic material, predicted by the
HAH-2d model during uniaxial tension after plane strain tension to equivalent strain of

0.10, is shown in Figure 8. In the plane strain tension process, there is
^
H =

^
σPT, the yield

locus above the line σ22 = 0 remains unchanged, and the yield locus below the line σ22 = 0

contracts inward because of the Bauschinger effect. In the second loading step,
^
H rotates

gradually towards
^
σUT with the increase in tensile strain, and the yield locus near

^
σUT

expands outward first and then returns to the isotropic hardening yield locus.
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Figure 8. Evolution of the normalized yield locus of the generic material predicted by HAH-2d model
in plane strain tension–uniaxial tension.

The uniaxial tensile stress–strain curves in the second loading step after different
degrees of plane strain pre-tension are shown in Figure 9. Obvious stress overshooting
is observed, and the higher the pre-deformation the greater the overshooting. When the
tensile strain reaches about 0.06 in the second step, the tensile stress returns to the level of
single uniaxial tension. It indicates that the HAH-2d model can capture the latent hardening
in cross loading.
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The latent hardening effect predicted by the HAH-2d model during cross loading
is affected mainly by parameters k, L, and kL. Therefore, the sensitivity of the model to
these three parameters was analyzed. Figure 10 shows the predicted responses of latent
hardening effect under different values of k during a typical cross loading, PT0.1−UT. With
the increase in the reloading strain, the value of χ gradually decreases from 90◦ to 0◦, and
the value of gL rapidly increases to a certain value and then gradually decreases to 1.0. As a
result, the phenomenon of stress overshooting is observed. Meanwhile, the larger the value
of k, the faster the value of χ and g4 decrease, and the faster the overshoot stress recovers.

1 
 

 
Figure 10. Predicted responses of latent hardening effect during cross loading of PT0.1−UT under
different k: (a) evaluation of χ, (b) evaluation of gL and (c) stress–strain curves.

Figure 11 shows the effects of L and kL on the predicted responses of latent hardening
effect during cross loading. It can be seen from Figure 11a,b that the larger the value L,
the larger gL can be obtained and the more significant the stress overshooting. On the
other hand, the latent hardening effect is also influenced by the value of kL, as shown in
Figure 11c,d. Additionally, the larger the value of kL, the faster the stress value reaches its
peak, and the larger the maximum stress value is. However, the sensitivity of the model to
kL is much lower than that to L. In addition, neither L nor kL affects the strain span of the
phenomenon of stress overshooting.
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Figure 11. Predicted responses of latent hardening effect during cross loading of PT0.1−UT; evalua-
tion of gL under (a) different L and (c) different kL; and stress–strain curves under (b) different L and
(d) different kL.

4.3. Two-Step Uniaxial Tension

Stress–strain curves in two-step uniaxial tensions with tensile axes at 45◦ and 90◦ from
each other were predicted by the HAH-2d model and are shown in Figures 12 and 13,
respectively. The curves with 45◦ express only latent hardening, while the curves with
90◦ express the Bauschinger effect, permanent softening and latent hardening at the same
time. Therefore, it is better to optimize the coefficients of the HAH-2d model by using
the stress–strain data of a two-step uniaxial tension with 90◦, or the orthogonal two-step
tension mentioned in Section 3.3.
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5. Model Validation
5.1. Determination of Material Coefficients

In this paper, the HAH-2d model will be applied to describe the hardening behavior
of DP780 and EDDQ steel sheets with 1.2 mm thickness that were tested by Ha et al. using
two-step uniaxial tension tests [6]. As shown in Figure 14, the sub-specimens were cut
along different directions at the center of the pre-deformed big-specimen [6]. Additionally,
the experimental results from tests consisted first of tension in the rolling direction (RD)
and second of tension at 90◦ (TD, the transverse direction), 60◦ and 45◦ from RD were used
in this work. Coefficients of the Yld2000-2d anisotropic yield function (see Appendix A)
and the Swift hardening law (see Equation (25)) for the two materials are listed in Table 2,
where m = 6 was adopted as recommended for BCC metals [6].
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where Pσ  is the predicted stress, Eσ  is the experimental stress, and N is the number of 
data. 
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sub-specimen at the center of the big-specimen and (b) directions of the second tension [6].

Table 2. Coefficients of yield function and hardening law for DP780 and EDDQ (Data from [6]).

Material
Yld2000-2d Yield Function Swift Hardening Law

α1 α2 α3 α4 α5 α6 α7 α8 m K (MPa) ε0 n

DP780 0.946 1.022 1.015 1.000 1.011 0.968 1.010 1.006 6 1295 0.0008 0.142
EDDQ 1.014 1.118 0.931 0.892 0.904 0.811 1.029 0.918 6 538 0.0075 0.267
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To quantitatively evaluate the error between the predicted and experimental data, the
root mean square error (RMSE) and the average absolute relative error (AARE) were used in
this paper. The definition of RMSE and AARE can be expressed by Equations (26) and (27).

RMSE =

√√√√ 1
N

N

∑
1
(σP − σE)

2 (26)

AARE (%) =
1
N

N

∑
1

∣∣∣∣σP − σE
σE

∣∣∣∣× 100% (27)

where σP is the predicted stress, σE is the experimental stress, and N is the number of data.
The coefficients associated with the distortion of the HAH-2d model for each ma-

terial were identified with an optimization method using the stress–strain data from an
orthogonal two-step tensile test with 10% pre-strain in RD, as shown in Figure 15. In the
optimization method, the objective is to minimize the RMSE. Considering that the DP780
steel expresses no permanent softening and latent hardening, k4 = 1.0, k5 = 0, kL = 0 and
L = 1.0 were set directly. Similarly, as the EDDQ steel expresses no permanent softening,
k4 = 1.0 and k5 = 0 were set. In the meantime, the value of q was set to 2.0 for convenience.
The obtained coefficients of the HAH-2d models for DP780 and EDDQ are listed in Table 3.
Additionally, the predicted stress–strain curves are plotted in Figure 15a,b, both of which
agree well with the experimental data. Additionally, the values of RMSE for DP780 and
EDDQ are 9.81 and 1.85, respectively. Incidentally, the reason for using the experimental
data from reference [27] in Figure 15 is that the experimental data used in reference [27] are
also from reference [6], but more points are given for this testing condition.
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(c) (d) 

 
(e) (f) 

 

Figure 15. Experimental and predicted stress–strain curves of re-tension in TD with 10% uniaxial
pre-strain in RD for: (a) DP780 steel and (b) EDDQ steel. The experimental data are derived from
reference [27]: International Journal of Plasticity, Vol 46, Barlat, F.; Ha, J.; Grácio, J.J.; Lee, M.; Rauch,
E.F.; Vincze, G., Extension of homogeneous anisotropic hardening model to cross-loading with latent
effects, 130–142, Copyright Elsevier (2013), with permission from Elsevier.

Table 3. Coefficients of HAH-2d models for DP780 and EDDQ.

Material k k1 k2 k3 k4 k5 kL L q

DP780 45.0 135.2 39.6 0.475 1.0 0 0 1.0 2.0
EDDQ 12.80 773.9 295.9 0.551 1.0 0 205.9 2.226 2.0
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5.2. Comparison of Prediction and Experimental Results

In order to validate the HAH-2d model, the hardening curves in two-step uniaxial
tensions of DP780 and EDDQ sheets, which consisted of 4% or 10% pre-strain in RD
and re-tension at 90◦ (TD), 60◦ or 45◦ from RD, were predicted and compared with the
experimental results. Incidentally, the two-step tension with tensile axes at 60◦ from each
other can be called “pseudo cross loading”, because it is close to the ideal cross-loading
condition, about 55◦ between the first and second tensile directions.

The predicted stress–strain curves of the HAH-2d model for DP780 under different
two-step uniaxial tensions are compared with the experimental curves in Figure 16, and
the corresponding prediction errors are listed in Table 4. It can be seen from Figure 16a
that the HAH-2d model captures the transient hardening behavior of DP780 fairly well for
re-tension in TD after a 4% pre-strain in RD, and the AARE value is only 1.28%. However,
the prediction at 60◦ shown in Figure 16b slightly overestimates the re-loading yield stress
and leads to a lower hardening rate. As a result, the values of RMSE and AARE increase
to 37.85 and 3.44% under the condition of 10% pre-strain. On the other hand, as shown in
Figure 16c, the phenomenon of cross-loading softening was observed in re-loading stress–
strain curves at 45◦, but the predicted re-loading yield stresses at 45◦ reach the monotonic
curve immediately. Additionally, the high RMSE values of 24.49 and 47.13 are mainly due
to the significant difference between the predicted stress and the experimental stress at the
beginning of the second tension.
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Figure 16. Experimental and predicted stress–strain curves of re-tension at (a) 90◦, (b) 60◦ and (c) 45◦

from RD with 4% or 10% uniaxial pre-strain in RD for DP780. The experimental data are derived from
reference [6]: Mechanics of Materials, Vol 64, Ha, J.; Lee, M.; Barlat, F., Strain hardening response and
modeling of EDDQ and DP780 steel sheet under non-linear strain path, 11–26, Copyright Elsevier
(2013), with permission from Elsevier.
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Table 4. Prediction errors for DP780 under different two-step uniaxial tensions.

Conditions RD 4%−TD RD 4%–60◦ RD 10%–60◦ RD 4%–45◦ RD 10%–45◦

RMSE 20.11 24.07 37.85 24.49 47.13
AARE (%) 1.28 2.14 3.44 1.94 2.58

Figure 17a–c show the predicted reloading flow stress curves for EDDQ in different
two-step uniaxial tensions with pre-tension in RD and re-tension at 90◦ (TD), 60◦ and 45◦

from RD. The predicted curves capture all the experimental results well, even though
there is a little overestimation of the flow stress in the re-tension at 60◦ from RD. The
corresponding prediction errors are listed in Table 5. The maximum values of RMSE
and AARE, 9.86 and 2.00%, both occur in the condition of re-tension at 60◦ after a 10%
pre-tension. This indicates that the HAH-2d model can capture anisotropic hardening
responses such as flow stress overshooting and strain-hardening stagnation.
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Figure 17. Experimental and predicted stress–strain curves of re-tension at (a) 90◦, (b) 60◦ and (c) 45◦

from RD with 4% or 10% uniaxial pre-strain in RD for EDDQ. The experimental data are derived from
reference [6]: Mechanics of Materials, Vol 64, Ha, J.; Lee, M.; Barlat, F., Strain hardening response and
modeling of EDDQ and DP780 steel sheet under non-linear strain path, 11–26, Copyright Elsevier
(2013), with permission from Elsevier.
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Table 5. Prediction errors for EDDQ under different two-step uniaxial tensions.

Conditions RD 4%−TD RD 4%–60◦ RD 10%–60◦ RD 4%–45◦ RD 10%–45◦

RMSE 5.59 8.65 9.86 4.74 5.40
AARE (%) 1.53 1.78 2.00 1.33 1.13

6. Conclusions

In this work, an HAH model in plane stress state was proposed, and the evolution of
the yield loci and the stress–strain curve of a generic material under some typical nonlinear
loading paths was analyzed using this model. Furthermore, the model was validated by
experimental results from two-step uniaxial tension tests. The conclusions are as follows:

(1) The HAH-2d model was proposed in plane stress state. Both the loading stress
vector and microstructure vector contain only three in-plane components. Compared with
the HAH model in fully 3D space, the transformation between the plane stress vector and
the second-order stress deviator and the complicated calculation in the stress deviator
space can be avoided in the HAH-2d model. The computational cost in finite element
applications is therefore reduced.

(2) The Bauschinger effect and permanent softening effect in reverse loading and the
latent hardening effect in cross loading were investigated in this paper. The evolution of
the yield surface and the stress–strain curve of the sheet metal with these effects can be
predicted by the HAH-2d model.

(3) The HAH-2d model can reasonably predict experimental phenomena such as
the reduction of re-loading yield stress in two-step loading with cos χ < 0 and stress
overshooting in cross loading. However, the phenomenon of cross-loading softening
observed in two-step loading with 0 ≤ cos χ < 1 cannot be captured by the model.
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Appendix A

Yld2000-2d anisotropic yield criterion [37] is defined as:

φ =
∣∣X′1 − X′2

∣∣m + |X′′ 1 + 2X′′ 2|m + |2X′′ 1 + X′′ 2|m = 2
−
σ

m
(A1)

where
−
σ is the equivalent stress, X′ i and X′′ i (i = 1, 2) are the principal values of tensors

X′ = L′ · σ and X′′ = L′′ · σ, respectively. σ is Cauchy stress tensor. L′ and L′′ can be
written in the following form
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[
L′
]
=

L′11 L′12 0
L′21 L′22 0

0 0 L′66

 =
1
3

 2α1 −α1 0
−α2 2α2 0

0 0 α7

 (A2)

[
L′′
]
=

L′′ 11 L′′ 12 0
L′′ 21 L′′ 22 0

0 0 L′′ 66

 =
1
9

8α5 − 2α3 − 2α6 + 2α4 4α6 − 4α4 − 4α5 + α3 0
4α3 − 4α5 − 4α4 + α6 8α4 − 2α6 − 2α3 + 2α5 0

0 0 9α8

 (A3)

where αi (i = 1, 2 . . . 8) are pending coefficients.
The principal values of X are

X1 = 1
2

(
X11 + X22 +

√
(X11 − X22)

2 + 4X2
12

)
X2 = 1

2

(
X11 + X22 −

√
(X11 − X22)

2 + 4X2
12

) (A4)

In the Yld2000-2d criterion, only the plane stress components, σxx, σyy and σxy are
relevant, where x and y indicate the RD and TD, respectively. For the exponent m in
Equation (A1), it is recommended to use 6 for BCC material and 8 for FCC material.
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