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Abstract: In this paper, the dynamic behavior of a hip level joint device of an active exoskeleton used
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frequencies and the eigenmodes, necessary for the fatigue testing in the resonance regime.
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1. Introduction

The development of materials or structural components requires fatigue tests that more
or less simulate operating conditions. Fatigue tests can be performed by two main methods:
by applying a large number of cyclic loads or using the resonance method. Fatigue stress is
performed by applying a large number of cyclic loads (forces or moments) on specialized
stands to produce deformations (tensions) of the tested element, especially in the elastic
domain. In general, these tests are performed on universal testing machines (usually servo-
hydraulic), using standardized material samples and less structural components, due to
assembly difficulties and dimensional constraints. Achieving the forces necessary to obtain
the fatigue stress in this method involves energy consumption and test durations which, in
general, are very large.

In this paper, the fatigue behavior of a metal component part of an exoskeleton is
studied. The exoskeletons are used in the rehabilitation of different pathologies such as:
stroke, diabetic foot, neuromuscular diseases and, last but not least, spinal cord injuries,
as an active part of a patient’s process of rehabilitation as well as part of their future
autonomy [1]. The study of the fatigue behavior of different parts of the exoskeleton is very
important in order to improve their quality and lifespan.

In the present work, the fatigue stress is achieved by using the resonance phenomenon.
The resonance regime is obtained by imposing cyclic displacements (linear or circular) in
certain areas of the tested structure component, such as to excite some of its vibration modes,
predictable by calculation. For most cases, the first natural mode is of particular interest, as
the response of the structure to resonance in this mode has the greatest amplification [2].

The first natural frequency of the considered device is theoretically predicted by using
the finite element method. The first approximation step consists in rewriting the elastic-
dynamics equation with boundary and initial conditions from the classical approach to

Materials 2023, 16, 1316. https://doi.org/10.3390/ma16031316 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16031316
https://doi.org/10.3390/ma16031316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-3377-1173
https://doi.org/10.3390/ma16031316
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16031316?type=check_update&version=2


Materials 2023, 16, 1316 2 of 18

the variational form. This has an advantage, in that it contains the boundary conditions
and the degree of the derivation operator is half reduced (Gauss’ formula and the space
of admissible functions). The next step is the approximation of the spatial variable, from
the variational form, using the finite element method, obtaining a second degree ordinary
differential system with initial conditions. The last approximation stage consists in the
approximation of the temporal variable, using the finite difference method, resulting in
the nodal displacements, nodal velocities and nodal accelerations at each time step. After
the first natural mode is achieved by numerical study, the experimental test is carried
out by keeping the oscillations near the obtained resonance frequency. In this way, only
a relatively small energy is required to maintain large response amplitudes, which can
produce significant stresses in the tested structure.

The load stress of the tested component can also be enhanced through the inertial
effect of some light masses, mounted on the sample to be tested, with the effect of a certain
decrease in the resonance frequency. They must be located in the vicinity of some antinodes
of the excited vibration mode.

Due to the structural degradation of the tested sample, the resonance frequency
decreases as the number of test cycles increases, resulting in a gradual decrease in the
amplitude of the structure’s response and, implicitly, in the stresses to which it is subjected.
By monitoring this phenomenon, the excitation frequency can be changed in a controlled
manner to find a new resonance regime and readjust the response amplitude to its initial
level. This procedure can be repeated as many times as necessary for the resonant frequency
to fall below a certain imposed limit, until the failure of the tested device. This testing
mode can be automatically controlled and can reduce the time required to cause the break
by about 10 times, compared to the universal testing machine approach.

The fatigue testing using the resonance method is not yet standardized [3], although
it is currently applied in many scientific works [4–20] and there are some companies that
produce specialized stands for specific application of resonance fatigue testing.

In this paper, we present a way of performing the fatigue tests and the results obtained
by applying the method of resonance stressing of a junction piece at the level of the hip of
an active exoskeleton used in the medical field.

This manuscript is organized as follows: Section 2 includes the elastic-dynamic equa-
tions in classical and in variational form, with boundary and initial conditions. There is a
brief review of the finite element method and the numerical methods used to obtain the
natural frequencies and natural modes; Section 3 contains a description of the fatigue tests
and their results, in both graphic and numerical form, describes the experimental tests and
shows the comparisons between numerical and experimental results. Section 4 suggests a
possible standardization and future development of the resonance testing method. Section 5
draws the conclusion.

2. Materials and Methods

The purpose of this section is to calculate the first natural frequency of the device,
necessary to determine the resonance zone, in order to apply the resonance method for
the study of fatigue behavior. The part of the medical device analyzed in this paper is the
junction piece at the hip level of an active exoskeleton [1], shown in Figure 1. This is the
most stressed component of the exoskeleton.

The dynamic equilibrium equation for a continuous elastic medium will be approxi-
mated with the finite element method and with other numerical methods [21–26]. The finite
element method is widely used in solving differential equations and has the following basic
characteristics: the deformations inside the finite element can be uniquely approximated
depending on the deformations of the nodes that define the finite element, by means of
some interpolation functions, and the functions in the basis of the approximation space
have much smaller bounded support, compared to the whole domain, resulting in a band
matrix with non-zero elements grouped around the main diagonal, which involves a small
calculation time.
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Figure 1. The exoskeleton and the tested junction piece.

In our case, we will use a finite element of thin plate-type (shell), and the discretized
equation will be valid only until exit from resonance regime, because beyond the resonance
zone, the stiffness matrix K changes, due to the material’s degradation.

2.1. Classical and Variational Formulation of the Problem of Elastic-Dynamics

Let us consider an elasticity body that at a given time, t = 0, occupies domain Ω ⊂ Rd,
where d = 2 or d = 3. The boundary of the body is divided into two sub-regions such that
∂Ω ≡ Γ = ΓU ∪ ΓN , which are topologically open, and disjoint and mes(ΓN) > 0.

The displacement u(t, x) will be prescribed on ΓU and traction h(t, x) is to be given on
ΓN . For the beginning, the boundary ΓN is considered without tensions. At the same time,
the stress vector σ(n)(u) is defined, oriented outwards of the boundary ∂Ω ≡ Γ, n is the
outward normal unit vector on Γ.

The initial displacement u(0, x) = u0(x), the initial velocity
.
u(0, x) = u1(x) and

the density of the volume force f are also given. The field of the displacements will be
the solution, which must be found, of the differential equations of elastic-dynamics. The
elastic-dynamics equation on Ω in a time interval [0, tE] with tE > 0, has the following form:

ρ
..
u(t, x)− σij,j(u(t, x)) = f (t, x) on [0, tE]×Ω. (1)

The boundary conditions

u(t, x) = u(t, x) on [0, tE]× ΓU , (2)

σ(n)(u)(t, x) = h(t, x), on [0, tE]× ΓN , (3)

where ρ is mass density with ∂ρ
∂t = 0, ρ ∈ L∞(Ω), ρ ≥ ρ0 > 0,

..
u ≡ ∂2u

∂t2 is acceleration.
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The strains are given by relations εij(u) = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

We shall use the following notations for the normal and tangential components of the
displacements and of the stress vector:

uN = u · n = uini , uT = u−uNn, σN = σijninj, (σT)i = σij − σNni, 1 ≤ i, j ≤ d and n
is the outward normal unit vector on Γ.

Following the steps, similar with those of [21], the linear elastic-dynamics problem
can be formally equivalent with a variational problem. This equation has the advantage of
containing the boundary conditions, thanks to the Gauss formula applied on the space of
admissible functions, and the degree of the derivation operator is half reduced:

Problem 1. Find the function u : [0, tE]→ V so that〈 ..
u(t) , v− .

u(t)
〉
+ a
(
u(t), v− .

u(t)
)
=
〈

f (t), v− .
u(t)

〉
, ∀v ∈ V , (4)

with the initial conditions:

u(0, x) = u0(x)and
.
u(0, x) = u1(x). (5)

It is assumed here, for simplicity, that ρ ≡ 1. The following notations and definitions
were also used:

V =

{
v ∈

[
H1(Ω)

]d
∣∣∣∣ v = u a.e. on ΓU

}
(6)

The space of admissible displacements (velocities);
a:V ×V → R , a(u, v) =

∫
Ω Cijklεij(u)εkl(v)dx, the virtual work produced by the ac-

tion of the stress σij(u) on the strains εij(v);
f (t, x) ∈ V′, 〈L, v〉 ≡ 〈 f (t, x), v〉 =

∫
Ω f (t, x)vdx +

∫
ΓN

h(t, x)γT(v)ds the virtual
work produced by the external forces.

Here, 〈·, ·〉 denotes duality pairing on V ×V′ where V′ is the topological dual of V.

γ is the trace operator mapping from
[
H1(Ω)

]d onto
[

H
1
2 (Γ)

]d
which may be decomposed

into a normal component γN(v) and tangential component γT(v).

2.2. Finite Element Approximations of the Elastic-Dynamics Problem

Two types of semi-discrete approximation scheme can be applied. In the first type,
when we replace the infinite-dimensional space V by a finite-dimensional subspace Vh (the
element finite spaces and h characterize the size of the partition with the finite element),
leading to a finite-dimensional system of ordinary Equation (9). In the second type, we
replace the time derivatives by finite differences that lead to elliptic variational equations
over infinite-dimensional space V at each time step. Such approximation schemes can
be termed as temporally semi-discrete schemes. The error induced by finite element
approximation can be minimized, by diminishing the size of the partition, h, or by increasing
the degree of the element shape functions.

Using standard finite element procedures, an approximate version of Problem P1
can be constructed in finite-dimensional subspaces Vh(⊂ V ⊂ V′). For certain (h) the
approximate displacements, velocities and accelerations at each time t are elements of Vh,
vh(t),

.
vh
(t),

..
vh
(t) ∈ Vh.

Within each element Ωe
h (e = 1, . . . , Nh), Nh being the total number of finite elements,

the components of the displacements, velocities and accelerations are expressed in the form:

vh
k(t, x) =

Ne

∑
I

vI
k(t)NI(x),

.
vh

k(t, x) =
Ne

∑
I

.
vI

k(t)NI(x),
..
vh

k(t, x) =
Ne

∑
I

..
vI

k(t)NI(x), (7)
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where k = 2 or 3, Ne = the number of the nodes of the element, vI
k(t),

.
vI

k(t),
..
vI

k(t) are the
nodal values of the displacements, velocities and accelerations, respectively, at the time t
and NI is the element shape function associated with the nodal point I.

The finite element version of the Problem 1 is then:

Problem 2. Find the functions uh : [0, tE]→ Vh so that〈 ..
uh

ε (t), vh
〉
+ a
(

uh
ε (t), vh

)
=
〈

f (t), vh
〉

, ∀vh ∈ Vh, (8)

with the initial conditions (5).

If NΩ
h is the number of the nodes of finite element mesh of Ω, then this problem is

equivalent to the following matrix problem:

Problem 3. Find the function r : [0, tE]→ Rd×NΩ
h , so that

M
..
r(t) + Kr(t) = F(t), (9)

with the initial conditions
r(0) = r0,

.
r(0) = r1. (10)

Here, we have introduced the following matrix notations:
r(t),

.
r(t),

..
r(t): the column vectors of nodal displacements, velocities and accelerations,

respectively;
M: mass matrix;
K: stiffness matrix;
F(t): consistent nodal exterior forces vector;
The stiffness matrix K is obtained by assembling the stiffness matrices on each finite

element, i.e.:

K =
Nh

∑
e=1

Ke,

where Ke is the stiffness matrix of the finite element e, and assembly will be done by identi-
fying the global and local degrees of freedom of the finite element which will be assembled.

The vector of external forces, or the vector of generalized loads, is calculated similarly:

F(t) =
Nh

∑
e=1

Fe(t),

where Fe(t) is the vector of external force of the finite element e from time t, and the
assembly rule is similar to that of the stiffness matrix.

The mass matrix M will be a diagonal matrix, because the lumped mass technique
is used, where the assembled mass matrix is the sum of the mass matrices of the finite
elements, to which the concentrated masses specified in the degrees of freedom of the
structure must be added. We remind you that for each finite element, the density of the
material and the geometry are known, therefore, the volume and mass of each finished
element can be calculated.

The thin plate element is, geometrically, a convex quadrilateral consisting of four
compatible triangles. These triangles have bases on the sides of the quadrilateral, and the
common vertex is designated by the intersection of the two segments that join the means of
the opposite sides, called the central node. The central node will add to the quadrilateral
element six internal degrees of freedom that will be eliminated by the static condensation
process, therefore, the resulting quadrilateral element will have 24 degrees of freedom, (i.e.,
three displacements and three rotations, per node). The thickness of the thin plate-type
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finite element will be specified to each finite element, specifying that the four nodes that
define the element are considered to be in the middle of the plate thickness.

Each thin plate-type quadrilateral finite element is defined by four nodal points I, J,
K, L in a counter-clockwise direction, which form a convex quadrilateral. (Ox, Oy, Oz) is
the element’s local system, defined as follows: O is the algebraic mean of the four nodes, I,
J, K, L and the direction of Ox is specified by LI-JK, where LI and JK are the midpoints of
the sides L-I and J-K; Oz is perpendicular to X-axis, and to the line joining the midpoints IJ
and KL, at the point O; Oy is perpendicular to Ox and Oz, in the point O to complete the
triorthogonal system, as shown in Figure 2.
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2.3. Determinant, or Characteristic Polynomial, Method

First, we will solve the generalized problem of eigenvalues which results from free
and undamped motion; thus, Equation (9) becomes:

M
..
r(t) + Kr(t) = 0. (11)

For Equation (11), solutions of the form are sought:{r(t)} = {X} cos(ωt + ψ), and
it is necessary to check Equation (11). Thus, a linear and homogeneous algebraic system
is obtained,

(K−ω
2
M){X} = 0. (12)

It is known that such a system admits a non-zero solution, if and only if:

det(K−ω
2
M) = 0. (13)

Expanding the determinant in Equation (13) according to the powers of ω
2
, a polyno-

mial of order n is obtained, assuming that n is the size of the system. The eigenvalues will
be the roots ω of the characteristic polynomial:

p(ω2) = det(K−ω2M). (14)

Moreover, the Sturm separation theorem is used, checking the increasing sequence
of all eigenvalues, ωi, i = 1, · · · , n. The eigenvectors corresponding to the eigenvalues
(eigenmodes) are calculated, by solving a homogeneous linear algebraic system, corre-
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sponding to each eigenvalue ωi. The components of the vectors {Xi} will not be linearly
independent, and for this reason, the magnitudes of the vectors cannot be obtained, but
only their direction. By scaling, the modal matrix is obtained.

It is noted: Φ the matrix of M-orthogonalized eigenvectors with p = n, or p < n

Φ = [Φ1, Φ2, · · · , Φp] (15)

and Ω is the diagonal matrix with the squares of the eigenvalues (eigenfrequencies).

Ω2 = diag(ω2
i ), (16)

where ω2
i are the squares of eigenvalues corresponding to the eigenvectors (eigenmodes).

Finally, a series of pairs of values and eigenvectors is obtained, starting with the
dominant pair, in increasing order of eigenfrequencies, (ω1, Φ1), (ω2, Φ2), · · · , (ω2, Φp).

In the analysis of the dynamic response modeled by Equation (9), F(t), can be a vector
of time-varying loads or, in our case, loads resulting from the oscillatory movement of the
hydropulse on which the test device is fixed. Assuming that the test device is uniformly
subjected to the hydropulse acceleration, denoted by

..
rh(t), the equilibrium Equation (9),

becomes, given that F(t) becomes −M
..
rh(t):

M
..
rr(t) + Krr(t) = −M

..
rh(t), (17)

where rr(t) is the relative displacement of the device with respect to the hydropulse, i.e.,
rr(t) = r(t)− rh(t).

2.4. Dynamic Response with the Modal Superposition Method

In the case of the modal superposition method, it is assumed that the device can be
correctly modeled by the first p lowest vibration modes, where p << n. Using the trans-
formation r(t) = ΦX, (see [26]), where the matrix Φ contains the first p orthonormalized
M-eigenmodes are contained, ΦT

i MΦj = δ
j
i , Equation (9) becomes:

..
X + Ω2X = ΦT F(t). (18)

Equation (18) represents a system of decoupled second-order ordinary differential
equations. This can be solved relatively easily, using Wilson θ-method, which is an uncon-
ditionally stable step-by-step integration method.

For our case, with the prescribed hydropulse movement, rr(t) = ΦX, and Equation (18)
will have the term on the right-hand side given by −ΦT M

..
rh(t). It is known that the

acceleration of the hydropulse is considered as the sum of the components on x, y and z,
as prescribed.

3. Results

The set of equipment used for experimental study in the Dynamic Testing Laboratory
from the Institute of Solid Mechanics is presented in Figure 3.

The resonance fatigue tests were carried out using a hydropulse Schenck PSA 100KN
to excite the bending vibrations of tested junction piece, clamped rigidly on the hydropulse
piston as a cantilever beam. The embedding system is shown in detail in Figure 4. This as-
sembly allows us to obtain a significant cyclic bending stress of the tested part in resonance
mode, by controlling the frequency and amplitude of the piston displacement.

The accelerometers placed on the hydropulse piston and on the exoskeleton component
allow the evaluation of the amplification of the dynamic response of the tested structure, in
order to realize its excitation in the resonance regime.
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Figure 4. The device mounted on the hydropulse.

The main characteristics of the PZT accelerometer, placed on the tested component,
used for measurement of output vibration parameters, are summarized in Table 1.

Table 1. PZT accelerometers characteristics.

Weight
(with Mounting

Magnet)

Charge
Sensitivity

Voltage
Sensitivity

Frequency
Range 5%

Max. Cont. Sin
Acceleration

(Peak)

60 g 4.8 pC/ms−2 4 mV/ms−2 0.2–5000 Hz 2 · 104 m/s−2

The output signals of the PZT accelerometers are routed to charge conditioning ampli-
fiers, having the following main features:

• Three digit conditioning to transducer sensitivity;
• Unified output ratings for simplified system calibration;
• High sensitivity up to 10 V/pC;
• Built-in integrators for displacement and velocity;
• Switchable low and high frequency limits.



Materials 2023, 16, 1316 9 of 18

The output voltage signals of charge amplifiers are supplied to a dual channel PC
oscilloscope for analog–digital conversion. The digital data are further processed to obtain
the measured vibration parameters in both time and frequency domains.

The voltage output of the signal generator (controlled by the same PC oscilloscope) is
routed to the hydropulse control unit.

3.1. Experimental Tests

The method of carrying out the fatigue tests by the resonance method, used in this
paper, consisted of:

• predicting by FEM method the frequency of the first vibration mode for initial config-
uration of experimental setup;

• monitoring the evolution of the amplitude or the effective value of the response,
by changing the excitation frequency in the neighborhood of predicted resonance
frequency;

• determining the frequency spectrum of the response in the resonance regime for the
evaluation of the resonance frequency;

• maintaining the frequency of the stress cycles at the value established in the previous
step until the moment when the response vibration level of the tested component
reach a prescribed percentage of the initial value due to the structural degradation of
the material through fatigue;

• determining the frequency response function of the component by sweeping the
excitation frequency, to obtain the value of the new resonance frequency;

• continuing the tests according to the previous steps until the failure (breakage) of
tested piece.

The number of stress cycles is determined based on test durations and excitation
frequencies, kept constant between two successive resonance values.

The tests were carried out successively in two stages:

• In the first stage, the tests were carried out with a small additional mass (acceleration
transducer and mounting magnet with a total weight of 0.060 kg), placed on the sample,
as shown in Figure 4. After a relatively large number of cycles at the initial resonance
frequency (approx. 195 Hz), predicted by calculation with MEF, no significant decrease
was observed.

• In the second stage, the tests carried out for the same sample on which a cylindrical
body was mounted. The total additional mass was 0.620 kg (close to the mass of the
exoskeleton drive motor, which is mounted on the junction piece, as shown in Figure 5).
This testing setup simulates the operating conditions more realistically. The initial
resonance frequency decreased to approx. 120 Hz, as was predicted by calculation
with MEF and obtained experimentally. Fatigue testing started with the new resonance
frequency, and was continued using the methodology previously described, until the
failure (breaking) of the exoskeleton junction piece.
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3.2. Results of the Fatigue Tests Performed by the Resonance Method

In this paragraph, the amplitude spectra and frequency response functions, recorded
for different resonance regimes of tested sample, are presented. These records highlight
the evolution of structural degradation versus number of stress cycles applied until the
breaking of the sample in the clamped zone. It is worth mentioning that in the same zone
were encountered breakings of exoskeleton joint pieces in operating conditions.

In Figures 6–8 are given the frequency response functions (amplification factors) of the
junction component, tested with the additional mass of 0.060 kg. These plots are displayed
on the PC oscilloscope screen, being obtained by automatic frequency sweep of the imposed
stress cycles. Their values are expressed as the root mean square voltage (Vrms), supplied
by the signal conditioners, being proportional to the measured vibration level.
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of structural degradation.  

 

Figure 9. Amplitude spectrum for additional mass of 0.620 kg, recorded at the initial moment. 

Figure 8. Frequency response function recorded after 523,800 cycles with frequency 194 Hz.

As one can see, after a relatively large number of cycles at the resonance frequencies
(approx. 1,370,000), only 0.01% decrease of initial value f0 = 195.3 Hz was observed.

In order to accelerate the structural degradation, the tests were continued with an
additional mass of 0.620 kg. This weight is close to that of the exoskeleton drive motor
mounted on the tested component in operating conditions (see Figure 5).

In Figures 9–19 are plotted the experimental amplitude spectra obtained for the
measured vibrations of device with additional mass of 0.620 kg, recorded after different
moments of the fatigue test. In the second stage of resonance fatigue testing, the evolution
of structural degradation was more rapid than in the first stage and the results could have
been affected by the relatively long time required for recording the frequency response
functions by frequency sweeping. The amplitude spectra are almost instantaneously
displayed after the end of recording the vibration time histories. The results are calculated
in decibels voltage values (dBV) relative to the reference specified in the upper left side of
plots. The sequence of the plots recorded in the second stage illustrates better the fatigue
resonance methodology than those recorded in the first stage, due to the higher gradient of
structural degradation.
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the fatigue tests caused the failure of the exoskeleton junction piece.  

The variation of the resonance frequency in relation to the number of cumulative 

stress cycles for the two testing stages, mentioned in the previous paragraph, is presented 

in Figure 18. Practically, as one can see from this figure, the tested device failed in stage 2 

in resonance mode at 114.8 Hz, after approx. 735,400 cycles. 
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Figures 21 and 22 show the components of the broken sample and the appearance of 
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Figure 19. Evolution of the macroscopic damage variable with number of cumulative cycles.

The frequency of the stress cycles was maintained at the value of 63.5 Hz for just
47,880 cycles until the vibration amplitude of the tested sample decreased very fast pro-
ducing the breaking of it. Just before the end of the testing second stage, the last frequency
response function was recorded at which the resonance regime could be obtained before
breaking.

The above experimental results show a gradual decrease of the first vibration mode
frequency of the tested device. After 1,062,126 cycles with the additional mass of 0.620 kg,
the fatigue tests caused the failure of the exoskeleton junction piece.

The variation of the resonance frequency in relation to the number of cumulative stress
cycles for the two testing stages, mentioned in the previous paragraph, is presented in
Figure 18. Practically, as one can see from this figure, the tested device failed in stage 2 in
resonance mode at 114.8 Hz, after approx. 735,400 cycles.

The decrease of the resonant frequency of the device with the increase of the number
of fatigue cycles could be viewed as a very sensitive measure of the material stiffness
degradation. This stiffness degradation is frequently employed as a macroscopic measure
of the fatigue damage degradation of the material in terms of macroscopic variables [15].
In the one-dimensional case (considering the device as a cantilever beam), the macroscopic
damage variable DN is defined as

DN = 1− EN

E0
= 1−

(
fN

f0

)2
(19)

where E0 is the longitudinal stiffness of the undamaged device, EN is the longitudinal
stiffness of the device after N fatigue cycles, f0 is first eigenfrequency of the undamaged
device and fN is first eigenfrequency of the device after N fatigue cycles. The variation
of the damage variable DN versus the number of cycles N, determined from the diagram
shown in Figure 18, is presented in Figure 19.

Figure 20 captures the breaking moment of the tested device.
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Figures 21 and 22 show the components of the broken sample and the appearance of
the breaking surfaces.
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4. Discussion

Due to the benefits of fatigue resonance testing, which is very useful in many applica-
tions, it is becoming necessary to standardize this method.

The real-time monitoring of the evolution of resonance frequency and number of
cycles by feedback control of the input and output parameters maintain the desired level of
stress cycles.

We think the fatigue resonance testing could be efficiently applied to studying the
effects of overload on fatigue life of notched specimens (e.g., the exoskeleton junction piece
studied in this paper).

Investigation of the influence of additional mass placed on tested structural compo-
nents could provide useful information for designing and resonance fatigue testing. In our
case, reducing the weight of the mass of the exoskeleton drive motor could extend the life
span of the exoskeleton junction piece.

5. Conclusions

1. The tests presented in this paper proved the effectiveness of the resonance method for
testing the fatigue behavior of structural components.

2. The first natural frequency of the sample, which is used initially as an imposed fatigue
stress frequency for a given testing setup, was theoretically predicted using the finite
element method and experimentally validated.

3. The decrease of the resonant frequency of the device with the increase of the number
of fatigue cycles is a measure of the material stiffness degradation.

4. The fatigue tests, performed successively on the same specimen with two different
additional masses (0.06 kg and 0.620 kg), highlighted a significant difference in the
evolution of the macroscopic damage variable: 1% for approx. 1,380,000 cycles in the
first case and 84% for approx. 1,060,000 cycles (until the breaking of the tested specimen).

5. The appearance of the fracture surfaces highlights the ductile fracture of the sample
and the way the cracks propagate from the areas of the stress concentrators near the
connections to the line of the two holes applied in the vicinity of the clamped area, as
predicted by FEM calculation.
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