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Abstract: Triol acrylic-urethane (t-AU) was synthesized from an addition reaction using trimethylol-
propane, hexamethylene diisocyanate, and 2-hydroxyethyl methacrylate. The novel acrylic-urethane
polymer was applied to a high-performance binder to prepare a reliable road marking paint. Acrylic-
urethane polymer binder formulations were designed to optimize the effect of t-AU on the physical
properties. The t-AU content in the formulation affected the adhesion and optical properties. The
improvement in the adhesive performance and transparency ability for road markings was attributed
to the optimal chemical structure or design of the acrylic-urethane polymer. The synthesis of t-AU
was confirmed by Fourier transform infrared spectroscopy, and molecular weight and polydis-
persity index (PDI; PDI = Mw/Mn) measurements. The tensile and shear strength, hardness, gel
fraction, crosslink density, contact angle, and transmittance of the acrylic-urethane polymer binder
(AUP) were evaluated by curing at room temperature using a redox initiator system. An optimized
AUP by adding 5 wt.% t-AU provides a viable alternative to high-performance binders in road
marking paints.

Keywords: acrylic-urethane binder; room temperature curing; redox initiator system; road marking paint

1. Introduction

Road markings are one of the essential safety features of modern roadways with
high traffic [1–5]. In addition to the environmental safety of the road markings, ease of
application, good durability, and high functionality should be primarily considered [6–10].
In various road environments, road marking paints based on acrylic resin have limitations
that make its drying more difficult on busy roads and can lead to traffic accidents [11–14].
Traffic marking paint-based acrylic resin could also be used with the remaining portion of
the paint layer in an undried state. Some topics on the effects of the external environment
and drying process on road marking paints have emerged only recently. Hence, research in
recent years has focused on preparing acrylic resins with fast drying times and improved
properties in the summer–winter season [15–17]. Duan et al. used a novel acrylic resin as a
binder of waterborne printing ink with good adhesion and water resistance [18].

Acrylic-urethane binders could be employed to provide high-performance marking
paints [12,19–22]. They must offer high transparency, hydrophobicity, toughness, and
adhesion for used in acryl resin-based marking paint with outstanding durability and
protective properties [23,24]. The basic formulations used in acrylic-urethane are acrylic
monomers, soft blocks of polyols, and hard blocks of diisocyanates [25–27]. The adhesive
properties of acrylic-urethane binders can be controlled by its hard segments and acrylic
groups. Acrylic functions with carboxyl groups can be used as cross-linking sites. Therefore,
the cohesion and adhesion properties of acrylic-urethane binders can be controlled by the
acrylic-urethane content. Durable properties of acrylic-urethane binders can be provided
by a combination of soft segments and additives, such as plasticizers and fillers. As a result,
the final properties of an acrylic-urethane polymer binder (AUP) might be controlled by
combining optimal amounts of these components.
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As the properties and performance of polymers were influenced by their molecular
weight (MW), AUP should be utilized with the optimized MW and narrow molecular
weight distribution (MWD) [18,28–31]. This study examined the optimal molecular struc-
ture and produced novel AUPs with an effective curing system. Trimethylolpropane
ethoxylate was selected to increase the transmittance of the acrylic-urethane binder as a
trivalent polyol [32–34]. Hexamethylene diisocyanate without a benzene ring, as an iso-
cyanate, was used to reduce the yellow factor. 2-hydroxyethyl methacrylate (2-HEMA) was
added to impart an acrylate function to the triol urethane, and poly(methyl methacrylate)
(PMMA) was used as the main acrylate of the acrylic-urethane binder to improve the phys-
ical properties. Another goal of this study was to develop a redox initiator system (ROIS)
using N,N-bis(2-hydroxyethyl)-paratoluidine (PTE) with amine/benzoyl peroxide (BPO),
which can initiate the free radical polymerization of acrylate at room temperature [35–39].
ROIS with BPO and PTE was used to induce the free radical polymerization of PMMA with
the main urethane chain of the added t-AU.

2. Experimental Setup
2.1. Materials

Trimethylolpropane ethoxylate (TMPE, Mn = 1014 g/mol, Merck KGaA), hexamethy-
lene diisocyanate (HDI, Merck KGaA), and 2-HEMA (TCI) were purchased and used after
12 h vacuum drying for dehydration. PMMA (Mn = 28,000), benzoyl peroxide (BPO), and
nitrogen catalyst (PTE) were ordered from Jeongseok Chemical Co., Ltd. and vacuum-dried
prior to use.

2.2. Synthesis of Triol Acrylic-Urethane

Scheme 1 presents a schematic of the procedure used to synthesize a triol acrylic-
urethane (t-AU).

A t-AU series was synthesized according to the following process. TMPE and HDI
were charged into a 250 mL four-necked round bottom flask equipped with a thermometer,
condenser, mechanical stirrer, and nitrogen purging system. The mixture was heated
to 50 ◦C with a small amount of tin catalyst to form a prepolymer. After 3 h reaction,
2-HEMA was added as a co-monomer, and the mixture was stirred vigorously to form a
2-HEMA-terminated t-AU.

2.3. Room-Temperature Curing of Triol Acrylic-Urethane Polymer Binder

Scheme 2 presents a schematic procedure for room-temperature curing (RTC) of acrylic-
urethane polymer binder. The acrylic-urethane polymer binder (AUP) was prepared by
blending triol acrylic-urethane (t-AU, content: 0–20 wt.%), PMMA, and 2-HEMA and, then,
by adding PTE and BPO. The mixed polymer binder was inserted into a glass beaker; then,
1 wt.% BPO and 1 wt.% PTE were added, and mixture was mixed well. The well-mixed
t-AU series was poured into polytetrafluoroethylene molds to obtain the polymer samples.
Table 1 lists the composition ratio of the polymer binder.

Table 1. Split composition of the comparative groups.

Functionality Component
Content (wt. %)

(a) (b) (c) (d) (e)

acrylic compound

PMMA 89 84 79 74 69

2-HEMA 10 10 10 10 10

t-AU 5 10 15 20

catalyst PTE 1 1 1 1 1

curing agent BPO 1 1 1 1 1
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Scheme 2. RTC of an acrylic-urethane polymer binder by mixing triol acrylic-urethane and additives.

2.4. Characterization

Fourier-transform infrared (FT-IR, Spectrum two, Perkin Elmer, Waltham, MA, USA)
spectroscopy of the synthesized t-AU was performed with a resolution of 4 cm−1 over a
spectral range of 400 to 4000 cm−1. The number average molecular weight (Mn), weight
average molecular weight (Mw), and polydispersity index (PDI) of the synthesized t-AU
were measured by gel permeation chromatography (GPC, Waters 2414, Waters, Milford,
CT, USA). The tensile strength was measured at a rate of 10 mm/min by manufacturing
a specimen according to the ASTM D638 method. The shear strength was measured at
a rate of 1.3 mm/min by preparing a specimen according to the standard of the ASTM
D1002 method [40]. The tensile strength and shear strength were investigated using a
universal testing machine (UTM, LRX plus, LLOYD INSTRUMENT, Bognor Regis, UK).
The hardness of the prepared polymer binder was measured by manufacturing a specimen
according to the ASTM D2240 standard, and a durometer (A-ASKER, Kobunshi Keiki
Co., Ltd., Kyoto, Japan) was used. The prepared mechanical property samples were used
24 h after manufacture, and each physical property was measured five times, with the
average used for further analysis. A 5 g sample of the binder was filmed, and the gel
rate of the binder was checked using the gravimetric method. The 5 g of binder film was
placed in a 50 mL vial, and 30 g of tetrahydrofuran (THF, Merck KGaA) was added as
a solvent. The resulting mixture was shaken for one minute, left to stand for 24 h, and
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shaken again for one minute [27]. After repeating this process three times, it was filtered
with a vacuum pump and dried at room temperature for two hours [41]. Subsequently,
the gel rate was measured by changing the weight of the prepared sample. The samples
for the transmittance and contact angle measurements were prepared using a 175 µm
thick applicator on a glass substrate. The transmittance of the binder was measured in a
wavelength range from 300 nm to 700 nm at room temperature using an ultraviolet (UV)-vis
spectrophotometer (Mega-800, Scinco, Seoul, Republic of Korea) [42]. The contact angle
with water was measured at room temperature with a contact angle meter (Pheonix300,
SEO, Suwon, Republic of Korea) [43].

3. Results and Discussion

The synthesis results of triol acrylic-urethane (t-AU) were confirmed by FT-IR spec-
troscopy. Figure 1 presents the chemical structures of t-AU before and after acryl termina-
tion. The absorption peak of the –NCO groups at 2275 cm−1 disappeared gradually under
the reaction process in Figure 1A, while the binding peaks at 1725 cm−1 and 1535 cm−1

due to the interaction between the –NH groups and the carbonyl groups simultaneously
emerged, as shown in Figure 1B. The specific peak at 1635 cm−1 could be formed upon the
addition of 2-HEMA, which may be due to the formation of acrylic double bonds in the
urethane backbone. The results can be indicative of the occurrence of triol acrylic-urethane
(t-AU) by two consecutive reactions.
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Figure 1. FT−IR spectra of triol acrylic-urethane by a reaction of NH groups (A) and C=O groups (B)
and by the addition of 2-HEMA.

The influences of the triol acrylic-urethane (t-AU) content upon the physical and
mechanical properties were studied on the same molecular weight (MW). The MW can
be a crucial factor affecting the properties of acrylic-urethane polymer binder (AUP).
Synthesizing t-AU of a uniform molecular weight and a constant polydispersity was a must
have before using it as an AUP. Figure 2 presents the GPC curves of the t-AUs synthesized
under the same reaction condition, and the data are listed in Table 2. The average MW
of the three t-AUs was approximately 10,776, and their polydispersities ranged from 1.96
to 2.15. This result suggests that the effect of MW on t-AU properties is limited within a
constant value, except for the t-AU content.

The effects of the chemical structures on the physical and mechanical properties of
a t-AU series were studied in more detail at the same MW, based on a function of t-AU
content. Figure 3A shows the measured tensile strength of the AUP series according to
the difference in t-AU content. When 10 wt.% was added, the highest tensile strength
appeared, and when t-AU in amounts greater than 10 wt.% was added, the tensile strength
was reduced, thus being considered a defect. Figure 3B shows the measured shear stress
of AUPs with different t-AU contents. As the t-AU content increased, the shear strength
increased to a limiting value of 5 wt.% t-AU and, then, decreased gradually. The observation
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may be due to the strong hydrogen bonding and low steric hindrance by the formation
of an optimized chemical structure. This result may also be because 5 wt.% t-AU can
provide significant reactive groups at the molecular chain of AUP to allow for an enhanced
three-dimensional network.
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Figure 3. Tensile strength (A) and shear strength (B) of AUPs as a function of the t-AU content.

The gel fraction and average crosslink density were measured to confirm the curing
degree of the AUP at room temperature. The average crosslink density of the AUP series
was obtained according to Equations (1) and (2).

σ =
1
A

(
∂∆Fel

∂l

)
T,V

= PpγeRT
(

α − α−2
)

(1)
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where σ and A represent the tensile stress and the area of the specimen, respectively;
α represents the elongation at break; and Pp is the density of the cured sample. The
Helmholtz free energy (∆Fel) of the crosslinked network can be calculated as follows.

∆Fel =
1
2

γeRT
(

λ2
x + λ2

y + λ2
z − 3

)
(2)

where γe is the crosslink density, λi (i = x, y, and z) represents the elongation in three dimen-
sions, T is the ambient temperature, and R is the universal gas constant [24,44]. Figure 4
shows the gel fraction and average crosslink density of AUP with different t-AU contents.
The gel fraction of the AUP series crosslinked with the addition of t-AU was approximately
75–79%, as shown in Figure 4A, showing a tendency to increase as t-AU was added in
excess, without a significant difference. As shown in Figure 4B, the average crosslinking
density tended to increase with the addition of t-AU and reached the highest value. The
average crosslinking density was calculated according to the above formula, and the data
used are listed in Table 3. The binders were prepared by increasing the crosslink densities,
which can be attributed to the improved transmittance and mechanical properties.
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Figure 4. Gel rate (A) and average crosslink density (B) of AUP series based on a function of t-AU content.

Table 3. Mechanical properties used to calculate the average crosslink density.

Tensile
Strength

(MPa)

Elongation
at Break

(%)

Density
(g/cm3)

Average Crosslink Density
(10−3 mol kg−1)

0 wt.% 7.093 34.75 - -

5 wt.% 10.786 42.32 0.413 0.248

10 wt.% 13.705 39.41 0.433 0.325

15 wt.% 12.681 48.71 0.404 0.260

20 wt.% 10.566 41.41 0.423 0.238

The AUP for road marking paint should have good optical clarity to ensure the
effective absorbance and high reflection of road paint bead. Figure 5 shows the UV-visible
spectra of the AUP series with different t-AU contents. The transmittance values of most
AUPs were more than 90%, showing excellent transmittance in the range from 360 to
700 nm. This transmittance can guarantee that the light effectively reaches the bead. As
shown in Figure 5, the increase in t-AU content leads to a decrease in transmittance. The
result suggests that the t-AU amount ranging from 10 wt.% to 20 wt.% may exceed the
marginal distribution of t-AU content into the APU chemical microstructure.
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In addition to the ease of application of traffic paints, durability and functionality in 
external environments are primarily considered. The road marking paints must maintain 
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nal conditions, such as higher/lower temperatures and high humidity. The dependence of 
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hardness and contact angle. As shown in Figure 6A, the hardness of AUP improved with 
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In addition to the ease of application of traffic paints, durability and functionality in
external environments are primarily considered. The road marking paints must maintain
consistent application properties and provide a significant ‘no track’ time based on external
conditions, such as higher/lower temperatures and high humidity. The dependence of the
t-AU content on the durability and functionality was evaluated using the Shore A hardness
and contact angle. As shown in Figure 6A, the hardness of AUP improved with increasing
amounts of t-AU, up to 10 wt.%. The hardness depends on the concentration of t-AU
content used. The results suggest that crosslinking in the range from 5 wt.% to 10 wt.%
may be efficient because of the optimized reactive sites. Moisture adsorption depends
on surface chemistry and surface-free energy. Figure 6B shows the determination of the
contact angles using a contact angle meter. As the t-AU content falls below 1.0, the contact
angle decreases very slowly. The t-AU content for the optimal moisture barrier appears to
be 5–10 wt.%. Hence, the AUP moisture barrier may be dependent on the t-AU content in
the formulation.
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4. Conclusions

A t-AU series with the same MW was synthesized for application as a polymer binder
for road marking paint. The novel formulations were prepared by tuning the t-AU content.
The curing degree of AUP at room temperature was confirmed by measuring the gel
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fraction and average crosslink density. The adhesion strength and optical clarity of AUP
were enhanced up to a limiting t-AU content and, then, decreased gradually. The tensile
strength and shore A hardness also increased as t-AU was added. The improved mechanical
and physical properties were attributed to the effects of an optimizing chemical structure
formed in a three-dimensional chain network. Furthermore, AUP exhibited a moisture
resistance property to achieve significant durability. AUP with a 5 wt.% t-AU content was
applied as an excellent candidate for polymer binders in traffic road marking paint.
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