

Article **Formation of TiB₂–MgAl₂O₄ Composites by SHS Metallurgy**

Chun-Liang Yeh * D and Fu-You Zheng

Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 40724, Taiwan * Correspondence: clyeh@fcu.edu.tw; Tel.: +886-4-2451-7250 (ext. 3963)

Abstract: TiB₂–MgAl₂O₄ composites were fabricated by combustion synthesis involving metallothermic reduction reactions. Thermite reagents contained Al and Mg as dual reductants and TiO₂ or B₂O₃ as the oxidant. The reactant mixtures also comprised elemental Ti and boron, as well as a small amount of Al₂O₃ or MgO to serve as the combustion moderator. Four reaction systems were conducted and all of them were exothermic enough to proceed in the mode of self-propagating high-temperature synthesis (SHS). The reaction based on B₂O₃/Al/Mg thermite and diluted with MgO was the most exothermic, while that containing TiO₂/Al/Mg thermite and Al₂O₃ as the diluent was the least. Depending on different thermites and diluents, the combustion front temperatures in a range from 1320 to 1720 °C, and combustion wave velocity from 3.9 to 5.7 mm/s were measured. The XRD spectra confirmed in situ formation of TiB₂ and MgAl₂O₄. It is believed that MgAl₂O₄ was synthesized through a combination reaction between Al₂O₃ and MgO, both of which can be totally or partially produced from the metallothermic reduction of B₂O₃ or TiO₂. The microstructure of the TiB₂–MgAl₂O₄ composite exhibited fine TiB₂ crystals surrounded by large densified MgAl₂O₄ erontaining composites.

Keywords: MgAl₂O₄; TiB₂; metallothermic reduction; SHS powder metallurgy; combustion wave propagation

1. Introduction

 TiB_2 has been one of the most studied ultra-high temperature ceramics (UHTCs) due to its unique properties, including a high melting point (3225 °C), high hardness (33 MPa), high Young's modulus (530 MPa), excellent wear and oxidation resistance, thermal shock resistance, chemical inertness, and good electric conductivity [1–3]. Combination of these properties makes TiB₂ an ideal candidate for use in ballistic armors, crucibles, metal evaporation boats, cutting tools, wear resistance parts, and cathodes for alumina smelting [4–6]. Many ceramic phases, such as Al_2O_3 , SiC, B_4C , and $MgAl_2O_4$, have been considered as the reinforcement to improve fracture toughness, oxidation resistance, heat resistance, and mechanical strength of the TiB_2 -based composites [7–10]. Moreover, a recent study showed that TiB₂-Al₂O₃-MgAl₂O₄ composite possesses temperature insensitive and enhanced microwave absorption properties [11]. Magnesium aluminate spinel, MgAl₂O₄, as an additive has been rarely studied, possibly because the fabrication of MgAl₂O₄ via either the direct solid-state reaction of oxides or wet chemical methods requires multiple steps that are complicated and time-consuming [12-14]. However, MgAl₂O₄ is an attractive component due to its high melting point, chemical inertness, high hardness, corrosion resistance, high mechanical strength, and low cost [12].

Among various fabrication routes for preparing multiphasic ceramics, metallothermic reduction reactions (i.e., thermite reactions) combined with combustion synthesis have been recognized as a promising technique for in situ formation of MgAl₂O₄-containing composites [15]. Combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS), which is based on strongly exothermic reactions, has merits of low energy consumption, short reaction time, simple equipment and operation, high-purity products, and in situ

Citation: Yeh, C.-L.; Zheng, F.-Y. Formation of TiB₂–MgAl₂O₄ Composites by SHS Metallurgy. *Materials* **2023**, *16*, 1615. https:// doi.org/10.3390/ma16041615

Academic Editor: Dina V. Dudina

Received: 30 January 2023 Revised: 13 February 2023 Accepted: 13 February 2023 Published: 15 February 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). are precursors for the formation of $MgAl_2O_4$. Consequently, Omran et al. [19] applied the reduction-based SHS technique to produce $MgAl_2O_4$ –W–W₂B composites through magnesiothermic reduction of B_2O_3 and WO_3 in the presence of Al_2O_3 . Zaki et al. [20] synthesized $MoSi_2$ – and Mo_5Si_3 –MgAl₂O₄ composites by SHS with a reducing stage from raw materials consisting of MoO_3 , SiO_2 , and Al as aluminothermic reagents and MgO as a precursor. Similarly, MgO was added into the reactive mixture of TiO_2 , B_2O_3 , and Al to fabricate TiB_2 –MgAl₂O₄ composites by thermitic combustion synthesis [21]. Generally, most of the previous studies on the formation of $MgAl_2O_4$ -containing composites had prior addition of one of two precursors (Al_2O_3 or MgO) in the green samples.

This study represents the first attempt to prepare TiB₂–MgAl₂O₄ composites from the SHS powder metallurgy simultaneously involving aluminothermic and magnesiothermic reduction of TiO₂ or B₂O₃. Only a small amount of Al₂O₃ or MgO was included in the reactive mixture to serve as the combustion moderator and part of the precursors for the formation of MgAl₂O₄. Four SHS reaction systems formulated with different metallothermic reagents and combustion diluents were investigated. In this work, combustion exothermicity and kinetics of the combustion wave of the SHS process, as well as compositions and microstructures of the final products were explored.

2. Materials and Methods

The starting materials adopted by this study included TiO₂ (Acros Organics, Geel, Belgium, 99.5%), B₂O₃ (Acros Organics, 99%), Al₂O₃ (Alfa Aesar, Haverhill, MA, USA, 99%), MgO (Acros Organics, 99.5%), Al (Showa Chemical Co., Tokyo, Japan, <45 μ m, 99.9%), Mg (Alfa Aesar, <45 μ m, 99.8%), Ti (Alfa Aesar, <45 μ m, 99.8%), and amorphous boron (Noah Technologies, San Antonio, TX, USA, <1 μ m, 93.5%). Four SHS reactions were formulated for the synthesis of 3TiB₂–MgAl₂O₄ composites. Two metallothermic reagents (i.e., thermites) were considered; one is composed of TiO₂, Al, and Mg, as shown in Equations (1) and (2), and the other comprises B₂O₃, Al, and Mg, as in Equations (3) and (4). Due to strong exothermicity of combustion moderator (or combustion diluent) in order to attain stable propagation of the combustion wave. The pre-added Al₂O₃ also acted as part of the precursor for the synthesis of MgAl₂O₃. Likewise, an equal amount of MgO was adopted by Equations (2) and (4) and MgO played the same role as Al₂O₃ in Equations (1) and (3).

$$(1.55TiO_2 + 1.4Al + Mg) + 0.3Al_2O_3 + 1.45Ti + 6B \rightarrow 3TiB_2 + MgAl_2O_4$$
(1)

$$(1.85TiO_2 + 2Al + 0.7Mg) + 0.3MgO + 1.15Ti + 6B \rightarrow 3TiB_2 + MgAl_2O_4$$
(2)

$$(1.033B_2O_3 + 1.4Al + Mg) + 0.3Al_2O_3 + 3Ti + 3.934B \rightarrow 3TiB_2 + MgAl_2O_4$$
(3)

$$(1.233B_2O_3 + 2Al + 0.7Mg) + 0.3MgO + 3Ti + 3.534B \rightarrow 3TiB_2 + MgAl_2O_4$$
(4)

Combustion exothermicity of the above four reactions, Equations (1)–(4), was evaluated by calculating their adiabatic combustion temperatures (T_{ad}) from the following energy balance equation [17,22] with thermochemical data taken from [23].

$$\Delta H_r + \int_{298}^{T_{ad}} \sum n_j c_p(P_j) dT + \sum_{298-T_{ad}} n_j L(P_j) = 0$$

where ΔH_r is the reaction enthalpy at 298 K, c_p and L are the heat capacity and latent heat, n_j is the stoichiometric coefficient, and P_j refers to the product component.

The SHS experiments were conducted in a windowed combustion chamber filled with Ar at 0.25 MPa. Reactant powders were well mixed in a tubular ball mill and then uniaxially compressed into cylindrical test specimens with a diameter of 7 mm, a height of

12 mm, and a relative density of 55%. The sample compact was ignited by an electrically heated tungsten coil. An R-type bare-wire thermocouple (Pt/Pt-13%Rh) with a bead size of 125 μ m was used to measure the combustion temperature. The propagation velocity of combustion wave (V_f) was determined by the time derivative of the flame-front trajectory constructed from the recorded series of combustion images. Phase compositions of the products were identified by an X-ray diffractometer (XRD, Bruker D2 Phaser, Karlsruhe, Germany). Microstructures and constituent elements of the products were examined by the scanning electron microscopy (SEM, Hitachi, Tokyo, Japan, S3000H) and energy dispersive spectroscopy (EDS). Details of the experimental methods were reported elsewhere [24].

3. Results and Discussion

3.1. Combustion Exothermicity of Reduction-Based SHS Reactions

Figure 1 presents the calculated ΔH_r and T_{ad} of reactions Equations (1)–(4) and shows that Equation (4) has the highest values while Equation (1) has the lowest ones. Both ΔH_r and T_{ad} increase from Equations (1)–(4). Specifically, the values of T_{ad} are 2530 K, 2595 K, 2783 K, 2897 K for Equation (1)–(4), respectively. A comparison between Equations (1) and (2) revealed that the combustion moderator Al₂O₃ appeared to impose a stronger dilution effect on combustion than MgO, which led to a lower T_{ad} for Equation (1) than Equation (2). Similar results were observed in Equations (3) and (4). These findings could also be explained by the fact that metallothemic reduction of TiO₂ or B₂O₃ by Al is more exothermic than that by Mg [15,25].

Figure 1. Enthalpies of reaction (ΔH_r) and adiabatic combustion temperatures (T_{ad}) of Equation (1)–(4) for the synthesis of $3TiB_2$ –MgAl₂O₄ composites.

On the other hand, because the B_2O_3 -based thermite is more energetic than the one using TiO₂ [25], Equation (3) has a higher T_{ad} than Equation (1). Similarly, Equation (4) has a higher T_{ad} than Equation (2). According to the calculated T_{ad} , it is realized that the thermite oxidants (i.e., B_2O_3 versus TiO₂) have a more pronounced influence on combustion exothermicity than the diluent oxides (i.e., Al_2O_3 versus MgO).

3.2. Combustion Temperature and Self-Propagating Velocity

Two series of the SHS processes recorded from reactions Equations (1) and (3) are illustrated in Figure 2a,b, respectively. It is apparent that upon ignition, the reaction was initiated and characterized by a self-sustaining combustion wave. More intense combustion accompanied with a faster combustion wave was observed in Figure 2b, when compared with that in Figure 2a. Combustion luminosity and flame spreading speed reflected the degree of reaction exothermicity. As mentioned above, $B_2O_3/A1/Mg$ -based Equation (3) is more energetic than TiO₂/A1/Mg-based Equation (1). Similar combustion behavior was also noticed in Equations (2) and (4).

Figure 2. Time sequences of recorded SHS images illustrating self-sustaining combustion wave of **(a)** Equation (1) and **(b)** Equation (3).

Figure 3 depicts typical combustion temperature profiles measured from four different reactions. All profiles exhibit a steep temperature rise followed by a rapid descent, which is characteristic of the SHS reaction that features a fast combustion wave and a thin reaction zone. The peak value is considered as the combustion front temperature (T_c). When compared with pinnacles in the contours of Equations (1) and (2), sharper peaks were detected in the profiles of Equations (3) and (4). This implied a faster combustion wave in Equations (3) and (4). As shown in Figure 3, the values of T_c from Equation (1)–(4) in ascending order are 1348 °C, 1445 °C, 1660 °C, and 1736 °C. It should be noted that the measured combustion front temperatures are in agreement with the calculated reaction exothermicity.

Figure 3. Typical combustion temperature profiles measured from Equation (1)–(4) for the synthesis of 3TiB₂–MgAl₂O₄ composites.

It is useful to note in Figure 3 that the curves of Equations (3) and (4) have a shape peak with a pronounced shoulder. The shape peak was a result of the fast combustion wave. The pronounced shoulder could be caused by the occurrence of volumetric synthesis reactions after the passage of the rapid combustion wave.

Figure 4 plots the measured combustion wave propagation velocities (V_f) and temperatures (T_c) of four reactions. The rising trend of V_f from Equations (1)–(4) is consistent with that of T_c . This can be understood by the fact that the propagation of combustion wave is essentially governed by layer-by-layer heat transfer from the reaction zone to unreacted region, and therefore, is subject to the combustion front temperature. As presented in Figure 4, the average combustion velocities are 3.9, 4.7, 5.1, and 5.7 mm/s for Equations (1)–(4), respectively. It is worth noting that the measured combustion temperature not only justified the reaction exothermic analysis, but confirmed the temperature dependence of combustion wave velocity.

Figure 4. Combustion wave velocity (V_f) and combustion front temperature (T_c) measured from Equation (1)–(4) for the synthesis of 3TiB₂–MgAl₂O₄ composites.

3.3. Composition and Microstructure Analyses of Synthesized Products

The XRD spectra of the final products synthesized from Equations (1) and (2) are shown in Figure 5a,b, respectively. Both indicated the formation of TiB₂ and MgAl₂O₄ along with two minor phases, magnesium titanate (MgTiO₃) and MgO. It is believed that MgAl₂O₄ was synthesized through a combination reaction between Al₂O₃ and MgO. Equation (1) and (2) were formulated with the same thermite reagents of TiO₂, Al, and Mg, but diluted by different metal oxides. That is, Al₂O₃ was partly pre-added and partly thermite-produced, while MgO was completely generated from the reduction of TiO₂ by Mg in Equation (1). In contrast, the required Al₂O₃ in Equation (2) was entirely produced from the reduction of TiO₂ by Al, but MgO was supplied in part from prior addition and in part from the reduction of TiO₂ by Mg. For both Equations (1) and (2), TiB₂ was synthesized from the reaction of elemental boron with reduced and metallic Ti.

Traces of MgO suggested an incomplete reaction due probably to the relatively low reaction temperatures of Equations (1) and (2). The presence of MgTiO₃ in the final products of Equations (1) and (2) could be attributed to the reaction of MgO with the thermite oxidant TiO₂ [26,27]. The formation of MgTiO₃ in the SHS-produced TiB₂–MgAl₂O₄ composites was also observed by Radishevskaya et al. [10] using Ti, boron, and MgAl₂O₄ as their starting materials and a partial decomposition of MgAl₂O₄ during combustion synthesis was considered as a possible route resulting in the formation of MgTiO₃.

The presence of MgO along with no detection of Al_2O_3 in the final products of Equations (1) and (2) suggested that the as-synthesized MgAl₂O₄ is an Al₂O₃-rich spinel. The formation of MgTiO₃ could also result in the production of Al₂O₃-rich spinel. According to Naghizadeh et al. [28], magnesium titanate compounds (MgTiO₃ and Mg₂TiO₄) were identified in the phase evolution of MgAl₂O₄ produced from TiO₂-containing samples and stoichiometric MgAl₂O₄ spinel shifted toward the Al₂O₃-rich type. Due to the formation of MgTiO₃, the amount of TiB₂ formed in the composite should be less than the stoichiometric amount.

Figure 5. XRD patterns of $TiB_2/MgAl_2O_4$ composites obtained from SHS reactions of (**a**) Equation (1) and (**b**) Equation (2).

Figure 6a,b exhibits the XRD patterns of the synthesized composites from Equations (3) and (4), respectively. In addition to TiB₂ and MgAl₂O₄, a small amount of MgTiO₃ was identified. The formation of MgAl₂O₄ from a combination reaction between Al₂O₃ and MgO was proved. Both Al₂O₃ and MgO can be totally or partially produced from the reduction of B₂O₃ by Al and Mg. For Equations (3) and (4) containing B₂O₃/Al/Mg-based thermite, TiB₂ was produced from the reaction of metallic Ti with reduced and elemental boron. Moreover, the formation of MgTiO₃ in Equations (3) and (4) might involve some interaction of Ti with B₂O₃ to form TiO₂ which further reacted with MgO. Unlike that in Equations (1) and (2), MgO was no longer detected in the final products of Equations (3) and (4).

Figure 6. XRD patterns of $TiB_2/MgAl_2O_4$ composites obtained from SHS reactions of (**a**) Equation (3) and (**b**) Equation (4).

MgTiO₃ ceramic has been proved to be an excellent dielectric material, owing to its high dielectric constant, low dielectric loss, high value of quality factors, and good temperature stability [29,30]. It is believed that a trace amount of MgTiO₃ as a minor phase existed in the as-synthesized TiB₂-MgAl₂O₄ products has no effect on the refractory properties of the composites. However, removal of MgTiO₃ from the TiB₂-MgAl₂O₄ composite would be difficult, since it could combine with MgAl₂O₄ in a solid solution form [28].

The SEM image shown in Figure 7 illustrates the microstructure of fracture surface of the product synthesized from Equation (1) which contains a $TiO_2/Al/Mg$ -based thermite. The morphology displays several large and solidified MgAl₂O₄ aggregates of 5–15 µm surrounded by fine-grain TiB₂ crystals with a particle size of about 1–2 µm. Moreover, EDS analysis of two characteristic regions in the product surface indicates that the atomic ratios of Ti:B = 35.2:64.8 and Mg:Al:O = 13.1:28.1:58.8 match well with the stoichiometries of TiB₂ and MgAl₂O₄, respectively.

Figure 7. SEM image and EDS spectra of $TiB_2/MgAl_2O_4$ composite obtained from the SHS reaction of Equation (1).

For the final product of $B_2O_3/Al/Mg$ -based Equation (4), the microstructure and elemental ratios of the components are presented in Figure 8. As can be seen, $MgAl_2O_4$ was formed as large densified aggregates of around 20 µm and TiB₂ crystals were in a short-rod form with a length of 2–4 µm or in a shape of fine grains of 1–2 µm. Based on the EDS analysis, the atomic ratio of the selected area in an aggregate is Mg:Al:O = 15.1:30.6:54.3 that is reasonably close to MgAl₂O₄. Short-rod crystals have a composition of Ti:B = 34.3:65.7, which certainly is TiB₂.

In summary, the addition of $MgAl_2O_4$ into TiB_2 enhanced the refractory properties, such as the high-temperature oxidation and corrosion resistance and thermal shock resistance [10,31,32]. Like many sintering aids, $MgAl_2O_4$ as an additive could improve densification of TiB_2 ceramics and reduce sintering temperatures [33,34]. The abnormal grain growth could be efficiently prevented during the sintering process. As a result, it is more likely to obtain a uniform grain distribution.

Moreover, the TiB₂-MgAl₂O₄ composite is a promising high-temperature microwave absorption material with a reflection loss less than -5 dB at 8.2–18.0 GHz in the temperature range of 25 °C to 1100 °C [11]. The composite also exhibits an extremely high tolerance against intense irradiation in harsh environments [35,36]. Therefore, the potential uses of the TiB₂-MgAl₂O₄ composite might include heat-resistant coatings, nozzles and nose cones

of supersonic jets, microwave absorption components, diagnostic or detector windows in fusion devices, target materials in the nuclear applications, etc., [11,35,36].

Figure 8. SEM image and EDS spectra of $TiB_2/MgAl_2O_4$ composite obtained from the SHS reaction of Equation (4).

4. Conclusions

In situ formation of $3\text{TiB}_2-\text{MgAl}_2O_4$ composites was conducted by combustion synthesis combined with metallothermic reduction reactions involving Al and Mg as dual reductants. Thermite reagents with different oxidants were considered; one utilized TiO₂ and the other B₂O₃. The reactant mixtures also contained elemental Ti and boron. This study in total completed four SHS reactions, within which a small amount of Al₂O₃ or MgO was included in the reactive mixture to serve as the combustion moderator and part of the precursors for the formation of MgAl₂O₄. The overall synthesis reaction was exothermic enough to proceed in the SHS mode. An energy-saving and efficient fabrication route for the formation MgAl₂O₄-containing composites was demonstrated.

The analysis of combustion exothermicity indicated that the SHS reaction containing $B_2O_3/AI/Mg$ -based thermites was more energetic than that adopting TiO₂ as the oxidant. Prior addition of Al_2O_3 had a greater cooling effect on combustion than that of MgO. Depending on different thermites and diluents, the measured combustion front temperatures ranged from 1320 to 1720 °C, and combustion wave velocity from 3.9 to 5.7 mm/s. The temperature dependence of combustion wave velocity was justified. The XRD analysis confirmed in situ formation of TiB₂ and MgAl₂O₄. A small amount of MgTiO₃ was found as the impurity. It is believed that MgAl₂O₄ was synthesized through a combination reaction between Al_2O_3 and MgO, both of which can be totally or partially produced from the metallothermic reduction of B_2O_3 or TiO₂. The microstructure of the synthesized composite exhibited that MgAl₂O₄ was surrounded by closely packed TiB₂ grains. MgAl₂O₄ was formed as densified aggregates with a size of 5–20 µm. TiB₂ crystals were produced in a shape of short rods of 2–4 µm and fine grains of 1–2 µm.

Author Contributions: Conceptualization, C.-L.Y.; methodology, C.-L.Y. and F.-Y.Z.; validation, C.-L.Y. and F.-Y.Z.; formal analysis, C.-L.Y. and F.-Y.Z.; investigation, C.-L.Y. and F.-Y.Z.; resources, C.-L.Y.; data curation, C.-L.Y. and F.-Y.Z.; writing—original draft preparation, C.-L.Y. and F.-Y.Z.; writing—review and editing, C.-L.Y.; supervision, C.-L.Y.; project administration, C.-L.Y.; funding acquisition, C.-L.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research work was funded by the National Science and Technology Council of Taiwan under the grant of NSTC 110-2221-E-035-042-MY2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Wilkins, J.M.L. Boron and Refractory Borides; Matkovich, V.I., Ed.; Springer: New York, NY, USA, 1977; p. 633.
- Balcı, Ö.; Burkhardt, U.; Schmidt, M.; Hennicke, J.; Yağcı, M.B.; Somer, M. Densification, microstructure and properties of TiB₂ ceramics fabricated by spark plasma sintering. *Mater. Charact.* 2018, 145, 435–443. [CrossRef]
- Ramesh, B.; Showman, E.; Abraar, S.A.M.; Saxena, K.K.; Tharwan, M.Y.; Alsaadi, N.; Al Sofyani, S.; Elsheikh, A.H. Microstructure, mechanical characteristics, and wear performance of spark plasma sintered TiB₂–Si₃N₄ as affected by B₄N doping. *Materials* 2022, 15, 7096. [CrossRef] [PubMed]
- 4. Munro, R.G. Material properties of titanium diboride. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 709–720. [CrossRef] [PubMed]
- Vaferi, K.; Nekahi, S.; Vajdi, M.; Moghanlou, F.S.; Shokouhimehr, M.; Motallebzadeh, A.; Sha, J.; Asl, M.S. Heat transfer, thermal stress and failure analyses in a TiB₂ gas turbine stator blade. *Ceram. Int.* 2019, 45, 19331–19339. [CrossRef]
- Sulima, I.; Hyjek, P.; Podsiadło, M.; Boczkal, S. Effect of zirconium diboride and titanium diboride on the structure and properties of 316L steel-based composites. *Materials* 2023, 16, 439. [CrossRef]
- 7. Popov, A.Y.; Sivak, A.A.; Borodianska, H.Y.; Shabalin, I.L. High toughness TiB₂–Al₂O₃ composite ceramics produced by reactive hot pressing with fusible components. *Adv. Appl. Ceram.* **2015**, *114*, 178–182. [CrossRef]
- Kozień, D.; Czekaj, I.; Gancarz, P.; Ziąbka, M.; Wieczorek, W.; Pasiut, K.; Zientara, D.; Pędzich, Z. Ceramic matrix composites obtained by the reactive sintering of boron carbide with intermetallic compounds from the Ti-Si system. *Materials* 2022, 15, 8657. [CrossRef]
- Li, Z.; Chen, Q.; Jiao, B.; Wang, Q.; Zhang, H.; Jia, Q.; Zhang, S.; Liu, J. Direct laser powder-bed fusion additive manufacturing of complex-shaped TiB₂-B₄C composite with ultra-fine eutectic microstructure and outstanding mechanical performances. *J. Eur. Ceram. Soc.* 2023, 43, 1230–1236. [CrossRef]
- 10. Radishevskaya, N.; Lepakova, O.; Karakchieva, N.; Nazarova, A.; Afanasiev, N.; Godymchuk, A.; Gusev, A. Self-propagating high temperature synthesis of TiB₂–MgAl₂O₄ composites. *Metals* **2017**, *7*, 295. [CrossRef]
- 11. Yang, J.; Liu, X.; Gong, W.; Wang, T.; Wang, X.; Gong, R. Temperature-insensitive and enhanced microwave absorption of TiB₂/Al₂O₃/MgAl₂O₄ composites: Design, fabrication, and characterization. *J. Alloys Compd.* **2022**, *894*, 162144. [CrossRef]
- 12. Ganesh, I. A review on magnesium aluminate (MgAl₂O₄) spinel: Synthesis, processing and applications. *Int. Mater. Rev.* 2013, *58*, 63–112. [CrossRef]
- Corlett, C.A.; Frontzek, M.D.; Obradovic, N.; Watts, J.L.; Fahrenholtz, W.G. Mechanical activation and cation site disorder in MgAl₂O₄. *Materials* 2022, 15, 6422. [CrossRef]
- 14. Yuan, L.; Tian, C.; Yan, X.; He, X.; Liu, Z.; Wen, T.; Jin, E.; Yu, J. Preparation of porous MgAl₂O₄ ceramics by a novel pectin gel-casting process. *J. Aust. Ceram. Soc.* **2021**, *57*, 1049–1055. [CrossRef]
- 15. Yeh, C.L.; Chen, M.C.; Shieh, T.H. Formation of silicide/spinel ceramic composites via Al- and Mg-based thermitic combustion synthesis. *J. Aust. Ceram. Soc.* 2022, *58*, 1275–1282. [CrossRef]
- 16. Levashov, E.A.; Mukasyan, A.S.; Rogachev, A.S.; Shtansky, D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. *Int. Mater. Rev.* 2017, *62*, 203–239. [CrossRef]
- 17. Xu, J.; Ma, P.; Zou, B.; Yang, X. Reaction behavior and formation mechanism of ZrB₂ and ZrC from the Ni-Zr-B₄C system during self-propagating high-temperature synthesis. *Materials* **2023**, *16*, 354. [CrossRef]
- 18. Zakaryan, M.K.; Zurnachyan, A.R.; Amirkhanyan, N.H.; Kirakosyan, H.V.; Antonov, M.; Rodriguez, M.A.; Aydinyan, S.V. Novel pathway for the combustion synthesis and consolidation of boron carbide. *Materials* **2022**, *15*, 5042. [CrossRef]
- 19. Omran, J.G.; Afarani, M.S.; Sharifitabar, M. Fast synthesis of MgAl₂O₄–W and MgAl₂O₄–W–W₂B composite powders by self-propagating high-temperature synthesis reactions. *Ceram. Int.* **2018**, *44*, 6508–6513. [CrossRef]
- Zaki, Z.I.; Mostafa, N.Y.; Rashad, M.M. High pressure synthesis of magnesium aluminate composites with MoSi₂ and Mo₅Si₃ in a self-sustaining manner. *Ceram. Int.* 2012, 38, 5231–5237. [CrossRef]
- Zaki, Z.I.; Ahmed, Y.M.Z.; Abdel-Gawad, S.R. In-situ synthesis of porous magnesia spinel/TiB₂ composite by combustion technique. J. Ceram. Soc. Jpn. 2009, 117, 719–723. [CrossRef]
- 22. Liang, Y.H.; Wang, H.Y.; Yang, Y.F.; Zhao, R.Y.; Jiang, Q.C. Effect of Cu content on the reaction behaviors of self-propagating high-temperature synthesis in Cu-Ti-B₄C system. *J. Alloys Compd.* **2008**, *462*, 113–118. [CrossRef]
- 23. Binnewies, M.; Milke, E. Thermochemical Data of Elements and Compounds; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002.
- 24. Yeh, C.L.; Lin, J.Z. Combustion synthesis of Cr-Al and Cr-Si intermetallics with Al₂O₃ additions from Cr₂O₃-Al and Cr₂O₃-Al-Si reaction systems. *Intermetallics* **2013**, *33*, 126–133. [CrossRef]
- 25. Wang, L.L.; Munir, Z.A.; Maximov, Y.M. Thermite reactions: Their utilization in the synthesis and processing of materials. *J. Mater. Sci.* **1993**, *28*, 3693–3708. [CrossRef]
- Singh, J.; Bahel, S. Synthesis of single phase MgTiO₃ and influence of Sn⁴⁺ substitution on its structural, dielectric and electrical properties. *J. Alloys Compd.* 2020, *816*, 152679. [CrossRef]

- Cheng, L.; Liu, P.; Qu, S.X.; Cheng, L.; Zhang, H. Microwave dielectric properties of Mg₂TiO₄ ceramics synthesized via high energy ball milling method. *J. Alloys Compd.* 2015, 623, 238–242. [CrossRef]
- Naghizadeh, R.; Rezaie, H.R.; Golestani-Fard, F. Effect of TiO₂ on phase evolution and microstructure of MgAl₂O₄ spinel in different atmospheres. *Ceram. Int.* 2011, 37, 349–354. [CrossRef]
- 29. Jo, H.J.; Kim, J.S.; Kim, E.S. Microwave dielectric properties of MgTiO₃-based ceramics. Ceram. Int. 2015, 41, S530–S536. [CrossRef]
- Thatikonda, S.K.; Goswami, D.; Dobbidi, P. Effects of CeO₂ nanoparticles and annealing temperature on the microwave dielectric properties of MgTiO₃ ceramics. *Ceram. Int.* 2014, 40, 1125–1131. [CrossRef]
- 31. Li, Y.; Nan, L.; Ruan, G.; Li, X. Reaction path in the aluminothermic reduction nitridation reaction to synthesize MgAl₂O₄/TiN composite. *Ceram. Int.* **2005**, *31*, 825–829. [CrossRef]
- 32. Liu, X.; Li, K.; Bao, K.; Chen, J.; Zhang, H.; Zhang, S. In-situ synthesis of magnesium aluminate spinel–Zirconium diboride composite powder in magnesium chloride melt. *Ceram. Int.* 2022, *48*, 11869–11871. [CrossRef]
- Ma, L.; Yu, J.; Guo, X.; Xie, B.; Gong, H.; Zhang, Y.; Zhaie, Y.; Wu, X. Preparation and sintering of ultrafine TiB₂ powders. *Ceram. Int.* 2018, 44, 4491–4495. [CrossRef]
- 34. Sarkar, R. Additives for magnesium aluminate spinel: A review. Interceram Refract. Manual 2011, 1, 28–32.
- Lushchik, A.; Feldbach, E.; Kotomin, E.A.; Kudryavtseva, I.; Kuzovkov, V.N.; Popov, A.I.; Seeman, V.; Shablonin, E. Distinctive features of diffusion-controlled radiation defect recombination in stoichiometric magnesium aluminate spinel single crystals and transparent polycrystalline ceramics. *Sci. Rep.* 2020, *10*, 7810. [CrossRef] [PubMed]
- Ananchenko, D.V.; Nikiforov, S.V.; Kuzovkov, V.N.; Popov, A.I.; Ramazanova, G.R.; Batalov, R.I.; Bayazitovc, R.M.; Novikov, H.A. Radiation-induced defects in sapphire single crystals irradiated by a pulsed ion beam. *Nucl. Instrum. Methods Phys. Res. B* 2020, 466, 1–7. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.