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Abstract: TiB2–MgAl2O4 composites were fabricated by combustion synthesis involving metallother-
mic reduction reactions. Thermite reagents contained Al and Mg as dual reductants and TiO2 or
B2O3 as the oxidant. The reactant mixtures also comprised elemental Ti and boron, as well as a
small amount of Al2O3 or MgO to serve as the combustion moderator. Four reaction systems were
conducted and all of them were exothermic enough to proceed in the mode of self-propagating
high-temperature synthesis (SHS). The reaction based on B2O3/Al/Mg thermite and diluted with
MgO was the most exothermic, while that containing TiO2/Al/Mg thermite and Al2O3 as the diluent
was the least. Depending on different thermites and diluents, the combustion front temperatures in
a range from 1320 to 1720 ◦C, and combustion wave velocity from 3.9 to 5.7 mm/s were measured.
The XRD spectra confirmed in situ formation of TiB2 and MgAl2O4. It is believed that MgAl2O4

was synthesized through a combination reaction between Al2O3 and MgO, both of which can be
totally or partially produced from the metallothermic reduction of B2O3 or TiO2. The microstruc-
ture of the TiB2–MgAl2O4 composite exhibited fine TiB2 crystals surrounded by large densified
MgAl2O4 grains. This study demonstrated an energy-saving and efficient route for fabricating
MgAl2O4-containing composites.

Keywords: MgAl2O4; TiB2; metallothermic reduction; SHS powder metallurgy; combustion wave
propagation

1. Introduction

TiB2 has been one of the most studied ultra-high temperature ceramics (UHTCs)
due to its unique properties, including a high melting point (3225 ◦C), high hardness (33
MPa), high Young’s modulus (530 MPa), excellent wear and oxidation resistance, thermal
shock resistance, chemical inertness, and good electric conductivity [1–3]. Combination
of these properties makes TiB2 an ideal candidate for use in ballistic armors, crucibles,
metal evaporation boats, cutting tools, wear resistance parts, and cathodes for alumina
smelting [4–6]. Many ceramic phases, such as Al2O3, SiC, B4C, and MgAl2O4, have been
considered as the reinforcement to improve fracture toughness, oxidation resistance, heat
resistance, and mechanical strength of the TiB2-based composites [7–10]. Moreover, a recent
study showed that TiB2–Al2O3–MgAl2O4 composite possesses temperature insensitive and
enhanced microwave absorption properties [11]. Magnesium aluminate spinel, MgAl2O4,
as an additive has been rarely studied, possibly because the fabrication of MgAl2O4 via
either the direct solid-state reaction of oxides or wet chemical methods requires multiple
steps that are complicated and time-consuming [12–14]. However, MgAl2O4 is an attractive
component due to its high melting point, chemical inertness, high hardness, corrosion
resistance, high mechanical strength, and low cost [12].

Among various fabrication routes for preparing multiphasic ceramics, metallothermic
reduction reactions (i.e., thermite reactions) combined with combustion synthesis have been
recognized as a promising technique for in situ formation of MgAl2O4-containing compos-
ites [15]. Combustion synthesis in the mode of self-propagating high-temperature synthesis
(SHS), which is based on strongly exothermic reactions, has merits of low energy consump-
tion, short reaction time, simple equipment and operation, high-purity products, and in situ
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formation of composite components [16–18]. Moreover, aluminothermic and magnesiother-
mic reduction reactions have Al2O3 and MgO as their respective by-products, both of which
are precursors for the formation of MgAl2O4. Consequently, Omran et al. [19] applied
the reduction-based SHS technique to produce MgAl2O4–W–W2B composites through
magnesiothermic reduction of B2O3 and WO3 in the presence of Al2O3. Zaki et al. [20]
synthesized MoSi2– and Mo5Si3–MgAl2O4 composites by SHS with a reducing stage from
raw materials consisting of MoO3, SiO2, and Al as aluminothermic reagents and MgO as
a precursor. Similarly, MgO was added into the reactive mixture of TiO2, B2O3, and Al
to fabricate TiB2–MgAl2O4 composites by thermitic combustion synthesis [21]. Generally,
most of the previous studies on the formation of MgAl2O4-containing composites had prior
addition of one of two precursors (Al2O3 or MgO) in the green samples.

This study represents the first attempt to prepare TiB2–MgAl2O4 composites from the
SHS powder metallurgy simultaneously involving aluminothermic and magnesiothermic
reduction of TiO2 or B2O3. Only a small amount of Al2O3 or MgO was included in the
reactive mixture to serve as the combustion moderator and part of the precursors for the for-
mation of MgAl2O4. Four SHS reaction systems formulated with different metallothermic
reagents and combustion diluents were investigated. In this work, combustion exothermic-
ity and kinetics of the combustion wave of the SHS process, as well as compositions and
microstructures of the final products were explored.

2. Materials and Methods

The starting materials adopted by this study included TiO2 (Acros Organics, Geel,
Belgium, 99.5%), B2O3 (Acros Organics, 99%), Al2O3 (Alfa Aesar, Haverhill, MA, USA,
99%), MgO (Acros Organics, 99.5%), Al (Showa Chemical Co., Tokyo, Japan, <45 µm,
99.9%), Mg (Alfa Aesar, <45 µm, 99.8%), Ti (Alfa Aesar, <45 µm, 99.8%), and amorphous
boron (Noah Technologies, San Antonio, TX, USA, <1 µm, 93.5%). Four SHS reactions
were formulated for the synthesis of 3TiB2–MgAl2O4 composites. Two metallothermic
reagents (i.e., thermites) were considered; one is composed of TiO2, Al, and Mg, as shown in
Equations (1) and (2), and the other comprises B2O3, Al, and Mg, as in Equations (3) and (4).
Due to strong exothermicity of combustion, Al2O3 with an amount of 0.3 mol. was included
in Equations (1) and (3) as the combustion moderator (or combustion diluent) in order
to attain stable propagation of the combustion wave. The pre-added Al2O3 also acted
as part of the precursor for the synthesis of MgAl2O3. Likewise, an equal amount of
MgO was adopted by Equations (2) and (4) and MgO played the same role as Al2O3 in
Equations (1) and (3).

(1.55TiO2 + 1.4Al + Mg) + 0.3Al2O3 + 1.45Ti + 6B→ 3TiB2 + MgAl2O4 (1)

(1.85TiO2 + 2Al + 0.7Mg) + 0.3MgO + 1.15Ti + 6B→ 3TiB2 + MgAl2O4 (2)

(1.033B2O3 + 1.4Al + Mg) + 0.3Al2O3 + 3Ti + 3.934B→ 3TiB2 + MgAl2O4 (3)

(1.233B2O3 + 2Al + 0.7Mg) + 0.3MgO + 3Ti + 3.534B→ 3TiB2 + MgAl2O4 (4)

Combustion exothermicity of the above four reactions, Equations (1)–(4), was eval-
uated by calculating their adiabatic combustion temperatures (Tad) from the following
energy balance equation [17,22] with thermochemical data taken from [23].

∆Hr +

Tad∫
298

∑ njcp
(

Pj
)
dT + ∑

298−Tad

njL
(

Pj
)
= 0

where ∆Hr is the reaction enthalpy at 298 K, cp and L are the heat capacity and latent heat,
nj is the stoichiometric coefficient, and Pj refers to the product component.

The SHS experiments were conducted in a windowed combustion chamber filled
with Ar at 0.25 MPa. Reactant powders were well mixed in a tubular ball mill and then
uniaxially compressed into cylindrical test specimens with a diameter of 7 mm, a height of
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12 mm, and a relative density of 55%. The sample compact was ignited by an electrically
heated tungsten coil. An R-type bare-wire thermocouple (Pt/Pt-13%Rh) with a bead size
of 125 µm was used to measure the combustion temperature. The propagation velocity of
combustion wave (Vf) was determined by the time derivative of the flame-front trajectory
constructed from the recorded series of combustion images. Phase compositions of the
products were identified by an X-ray diffractometer (XRD, Bruker D2 Phaser, Karlsruhe,
Germany). Microstructures and constituent elements of the products were examined by the
scanning electron microscopy (SEM, Hitachi, Tokyo, Japan, S3000H) and energy dispersive
spectroscopy (EDS). Details of the experimental methods were reported elsewhere [24].

3. Results and Discussion
3.1. Combustion Exothermicity of Reduction-Based SHS Reactions

Figure 1 presents the calculated ∆Hr and Tad of reactions Equations (1)–(4) and shows
that Equation (4) has the highest values while Equation (1) has the lowest ones. Both ∆Hr
and Tad increase from Equations (1)–(4). Specifically, the values of Tad are 2530 K, 2595
K, 2783 K, 2897 K for Equation (1)–(4), respectively. A comparison between Equations
(1) and (2) revealed that the combustion moderator Al2O3 appeared to impose a stronger
dilution effect on combustion than MgO, which led to a lower Tad for Equation (1) than
Equation (2). Similar results were observed in Equations (3) and (4). These findings could
also be explained by the fact that metallothemic reduction of TiO2 or B2O3 by Al is more
exothermic than that by Mg [15,25].

Materials 2023, 16, x FOR PEER REVIEW 3 of 10 

The SHS experiments were conducted in a windowed combustion chamber filled 

with Ar at 0.25 MPa. Reactant powders were well mixed in a tubular ball mill and then 

uniaxially compressed into cylindrical test specimens with a diameter of 7 mm, a height 

of 12 mm, and a relative density of 55%. The sample compact was ignited by an electri-

cally heated tungsten coil. An R-type bare-wire thermocouple (Pt/Pt-13%Rh) with a bead 

size of 125 μm was used to measure the combustion temperature. The propagation ve-

locity of combustion wave (Vf) was determined by the time derivative of the flame-front 

trajectory constructed from the recorded series of combustion images. Phase composi-

tions of the products were identified by an X-ray diffractometer (XRD, Bruker D2 Phas-

er, Karlsruhe, Germany). Microstructures and constituent elements of the products were 

examined by the scanning electron microscopy (SEM, Hitachi, Tokyo, Japan, S3000H) 

and energy dispersive spectroscopy (EDS). Details of the experimental methods were 

reported elsewhere [24].  

3. Results and Discussion

3.1. Combustion Exothermicity of Reduction-Based SHS Reactions 

Figure 1 presents the calculated ∆Hr and Tad of reactions Equations (1)–(4) and 

shows that Equation (4) has the highest values while Equation (1) has the lowest ones. 

Both ∆Hr and Tad increase from Equations (1) to (4). Specifically, the values of Tad are 

2530 K, 2595 K, 2783 K, 2897 K for Equation (1), Equation (2), Equation (3), and Equation 

(4), respectively. A comparison between Equations (1) and (2) revealed that the combus-

tion moderator Al2O3 appeared to impose a stronger dilution effect on combustion than 

MgO, which led to a lower Tad for Equation (1) than Equation (2). Similar results were 

observed in Equations (3) and (4). These findings could also be explained by the fact that 

metallothemic reduction of TiO2 or B2O3 by Al is more exothermic than that by Mg 

[15,25].  

On the other hand, because the B2O3-based thermite is more energetic than the one 

using TiO2 [25], Equation (3) has a higher Tad than Equation (1). Similarly, Equation (4) 

has a higher Tad than Equation (2). According to the calculated Tad, it is realized that the 

thermite oxidants (i.e., B2O3 versus TiO2) have a more pronounced influence on combus-

tion exothermicity than the diluent oxides (i.e., Al2O3 versus MgO).  

Combustion Synthesis Reactions

R1 R2 R3 R4

E
n

th
a

p
ly

 o
f 

R
e

a
c
ti
o

n
, 


H

r 
(k

J
)

-1300

-1200

-1100

-1000

-900

-800

-700

-600

A
d

ia
b

a
ti
c
 C

o
m

b
u

s
ti
o

n
 T

e
m

p
e

ra
tu

re
, 

T
a

d
 (

K
)

1600

1800

2000

2200

2400

2600

2800

3000

 H
r

 Tad

Figure 1. Enthalpies of reaction (∆Hr) and adiabatic combustion temperatures (Tad) of Equation (1), 

Equation (2), Equation (3), and Equation (4) for the synthesis of 3TiB2–MgAl2O4 composites. 
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Figure 1. Enthalpies of reaction (∆Hr) and adiabatic combustion temperatures (Tad) of
Equation (1)–(4) for the synthesis of 3TiB2–MgAl2O4 composites.

On the other hand, because the B2O3-based thermite is more energetic than the one
using TiO2 [25], Equation (3) has a higher Tad than Equation (1). Similarly, Equation (4)
has a higher Tad than Equation (2). According to the calculated Tad, it is realized that the
thermite oxidants (i.e., B2O3 versus TiO2) have a more pronounced influence on combustion
exothermicity than the diluent oxides (i.e., Al2O3 versus MgO).

3.2. Combustion Temperature and Self-Propagating Velocity

Two series of the SHS processes recorded from reactions Equations (1) and (3) are
illustrated in Figure 2a,b, respectively. It is apparent that upon ignition, the reaction was
initiated and characterized by a self-sustaining combustion wave. More intense combustion
accompanied with a faster combustion wave was observed in Figure 2b, when compared
with that in Figure 2a. Combustion luminosity and flame spreading speed reflected the
degree of reaction exothermicity. As mentioned above, B2O3/Al/Mg-based Equation (3) is
more energetic than TiO2/Al/Mg-based Equation (1). Similar combustion behavior was
also noticed in Equations (2) and (4).
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Figure 2. Time sequences of recorded SHS images illustrating self-sustaining combustion wave of
(a) Equation (1) and (b) Equation (3).

Figure 3 depicts typical combustion temperature profiles measured from four different
reactions. All profiles exhibit a steep temperature rise followed by a rapid descent, which is
characteristic of the SHS reaction that features a fast combustion wave and a thin reaction
zone. The peak value is considered as the combustion front temperature (Tc). When
compared with pinnacles in the contours of Equations (1) and (2), sharper peaks were
detected in the profiles of Equations (3) and (4). This implied a faster combustion wave
in Equations (3) and (4). As shown in Figure 3, the values of Tc from Equation (1)–(4) in
ascending order are 1348 ◦C, 1445 ◦C, 1660 ◦C, and 1736 ◦C. It should be noted that the
measured combustion front temperatures are in agreement with the calculated reaction
exothermicity.
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Figure 3. Typical combustion temperature profiles measured from Equation (1)–(4) for the synthesis
of 3TiB2–MgAl2O4 composites.

It is useful to note in Figure 3 that the curves of Equations (3) and (4) have a shape
peak with a pronounced shoulder. The shape peak was a result of the fast combustion
wave. The pronounced shoulder could be caused by the occurrence of volumetric synthesis
reactions after the passage of the rapid combustion wave.
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Figure 4 plots the measured combustion wave propagation velocities (Vf) and temper-
atures (Tc) of four reactions. The rising trend of Vf from Equations (1)–(4) is consistent with
that of Tc. This can be understood by the fact that the propagation of combustion wave is
essentially governed by layer-by-layer heat transfer from the reaction zone to unreacted
region, and therefore, is subject to the combustion front temperature. As presented in Fig-
ure 4, the average combustion velocities are 3.9, 4.7, 5.1, and 5.7 mm/s for Equations (1)–(4),
respectively. It is worth noting that the measured combustion temperature not only justified
the reaction exothermic analysis, but confirmed the temperature dependence of combustion
wave velocity.
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Equation (1)–(4) for the synthesis of 3TiB2–MgAl2O4 composites.

3.3. Composition and Microstructure Analyses of Synthesized Products

The XRD spectra of the final products synthesized from Equations (1) and (2) are
shown in Figure 5a,b, respectively. Both indicated the formation of TiB2 and MgAl2O4
along with two minor phases, magnesium titanate (MgTiO3) and MgO. It is believed
that MgAl2O4 was synthesized through a combination reaction between Al2O3 and MgO.
Equation (1) and (2) were formulated with the same thermite reagents of TiO2, Al, and
Mg, but diluted by different metal oxides. That is, Al2O3 was partly pre-added and partly
thermite-produced, while MgO was completely generated from the reduction of TiO2 by
Mg in Equation (1). In contrast, the required Al2O3 in Equation (2) was entirely produced
from the reduction of TiO2 by Al, but MgO was supplied in part from prior addition and in
part from the reduction of TiO2 by Mg. For both Equations (1) and (2), TiB2 was synthesized
from the reaction of elemental boron with reduced and metallic Ti.

Traces of MgO suggested an incomplete reaction due probably to the relatively low
reaction temperatures of Equations (1) and (2). The presence of MgTiO3 in the final products
of Equations (1) and (2) could be attributed to the reaction of MgO with the thermite oxidant
TiO2 [26,27]. The formation of MgTiO3 in the SHS-produced TiB2–MgAl2O4 composites
was also observed by Radishevskaya et al. [10] using Ti, boron, and MgAl2O4 as their
starting materials and a partial decomposition of MgAl2O4 during combustion synthesis
was considered as a possible route resulting in the formation of MgTiO3.

The presence of MgO along with no detection of Al2O3 in the final products of
Equations (1) and (2) suggested that the as-synthesized MgAl2O4 is an Al2O3-rich spinel.
The formation of MgTiO3 could also result in the production of Al2O3-rich spinel. Ac-
cording to Naghizadeh et al. [28], magnesium titanate compounds (MgTiO3 and Mg2TiO4)
were identified in the phase evolution of MgAl2O4 produced from TiO2-containing sam-
ples and stoichiometric MgAl2O4 spinel shifted toward the Al2O3-rich type. Due to the
formation of MgTiO3, the amount of TiB2 formed in the composite should be less than the
stoichiometric amount.
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Figure 6a,b exhibits the XRD patterns of the synthesized composites from Equations (3) and (4),
respectively. In addition to TiB2 and MgAl2O4, a small amount of MgTiO3 was identified.
The formation of MgAl2O4 from a combination reaction between Al2O3 and MgO was
proved. Both Al2O3 and MgO can be totally or partially produced from the reduction of
B2O3 by Al and Mg. For Equations (3) and (4) containing B2O3/Al/Mg-based thermite,
TiB2 was produced from the reaction of metallic Ti with reduced and elemental boron.
Moreover, the formation of MgTiO3 in Equations (3) and (4) might involve some interaction
of Ti with B2O3 to form TiO2 which further reacted with MgO. Unlike that in Equations (1)
and (2), MgO was no longer detected in the final products of Equations (3) and (4).
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MgTiO3 ceramic has been proved to be an excellent dielectric material, owing to its
high dielectric constant, low dielectric loss, high value of quality factors, and good temper-
ature stability [29,30]. It is believed that a trace amount of MgTiO3 as a minor phase existed
in the as-synthesized TiB2-MgAl2O4 products has no effect on the refractory properties of
the composites. However, removal of MgTiO3 from the TiB2-MgAl2O4 composite would be
difficult, since it could combine with MgAl2O4 in a solid solution form [28].

The SEM image shown in Figure 7 illustrates the microstructure of fracture surface of
the product synthesized from Equation (1) which contains a TiO2/Al/Mg-based thermite.
The morphology displays several large and solidified MgAl2O4 aggregates of 5–15 µm
surrounded by fine-grain TiB2 crystals with a particle size of about 1–2 µm. Moreover, EDS
analysis of two characteristic regions in the product surface indicates that the atomic ratios
of Ti:B = 35.2:64.8 and Mg:Al:O = 13.1:28.1:58.8 match well with the stoichiometries of TiB2
and MgAl2O4, respectively.
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Figure 7. SEM image and EDS spectra of TiB2/MgAl2O4 composite obtained from the SHS reaction
of Equation (1).

For the final product of B2O3/Al/Mg-based Equation (4), the microstructure and
elemental ratios of the components are presented in Figure 8. As can be seen, MgAl2O4 was
formed as large densified aggregates of around 20 µm and TiB2 crystals were in a short-rod
form with a length of 2–4 µm or in a shape of fine grains of 1–2 µm. Based on the EDS
analysis, the atomic ratio of the selected area in an aggregate is Mg:Al:O = 15.1:30.6:54.3 that
is reasonably close to MgAl2O4. Short-rod crystals have a composition of Ti:B = 34.3:65.7,
which certainly is TiB2.

In summary, the addition of MgAl2O4 into TiB2 enhanced the refractory properties,
such as the high-temperature oxidation and corrosion resistance and thermal shock re-
sistance [10,31,32]. Like many sintering aids, MgAl2O4 as an additive could improve
densification of TiB2 ceramics and reduce sintering temperatures [33,34]. The abnormal
grain growth could be efficiently prevented during the sintering process. As a result, it is
more likely to obtain a uniform grain distribution.

Moreover, the TiB2-MgAl2O4 composite is a promising high-temperature microwave
absorption material with a reflection loss less than –5 dB at 8.2–18.0 GHz in the temperature
range of 25 ◦C to 1100 ◦C [11]. The composite also exhibits an extremely high tolerance
against intense irradiation in harsh environments [35,36]. Therefore, the potential uses of
the TiB2-MgAl2O4 composite might include heat-resistant coatings, nozzles and nose cones
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of supersonic jets, microwave absorption components, diagnostic or detector windows in
fusion devices, target materials in the nuclear applications, etc., [11,35,36].
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Figure 8. SEM image and EDS spectra of TiB2/MgAl2O4 composite obtained from the SHS reaction
of Equation (4).

4. Conclusions

In situ formation of 3TiB2–MgAl2O4 composites was conducted by combustion syn-
thesis combined with metallothermic reduction reactions involving Al and Mg as dual
reductants. Thermite reagents with different oxidants were considered; one utilized TiO2
and the other B2O3. The reactant mixtures also contained elemental Ti and boron. This
study in total completed four SHS reactions, within which a small amount of Al2O3 or MgO
was included in the reactive mixture to serve as the combustion moderator and part of the
precursors for the formation of MgAl2O4. The overall synthesis reaction was exothermic
enough to proceed in the SHS mode. An energy-saving and efficient fabrication route for
the formation MgAl2O4-containing composites was demonstrated.

The analysis of combustion exothermicity indicated that the SHS reaction containing
B2O3/Al/Mg-based thermites was more energetic than that adopting TiO2 as the oxidant.
Prior addition of Al2O3 had a greater cooling effect on combustion than that of MgO. De-
pending on different thermites and diluents, the measured combustion front temperatures
ranged from 1320 to 1720 ◦C, and combustion wave velocity from 3.9 to 5.7 mm/s. The
temperature dependence of combustion wave velocity was justified. The XRD analysis
confirmed in situ formation of TiB2 and MgAl2O4. A small amount of MgTiO3 was found as
the impurity. It is believed that MgAl2O4 was synthesized through a combination reaction
between Al2O3 and MgO, both of which can be totally or partially produced from the
metallothermic reduction of B2O3 or TiO2. The microstructure of the synthesized composite
exhibited that MgAl2O4 was surrounded by closely packed TiB2 grains. MgAl2O4 was
formed as densified aggregates with a size of 5–20 µm. TiB2 crystals were produced in a
shape of short rods of 2–4 µm and fine grains of 1–2 µm.
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