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Abstract: To meet the requirement of lighter weight and better performance in tube hydroforming,
one of the most important tasks is to accurately predict the forming limit of thin-walled tubes under
nonlinear loading paths. This work established the M-K+DF2012 model, a combination of the M-K
model and the DF2012 ductile fracture criterion, for the forming limit prediction of thin-walled tubes
under nonlinear loading paths. In this model, the failure of the groove is determined by the DF2012
criterion, and the corresponding strains in the uniform region are the limit strains. The limit strains
of an AA6061 aluminum alloy tube under a set of linear loading paths and two typical nonlinear
loading paths were tested. Parameter values of the M-K+DF2012 model for the tube were determined
based on the experimental limit strains under linear loading paths, and the limit strains under the two
nonlinear loading paths were predicted. Then the strain-based forming limit diagram (ε-FLD) and the
polar effective plastic strain FLD (PEPS-FLD) of the tube under different pre-strains were predicted
and discussed. The results show that the limit strains of the tube are obviously path-dependent,
and the M-K+DF2012 model can reasonably capture the limit strains of the tube under both linear
and nonlinear loading paths. The predicted ε-FLD shows a strong dependence on the pre-strain,
while the predicted PEPS-FLD is weakly strain path-dependent and almost path-independent on the
right-hand side for the AA6061 tube.

Keywords: forming limit; nonlinear loading path; M-K+DF2012 model; ductile fracture criterion;
extruded aluminum alloy tube

1. Introduction

Tube hydroforming is one of the advanced manufacturing technologies to form
lightweight tubular parts and meet the lightweight requirement in industries such as
the aircraft, aerospace, and automobile fields [1–3]. Tube hydroforming processes often in-
volve complex contact conditions and combinations of internal pressure and axial force [4],
and even include several pre-deformation steps before the final bulging. Therefore, the
deformation history during tube hydroforming is complex, and the strain path is nonlinear
even in a simple tube hydro-bulging test with no axial feed [5,6].

As a type of lightweight material, aluminum alloy has been widely used in key
structural parts and is being increasingly applied, especially in the automobile industry.
However, the ductility of the aluminum alloy at room temperature is relatively low, and
the most common challenge in the hydroforming of an aluminum alloy tube is fracture,
which limits the development of the product for lighter weight and better performance.
Therefore, it is important to accurately predict the forming limit of aluminum alloy tubes
under complex loading conditions and avoid fracture by optimizing the loading path [7,8].
Considering that the occurrence of necking before fracture usually reflects the failure
of the material, the concept of forming limit strain in this paper refers to the necking
strain. The experimental necking strains of a tube can be defined with different methods,
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such as the strain-rate method [9], the maximum pressure method [10], and the time-
dependent method [11].

The forming limit diagram (FLD) is an important tool to evaluate the formability of
thin-walled metals. The traditional strain-based FLD (ε-FLD) proposed by Keeler et al. [12]
and Goodwin [13] is determined under linear loading paths. However, the ε-FLD has been
shown to be path-dependent [14–16]. Thus, the ε-FLD obtained under linear loading paths
are not suitable for the nonlinear loading conditions. In order to overcome the influence of
the load path, several stress-based FLDs have been developed, for example, the forming
limit stress diagram (FLSD) [17,18] and the extended stress FLD (XSFLD) [19]. Experimental
results show that the path sensitivity of these FLDs is significantly reduced. However, due
to the reduction of the slope of the true stress–strain curve as the strain increases, a small
change in stress close to the necking limit may lead to a large change in strain. Moreover,
the stress states may not be accurately measured directly. As a result, the application of
these stress-based FLDs is limited.

Stoughton and Yoon [20] established the polar effective plastic strain FLD (PEPS-FLD)
using the effective plastic strain to represent formability. The path in the PEPS-FLD is
determined based on the magnitude of the effective plastic strain radius and the direction
of the strain increment in the conventional strain diagram. Nguyen et al. [21] predicted
necking in free-expansion hydroforming of the tube with tensile pre-straining in the axial
direction and demonstrated that PEPS-FLD captured the forming limit accurately. The
main benefits of the PEPS-FLD are (a) its weak strain path-dependency, (b) its similar
shape to ε-FLD, and its ease of understanding [22]. However, experimental studies showed
that the path dependence of PEPS-FLD depends on the specific material [23]. For some
materials, the influence of pre-strains on the PEPS-FLD cannot be ignored. In this case, the
PEPS-FLD determined under linear loading paths is not an appropriate criterion for limit
strain prediction under complex loading conditions [23].

On the other hand, the theoretical prediction of the forming limit is also critical in
the design and analysis of forming processes. At present, many theoretical models for
forming limit prediction have been proposed. The M-K model is one of the most widely
used models in the prediction of forming limit of thin-walled metals [24,25]. The model can
be combined with any anisotropic yield criterion and hardening law [26,27] and is suitable
for nonlinear loading conditions. In the traditional M-K model, the limit state is determined
by the ratio of major strain increment in the groove to that in the uniform region. However,
it is rather empirical and physically unsound to use a constant critical strain increment
ratio as the failure criterion, considering that the major strain incremental ratio at failure
may be influenced by the stress state [28].

In order to accurately predict the forming limit, the M-K model can be combined
with a ductile fracture criterion (DFC), for example, the well-known Gurson model and
Gurson–Tvergaard–Needleman model [29–31]. This type of M-K+DFC model has been
discussed briefly in the reviews of Banabic et al. [25,32] and Zhang et al. [33]. However, the
computational cost of a combination of the M-K model and a physical DFC is much more
expensive than the traditional M-K model [34]. It is worth noting that a phenomenological
DFC is generally a function of stress components and strain increments, which can predict
forming limits with much lower computational costs and take the nonlinear loading path
into account through incremental calculation [35–37]. Therefore, the combination of the
M-K model and a phenomenological DFC is worth studying in the prediction of the forming
limit under nonlinear loading paths.

For some metals, the fracture forming limit curve (FFLC) monotonically decreases from
uniaxial tension to equibiaxial tension, which can be captured by classic DFCs such as the
Clift criterion [38], the Cockcroft–Latham criterion [39], and the McClintock criterion [40].
However, the FFLCs of many materials may have more complex shapes, for example, a
shape of “V” [41]. Lou et al. [42] proposed the DF2012 criterion, and both monotonically
decreasing and V-shaped curves can be predicted by the DF2012 criterion. In our previous
work, the FLCs predicted by different M-K+DFC models under linear loading conditions



Materials 2023, 16, 1647 3 of 16

were compared, and the M-K+DF2012 model gave the best prediction [43]. However, the
performance of an M-K+DFC model under nonlinear loading paths is also very important
and has not been studied systematically. Therefore, it is necessary to carry out further
studies on the combined model under nonlinear loading conditions.

In this work, an improved M-K+DF2012 model will be established first to predict the
forming limit at the necking of an AA6061 aluminum alloy tube under nonlinear loading
paths. Then, the limit strains of the tube under linear and nonlinear loading paths will be
tested through tube-controllable biaxial loading experiments. After that, the validity of
the M-K+DF2012 model will be validated by the experimental results. Finally, the effect
of pre-strains on the ε-FLD and the PEPS-FLD predicted by the M-K+DF2012 model will
be discussed.

2. M-K+DF2012 Model for Tubes
2.1. Fundamental Assumptions

In tube hydroforming, due to the action of internal pressure, the hoop strain is usu-
ally the largest principal strain and the crack is often formed along the axial direction.
Meanwhile, the thickness distribution in the hoop direction of an extruded tube is not
homogenized because of the eccentricity of the extrusion mandrel [44]. Therefore, a groove
along the axial direction is assumed to represent the thickness inhomogeneity of the tube,
as shown in Figure 1. The tube specimen is divided into a uniform region (region A)
with thickness tA and a groove (region B) with thickness tB. The initial coefficient of
non-homogeneity f 0 is defined as the ratio of the initial thicknesses of regions B and A:

f0 = tB0/tA0 (1)
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It is important to point out that the normal stress σn is usually much smaller than
the axial stress σz and hoop stress σθ in the hydroforming of a thin-walled tube. Thus, the
normal stress can be ignored, and the stress condition can be simplified to the plane stress
state. At the same time, the force equilibrium condition along the hoop direction between
regions A and B must be satisfied:

σθAtA = σθBtB (2)

where σθA and σθB are the hoop stresses in regions A and B, respectively.
On the other hand, the axial strain increments in regions A and B should be equal

according to the requirement of coordinated deformation:

dεzA = dεzB (3)

In the traditional M-K model, when the ratio of the major strain increment becomes
very large (for example, 10), the strains in region A are the limit strains. Differently, in the
M-K+DF2012 model, the onset of fracture in region B is determined by the DF2012 criterion,
and the strains in region A at the moment are defined as the limit strains, and the DF2012
criterion can be expressed as [42]:

∫ ε f

0

(
2τmax

σ

)C1
(
〈1 + 3η〉

2

)C2

dε = C3, 〈x〉 =
{

x when x ≥ 0
0 when x < 0

(4)

where η = σm/σ is the stress triaxiality, σ is the equivalent stress, and σm = (σ1 + σ2 + σ3)/3
is the hydrostatic stress; σ1, σ2 and σ3 are the three principal stress components, and
σ1 > σ2 > σ3; τmax = (σ1 − σ3)/2 is the maximum shear stress; C1, C2, and C3 are material
constants. For a thin-walled tube subjected to a combined load of internal pressure and
axial tension, the typical stress states are σ1 = σθ , σ2 = σz, and σ3 = σt = 0.

Considering that both the M-K model and the DF2012 criterion can be used with
anisotropic plastic constitutive models and nonlinear loading paths, the M-K+DF2012
model is also suitable for predicting the forming limits of anisotropic materials under
nonlinear loading conditions.

2.2. Prediction Process

The process of applying the M-K+DF2012 model to predict the limit strain under a
nonlinear strain path is shown in Figure 2. Firstly, the strain path in region A should be
discretized into sufficiently small incremental steps. According to the associated flow rule,
the plastic potential equals the yield function φ, and there is a relationship between the
strain increment ratio β and the stress state as follows:

β =
dεz

dεθ
=

∂φ/∂σz

∂φ/∂σθ

(5)

where dεθ and dεz are the hoop and axial strain increments, respectively.
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Hence, the stress components in region A at step i can be calculated based on the strain
increments and the associated constitutive model. Then, the strain increments and stress
components in region B at step i can be calculated as follows: The axial strain increment in
region B, dεzB, equals that in region A; and the hoop strain increment dεθB, the axial stress
σzB, and the hoop stress σθB can be obtained by numerical iteration using force balance in
the hoop direction, as seen in Equation (2). In the meantime, the equivalent strain increment
dε can be obtained based on the rule of the equal plastic work rate [45]:

dW = σθdεθ + σzdεz = σ(ε)dε (6)

Therefore, the stress and strain components in regions A and B can be calculated step
by step through the incremental method until the deformation in region B satisfies the
DF2012 criterion. The strain in region A at that moment is the limit strain at necking under
the given loading path.
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2.3. Constitutive Model

A reasonable constitutive model is critical for the prediction of the forming limits.
Here, an associated constitutive model with the Yld2000-2d anisotropic yield criterion
and the power hardening law is adopted. The Yld2000-2d criterion is an advanced and
commonly used yield criterion for anisotropic aluminum alloys [46], which is defined as:

φ =
∣∣X′1 − X′2

∣∣k + ∣∣X′′1 + 2X′′2
∣∣k + ∣∣2X′′1 + X′′2

∣∣k = 2σk (7)

where X′i and X′′i (i = 1, 2) are the principal values of tensors X’=L’ · σ and X”=L” · σ,
respectively. σ, L’, and L” can be written as:

[σ] =
[
σθ σz σθz

]T (8)

[
L’
]
=

L′11 L′12 0
L′21 L′22 0
0 0 L′66

 =
1
3

 2α1 −α1 0
−α2 2α2 0

0 0 α7

 (9)

[
L”
]
=

L′′11 L′′12 0
L′′21 L′′22 0
0 0 L′′66

 =
1
9

8α5 − 2α3 − 2α6 + 2α4 4α6 − 4α4 − 4α5 + α3 0
4α3 − 4α5 − 4α4 + α6 8α4 − 2α6 − 2α3 + 2α5 0

0 0 9α8

 (10)

in which αi (i = 1, 2 . . . 8) represents pending coefficients.
The principal values of X are

X1 = 1
2

(
X11 + X22 +

√
(X11 − X22)

2 + 4X2
12

)
X2 = 1

2

(
X11 + X22 −

√
(X11 − X22)

2 + 4X2
12

) (11)

On the other hand, the widely used power-hardening law is as follows:

σ = Kεn (12)

where K and n are the hardening coefficient and strain-hardening exponent, respectively.

3. Experiments
3.1. Experimental Principle and Setup

In this paper, the limit strains of the tube were tested in tube-controllable biaxial
loading experiments, of which the principle and setup are shown in Figure 3. The tube
specimen is bulged by the combined load of internal pressure p and axial load T. The
deformation process of the specimen can be measured and recorded by the digital image
correlation (DIC) system in real time, and the two principal stresses σz and σθ at the central
point of the specimen can be controlled in real time by controlling p and T.

The stress state of the tube can be analyzed with the aid of the membrane theory if the
ratio of thickness to diameter is less than 1/20 [47]. The axial stress σz and hoop stress σθ

can be calculated by the following equations [48]. σz =
pπ(ρθ−t)2+T

π(2ρθ−t)t

σθ = 2(ρz−t)(ρθ−t)
(2ρz−t)t p− 2ρθ−t

2ρz−t σz
(13)

where t, ρθ and ρz are the instantaneous thickness, hoop, and axial radii of curvature at
point P, respectively.
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According to the geometric relationship, the values of ρθ and ρz can be calculated by
Equations (14) and (15), respectively.

ρθ =
D0

2
+ h (14)

ρz =
h′2 + l2

2h′
(15)

where D0 is the initial diameter of the tube, h is the bulging height of point P, l and h′ are
the axial distance and the radial distance between points P and Q, and the axial profile of
the tube specimen is assumed to be circular, as can be seen in Figure 3.

In addition, the instantaneous thickness t at point P can be calculated by

t = t0 exp(−εz − εθ) (16)

where t0 is the initial thickness of the tube.
The setup shown in Figure 3 consists of four units: Axial loading, internal pressure,

displacement and strain measurement, and the control center. The axial loading unit acting
on the ends of the tube is an electronic universal testing machine with a load capacity of
±200 kN. The internal pressure unit is a pressure intensifier with a maximum pressure of
40 MPa, which provides the internal pressure required for bulging. The displacement and
strain measurement unit is a three-dimensional DIC system developed by the Institute of
Mould and Advanced Forming Technology of Xi’an Jiaotong University. The control center
unit is established using an industrial computer to achieve the simultaneous functioning of
the above three units.

In this work, an extruded aluminum alloy seamless tube of AA6061 with a diameter
of 40 mm and a thickness of 1.2 mm was used. As shown in Figure 4, the initial gauge
length L0 of the tube specimen was designed to be 80 mm, which was twice the initial
outer diameter of the tube. Before testing, a speckle pattern was sprayed on the surface
of the specimen to record the deformation process by DIC technology. In the meantime,
the central point P and another point Q were marked with an initial axial distance of
l0 = 15 mm.
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3.2. Scheme of Loading Paths

In this paper, the ε-FLD of the tube under linear loading conditions was tested first
because it serves as the reference for discussing the influence of loading paths on the limit
strains. In order to obtain the forming limit strains from hoop uniaxial tension to equibi-
axial tension, nine linear loading tests were carried out with the axial–hoop stress ratios
σz/σθ = 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, and 1.0.

Pre-bulging and bending are two important pre-deformation forms in tube hydroform-
ing, of which the strain states are approximately hoop plane strain and axial plane strain,
respectively. In order to analyze the influence of plane strain pre-deformation and verify
the validity of the M-K+DF2012 model under nonlinear loading paths, two nonlinear stress
loading paths with plane strain pre-deformation were designed, as shown in Figure 5. In
the first stage of path A, the stress ratio is prescribed as σz/σθ = 0.5, while the hoop stress
remains constant in the second stage, and the turning point is located at (130, 260) MPa.
For path B, the stress state in the first stage is σz/σθ = 2.0, the axial stress remains constant
in the second stage, and the turning point is located at (225, 112.5) MPa. The stress states
σz/σθ = 0.5 and 2.0 correspond to the hoop plane strain tension and axial plane strain
tension for an isotropic tube, respectively.
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4. Results
4.1. Material Properties

Three tests were carried out to test the mechanical properties of the AA6061 tube,
i.e., an axial uniaxial tensile test on a strip-shape specimen cut from the tube (refer to
ASTM: E8), a controllable biaxial loading test with σz/σθ = 0 as the alternative to the hoop
uniaxial tension, and an equibiaxial tensile test with σz/σθ= 1.0. Anisotropic parameters
of the tube deduced from the experimental results are listed in Table 1. r b = εz/εθ is the
biaxial anisotropy coefficient under the loading condition of σz/σθ= 1.0. Here, εθ and σθ0
were chosen as the denominators considering that the major limit strain is usually in the
hoop direction.

Table 1. Mechanical properties and the Yld2000-2d yield criterion of the AA6061 tube (Adapted
from [43]).

Parameters
Anisotropic Parameters Power Hardening Coefficients of the Yld2000-2d Yield Criterion

rz rθ r b σz0/σθ0 σb0/σθ0
K

(MPa) n α1 α2 α3 α4 α5 α6

Values 0.454 0.927 2.80 0.988 0.959 391.7 0.2636 1.0072 0.9436 1.1625 1.0764 0.9725 0.8519

Meanwhile, the power hardening law of the tube was obtained by fitting the hoop
true stress–plastic strain curve, the obtained values of K and n are also given in Table 1. As
shown in Figure 6, the fitted hardening curve is in good agreement with the experimental
stress–strain curve of the tube. The coefficients α1 to α6 of the Yld2000-2d yield criterion for
the AA6061 tube are determined iteratively according to the r-values and stress ratios in
Table 1. During the calculation, the exponent k was set to 8 considering that the aluminum
alloy is an FCC material, and the coefficients α7 and α8 were set to 1.0 because the two
coefficients are related to the shear stress components and do not influence the prediction
of the tube controllable biaxial loading process [49]. The obtained values of α1 to α6 are also
listed in Table 1.
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4.2. Experimental Limit Strains

According to the time-dependent method proposed by Martínez-Donaire et al. [11],
the onset of necking corresponds to the occurrence of a maximum of the first derivative
of εθ at the boundary of the instability region. The limit strains at necking and corre-
sponding strain paths at the central point of tube specimens under loading conditions of
σz/σθ = 0, 0.125, 0.25, 0.375, 0.50, 0.625, 0.75, and 0.875 are shown in Figure 7. The neck-
ing point under the condition of σz/σθ = 1.0 is not given because the crack is along the
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hoop direction, which means that the assumption of the groove along the axial direction
is not satisfied for this case. It can be seen from Figure 7 that these strain paths are all
approximately linear and the experimental forming limit curve (FLC) is V-shaped.
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Figure 8 shows the experimental limit strain points and corresponding strain paths
of the AA6061 tube under nonlinear loading paths A and B. Both the two strain paths in
the first stage are linear and close to the state of plane strain. While in the second stage,
the strain paths gradually deviate from plane strain. Finally, both nonlinear strain paths
converge to the plane strain state of dεz = 0 after necking, which leads to the axial cracks
in the two specimens. It can be also noted that the limit strain point under the nonlinear
loading path A is obviously higher than the experimental FLC in Figure 7 under linear
loading conditions, but the limit strain point under path B is lower. It indicates that the
formability of the AA6061 tube is significantly affected by the loading path.
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4.3. Prediction of Limit Strains

In order to predict the forming limit of the AA6061 tube using the M-K+DF2012 model,
material constants C1, C2, and C3 in the DF2012 criterion and the initial coefficient of non-
homogeneity f 0 of the tube must be determined first. The values of these four parameters
are listed in Table 2, which were determined by an optimization method aiming at the
minimum root mean squared error between the experimental hoop limit strains shown in
Figure 7 and the corresponding predicted values. The experimental data under nonlinear
loading paths in Figure 8 are not included in the optimization.

Table 2. Parameter values of the M-K+DF2012 model for the AA6061 tube.

Parameters C1 C2 C3 f 0

Values 10.77 −2.814 0.4114 0.9852

In Figure 9, the limit strains of the tube predicted by the M-K+DF2012 model are
compared with the experimental strain points. The M-K+DF2012 model provides accurate
predictions under all eight linear loading paths and the two nonlinear loading paths. It
indicates that the M-K-DF2012 model determined by only the data of linear loading can
reasonably predict the influence of the nonlinear loading path on the forming limit of the
AA6061 tube.
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5. Discussion
5.1. Effect of Pre-Strain on Predicted ε-FLD

In tube hydroforming, proper pre-deformation steps are usually required, and the
strain state of the pre-deformation is primarily selected in the range of hoop uniaxial pre-
straining to axial plane strain pre-straining. In order to analyze the influence of pre-strains
on the limit strains, the ε-FLCs of the AA6061 tube under four different pre-straining
modes, namely, hoop uniaxial tensile pre-straining (UT-θ), hoop plane strain tensile pre-
straining (PT-θ), biaxial tensile pre-straining with εz = εθ (BT), and axial plane strain tensile
pre-straining (PT-z), were predicted using the M-K+DF2012 model.
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The nonlinear loading path is the two subsequent linear loading steps described by
the following relation: {

β = dεz
dεθ

= β1 , If ε ≤ ε∗

β = dεz
dεθ

= β2 , If ε > ε∗
(17)

where β1 and β2 are the strain increment ratios related to the pre-strain step and the second
loading step, respectively, and ε∗ is the equivalent strain of the pre-deformation in region A.

Figure 10 shows ε-FLCs of the tube predicted by the M-K+DF2012 model under
different pre-strain conditions, where the equivalent pre-strains are all set to ε∗ = 0.1. It
can be easily found that ε-FLCs are obviously affected by pre-strains. Compared with the
ε-FLC under linear loading conditions, the ε-FLC after UT-θ pre-straining shifts towards
the tension-compression side. The ε-FLC after PT-θ pre-straining increases slightly in the
tension-compression side and increases obviously in the tension-tension side but remains
unchanged in the hoop plane strain tensile state. Meanwhile, the ε-FLCs after BT pre-
straining and PT-z pre-straining shift towards the tension-tension side with a significant
reduction of hoop strain. The moving direction of the ε-FLC predicted under different
pre-strains is approximately consistent with the experimental results in the literature [23].
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5.2. Effect of Pre-Strain on Predicted PEPS-FLD

In order to investigate the effect of the loading path on the PEPS-FLD predicted by
the M-K+DF2012 model, the ε-FLCs in Figure 10 were converted to PEPS-FLCs as shown
in Figure 11. It was observed that the PEPS-FLD is weakly strain path-dependent. On the
right-hand side of the FLD, all PEPS-FLCs almost fall on a single curve. On the left-hand
side of the FLD, the equivalent limit strain at necking increases slightly after pre-straining
such as UT-θ, BT, and PT-z, while the effect of the PT-θ pre-straining on the equivalent limit
strain is small. Therefore, if the final deformation state of the AA6061 tube is located on the
right-hand side of the PEPS-FLD, e.g., a tension–tension strain state, the forming limit can
be evaluated through the PEPS-FLD regardless of the loading paths.
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Figure 11. Predicted PEPS-FLD of the AA6061 tube under different pre-strain conditions.

Then, the PEPS-FLC predicted by the M-K+DF2012 model under linear loading condi-
tions is compared with the experimental results under linear paths and nonlinear paths A
and B, as shown in Figure 12. The two experimental points of nonlinear loading are on the
right-hand side, and all the points on the right-hand side roughly follow the same curve. It
indicates that the path dependence of the PEPS-FLD of the AA6061 tube on the right-hand
side is weak. In other words, the small difference between the predicted curves on the
right-hand side of Figure 11 is consistent with the experimental phenomenon.
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6. Conclusions

In this paper, the use of the M-K+DF2012 model for the prediction of forming limits
under nonlinear loading paths was established, the limit strains of the AA6061 aluminum
alloy tube under a set of linear and two typical nonlinear loading paths were tested, the
validity of the M-K+DF2012 model was validated by the experimental results, and the
ε-FLD and PEPS-FLD under different pre-strains were discussed. The following conclusions
were obtained:

(1) The forming limit of the AA6061 tube is significantly affected by the loading path.
The limit strain in the tension–tension strain state increases obviously after a hoop plane
strain tensile pre-straining.

(2) The M-K+DF2012 model can reasonably predict the limit strains of the AA6061
aluminum alloy tube under both linear and nonlinear loading paths.

(3) The ε-FLD predicted by the M-K+DF2012 model under different pre-strain con-
ditions shows a strong dependence on the pre-strain, and the direction in which the FLC
shifts relative to the conventional FLC under linear loading conditions depends on the
types of pre-strain.

(4) The PEPS-FLD predicted by the M-K+DF2012 model is weakly strain path depen-
dent, and almost path-independent on the right-hand side for the AA6061 tube. The curve
predicted under linear loading conditions is in good agreement with the experimental limit
strain points of the AA6061 tube.

In the future, it is worth applying the M-K+DF2012 model to different materials such
as Magnesium alloy and Titanium alloy and improving the model predictability according
to the characteristics of the materials. On the other hand, more influential factors should
be introduced into the model in order to predict the forming limit under more complex
deformation conditions. The influential factor could be the angle of the groove, the strain
rate sensitivity, and the stress in the thickness direction.
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