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Abstract: As additive manufacturing continues to evolve, there is ongoing discussion about ways
to improve the layer-by-layer printing process and increase the mechanical strength of printed
objects compared to those produced by traditional techniques such as injection molding. To achieve
this, researchers are exploring ways of enhancing the interaction between the matrix and filler by
introducing lignin in the 3D printing filament processing. In this work, research has been conducted
on using biodegradable fillers of organosolv lignin, as a reinforcement for the filament layers in order
to enhance interlayer adhesion by using a bench-top filament extruder. Briefly, it was found that
organosolv lignin fillers have the potential to improve the properties of polylactic acid (PLA) filament
for fused deposition modeling (FDM) 3D printing. By incorporating different formulations of lignin
with PLA, it was found that using 3 to 5% lignin in the filament leads to an improvement in the
Young’s modulus and interlayer adhesion in 3D printing. However, an increment of up to 10% also
results in a decrease in the composite tensile strength due to the lack of bonding between the lignin
and PLA and the limited mixing capability of the small extruder.

Keywords: 3D printing filament; biocomposites; biodegradable; lignin

1. Introduction

3D printing, also known as additive manufacturing, is a type of digital fabrication
technology. It creates physical objects by layering materials according to a digital design or
geometric representation [1]. Scientists have developed and studied various 3D printing
technologies, with different techniques currently available on the market. Fused deposition
modeling (FDM) 3D printing has become a cost-effective technology with the availability of
commercial 3D printers and filaments at reasonable prices. However, this new technology
is also associated with a significant amount of waste, mainly due to a lack of technical skills
and issues with the quality of some 3D printers. This waste is primarily generated from
support materials, failed products, and broken plastic parts [2–4].

Another of the ongoing issues in 3D printing is the structure of spaces or cavities
between layers, which can affect the mechanical strength of printed objects when compared
to those produced using traditional injection-molding processes. To address this issue,
researchers are investigating the use of sustainable additives or fillers in the printing process
to enhance layer adhesion and tensile properties when 3D printing at complex angles [5].

In Malaysia, the oil palm empty fruit bunch (OPEFB) is one of the major biomasses
produced from palm oil mills and comprises cellulose, hemicellulose and lignin; it can be
investigated extensively to increase polymer biodegradability, mechanical characteristics
and minimize the burden of the fossil fuel business [6]. Among the components in the
lignocellulose, cellulose is isolated from the lignocellulosic biomass and is widely utilized
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in many applications. Meanwhile, lignin is the by-product of the process and is considered
as one of the main waste materials produced in comparatively large amounts which show
great economic potential for a variety of high-value bio-based products [7]. Additionally,
lignin is a highly branched phenolic polymer that makes up 15 to 30% of the lignocel-
lulose biomass by weight and binds well compared to cellulose due to its hydrophobic
properties [8–10]. Therefore, lignin is being extensively studied with the aim of replacing
inorganic fillers to enhance the mechanical properties of the polymer.

Lignin is a highly versatile material for sustainable development and reducing the
carbon footprint. It can be extracted using various techniques that result in different struc-
tures and molecular weights, making it attractive for the production of bio-based products.
Lignin is gaining attention worldwide due to its low cost, renewability, biodegradability,
and high carbon content, especially for 3D printed materials [11–13]. Incorporating micro-
sized lignin into FDM 3D printing filaments can enhance the mechanical properties of the
printed products, making them more environmentally friendly and biodegradable.

The addition of lignin to composites replicates the natural conditions of the plant
cell wall and improves the interfacial adhesion of the lignocellulosic matrix, resulting
in enhanced mechanical properties such as Young’s modulus, tensile strength, flexural
strength, and improved wettability [14–18]. The incorporation of lignin additionally in-
creases the maximum load before fracture, making the resulting materials suitable for
various healthcare applications, including wound healing. However, using neat lignin
as a filament is not feasible due to its high heat transition temperature and resistance to
flow [13,19]. To improve the mechanical properties of biocomposites, extensive research
has been conducted on lignin modification and after-treatment methods to achieve greater
compatibility between fibers and the polymer matrix [20–23].

Therefore, this work aimed to study the stability and compatibility of in-house process-
ing filament via a bench-top extruder at different formulations of polylactic acid (PLA) and
extracted lignin. Organosolv lignin, extracted from the OPEFB, was blended with various
ratios of PLA pellets. These composite pellets were extruded with a filament diameter
of about 1.75 mm and 3D-printed using FDM, to assess the improvement in mechanical
properties of the composite over neat PLA. Detailed chemical and thermal analysis was
conducted to examine the chemical interactions and structure of the composite, and their
relationship to the mechanical properties of the 3D-printed parts.

2. Materials and Methods
2.1. Materials

The isolation of lignin from OPEFB fibers (particle sizes of 106 to 500 µm, Szetech
Engineering Sdn. Bhd, Selangor, Malaysia) was carried out using 90% formic acid (FA)
(Merck, Darmstadt, Germany). PLA was received in natural pellets (Ingeo biopolymer
3052, Plymouth, MN, USA).

2.2. Preparation of Composites

Organosolv extraction of the lignin process was carried out according to previously
described procedures [24,25]. Briefly, FA at a ratio of 1:30 was reacted to OPEFB fibers (10 g
of OPEFB fibers to 300 mL of 90% FA) and stirred at 600 rpm at 95 ◦C at a constant heat
for 2 h. Separation of the pulp and the extracted organosolv lignin was conducted using a
vacuum filter (MVP 10, IKA, Staufen, Germany). The organosolv lignin and FA was then
recovered through a rotary evaporator (RE 600, Yamato Scientific Co., Ltd., Tokyo, Japan).
The final product was rinsed out multiple times to remove excess FA and dried overnight
in an oven before being stored in a desiccator.

In the preparation of filament composites, the organosolv lignin was used as a filler for
PLA and was blended with 3–15% of lignin ratio compositions. The mixture composition
of biopolymer formulation was mixed using a mechanical stirrer (IKA RW20, Staufen,
Germany) at 2000 rpm for 30 min. The samples were kept in a convection oven at 50 ◦C for
6 h with the moisture content <0.5% before the filament extrusion.
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2.3. Filament Extrusion

The filament extrusion was carried out using a 3devo Composer 350 bench-top ex-
truder and a single mixing screw extruder with a nozzle diameter of 4 mm (3devo, Utrecht,
The Netherlands). Prior to the filament extrusion, the extruder was preheated and cleaned
using virgin high-density polyethylene (HDPE) to remove the excess materials. The ex-
truder was preheated up to 230 ◦C until the temperature suited the composite formulation.
Gradually, a total of 100 g of each formulated samples was deposited onto the extruder
hopper. The control parameter for the filament extrusion was designed to create filament
thickness in the diameter ±1.75 mm. The extrusion profiles were set at four different
heating zones (165, 180, 180 and 170 ◦C), 80% of cooling fan speed and an extrusion speed
of 3.5 rpm, where the lower extrusion speed helps to reduce the amount of fluctuation in
the diameter of the filament. The extruded filament composites were spooled and stored in
the desiccator until further use. The extruder was cleaned once again using HDPE before
the other compositions were repeated. All samples were purged until the flow of extrusion
was consistent. The filament diameter, extruder speed and temperatures of all samples
were real-time monitored using DevoVision (3devo, Utrecht, The Netherlands).

The extruded filaments were analyzed with a commercial FDM 3D printer with a
0.4 mm nozzle (Prusa i3 MK3S Prusa Research, Prague, Czech Republic). The CAD model
(.stl file) utilized in this study was an ASTM D638 type V standard tensile specimen for
tensile property analysis. The file was sliced to a G-code file through slicer software
(PrusaSlicer, Prague, Czech Republic). The printing profiles were varied by the nozzle
temperature, infill, layer height, extrusion speed, and printing speed for the best printing
structure (layer height: 0.30 mm; infill percentages: 15%; infill pattern: rectilinear at 45◦

lines; print speed: 60 mm/s). In order to determine the interlayer adhesion of infused
lignin, the printing orientation was set at 0 and 90◦ on top of the build plate (horizontal
and vertical printed layers).

2.4. Characterization

Chemical characteristics of synthesized filament composites were determined using
attenuated total reflectance Fourier transform infrared, ATR-FTIR (ALPHA FTIR Spec-
trometer, Bruker, Billerica, MA, USA) at a resolution of 1 cm−1 in the range of 4000 cm−1

to 500 cm−1. Thermochemical analyses were determined using a differential scanning
calorimeter (DSC-50, Shimadzu Corporation, Kyoto, Japan) under nitrogen circumstances
from 25 to 250 ◦C at a heating rate of 10 ◦C/min. In addition, the thermogravimetric analy-
sis (TGA) was performed by changes in the thermal degradation of composite samples at
temperatures ranging from 25 to 600 ◦C under nitrogen circumstances at a heating rate of
10 ◦C/min.

The mechanical characterization of the 3D printed samples was measured using
Instron® Electromechanical Universal Testing Systems 3300 Series at 10 mm/min with a
load cell of 1 kN. All the data reported were based on the mean of five replicates (n = 5). The
morphological arrangement of layer-by-layer adhesion was investigated using a field emis-
sion scanning electron microscope (FESEM) (Merlin Compact, Zeiss Pvt LtD., Oberkochen,
Germany). The cross-sectional samples were sputter-coated with platinum before viewing
to reduce the charging effect of the samples.

3. Results
3.1. Chemical and Thermochemical Characterizations

Organosolv lignin that underwent extraction from the OPEFB was processed using an
organosolv method that utilizes 90% FA and a rotary evaporator to isolate the organosolv
lignin from the FA. After the extraction and separation process, OPEFB fibers became more
brownish, as shown in Figure 1. Because the OPEFB was still in particle sizes of 106–500 µm,
the blending process in the bench-top extruder could damage the extruder screw in the
filament making [24]. The morphological structure of the OPEFB after extraction (see
Figure 1c) shows the fibrils of cellulose after the dissolved lignin has been extracted with
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the FA. While the dark brown of the isolated lignin subsequently dehydrated, yield at
22.5% from the neat OPEFB fibers shows the uneven structures on the micrograph image of
FESEM in Figure 1d.
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Figure 1. Structure of (a) OPEFB fibers (b) extracted lignin and the micrograph of (c) OPEFB after
extraction (d) organosolv lignin.

The presence of functional groups of isolated organosolv lignin was; the blended
filament composites are shown in Figure 2a. The peaks band can be highlighted between
3400 and 3600 cm−1 and indicate the presence of a hydroxyl group, O–H, whereas the
band at 2940 cm−1 indicates the presence of a methyl group, C–H, whereas the bands at
1716 cm−1 and 1500 to 1600 cm−1 indicate the presence of a carbonyl group, C=O, and an
aromatic group, C=C. Following this, 1410 to 1470 cm−1 show an asymmetrically deformed
C–H group in –CH3 and –CH2, while 1350 cm−1, 1212 cm−1, 1130 cm−1 to 1110 cm−1

explain the S group of the C–O stretch, phenolic OH and ether in S and G, as well as the
S group of the C–H stretch [2,25]. Despite the increment in lignin as a filler, the spectrum
shows no substantial differences and thus demonstrates that the chemical structure of the
filament composites does not change during process extrusion.

The differential scanning calorimetry transitions depicted in Figure 2b indicate that
the glass transition temperature, Tg and melting temperature, Tm for PLA were recorded at
54 and 155 ◦C, respectively. The previous work based on organosolv extraction lignin from
OPEFB fibers exhibited a thermoplastic characteristic with a glass transition temperature,
Tg around 97 ◦C [24]; thus, there was a slight increment in the glass transition value from
120 to 130 ◦C with the increment in lignin in the filament composites. The glass transition
temperature was still at 50 to 60 ◦C.

The thermal decomposition of filament composites was clearly disrupted by the addi-
tion of lignin as a filler (see Figure 2c,d). The PLA–lignin composites exhibit a two-step
degradation process. The first step is due to the thermal degradation of the PLA poly-
mer chain, which is associated with active pyrolysis and oxidation, and occurs within a
temperature range of 150 to 400 ◦C [26]. The second step is associated with the lignin de-
composition, which produces volatile gases and a relatively high char carbon residue, and
occurs slowly at temperatures above 450 ◦C [24]. The presence of the char carbon residue
in the filament composites results in a higher level of decomposition, which increases
with the higher lignin content, reaching up to 18.54% at 600 ◦C, as shown in Table 1. The
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higher residual weight of 39.71% at 600 ◦C is due to the breaking of the bonds of the lignin
molecules, which subsequently release phenols in vapor phases [24]. In contrast, only one
degradation step was observed for the neat PLA, consistent with previous reports [18,27].
Although, theoretically, PLA polymers and filament composites have a higher glass transi-
tion temperature than organosolv lignin, nevertheless their glass transition temperatures
are nearly equivalent.
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Figure 2. Chemical characterization by (a) FTIR and thermogram analysis of (b) DSC (c) TGA
weight loss and (d) first derivative TGA analyses of extruded filament composites at different
lignin compositions.

Table 1. Glass transition temperature (Tg), sample residue percentages, and peak maximum decom-
position rate filament composites.

Sample Tg (◦C) Residue at 600 ◦C (%) DTGmax (◦C)

PLA 155.3 5.17 364.89
PLA-3%L 155.5 5.54 344.64
PLA-5%L 155.2 7.84 335.87
PLA-10%L 154.5 18.54 295.81

All filament composites completely disintegrate at temperatures of up to 600 ◦C
and this is coupled with a volatile PLA product that decomposes rapidly between 250
and 390 ◦C. Despite the fact that the composites gradually deteriorated at temperatures
above 250 ◦C, this would not have a major impact on the polymer degradation during the
composite extrusion process. In this work, the established temperatures that were used
in the filament extrusion and FDM 3D printing were below the identified deteriorating
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temperature; both procedures had temperature settings of 165/180/180/170 ◦C and 215 ◦C,
respectively.

3.2. Stability of Filament Composites

The filament diameter over extrusion time was provided in real-time monitoring soft-
ware, DevoVision (see Figure 3a). Although each composites formulation was successful in
achieving a desired filament diameter range around 1.75 mm, nevertheless the impacts of
lignin composition on extrusion stability were shown at the initial extrusion time. Main-
taining the filament diameter within the prescribed range takes time and was reasonably
challenging on PLA-10%L, as it required more time to achieve the desired filament diameter.
Although the mixture composition was mixed vigorously using a mechanical stirrer, lignin
agglomerates and uneven distribution are a typical occurrence during extrusion and high
heat [25,28–30]. As a result, the filament diameter started to indicate a fluctuating trend at
a higher lignin composition.
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Figure 3. The effect of lignin composition on the stability of filament extrusion at (a) filament diameter
and (b) mechanical strength.

The inconsistent distribution of lignin during the filament extrusion may as well be
observed at its mechanical analysis in Figure 3b and summarized in Table 2. The highest
tensile strain was achieved by PLA at 49.57 MPa. While adding lignin decreased the
strength slightly to 37.33 MPa with a 3–5% composition, a drastic reduction to 12.8 MPa
was observed at a 10% lignin composition. This decline in mechanical strength can be
attributed to the unequal distribution of lignin at higher ratios, likely due to the limited
mixing capability of the bench-top filament extruder [19]. However, the Young’s modulus
of the lignin-incorporated samples showed an improvement of up to 419 MPa, an 11%
increase from neat PLA.

3.3. Interlayer Adhesion of Infused Lignin

All printing parameters were set as the same for the two types of different orientations,
horizontal (0◦) and vertical (90◦) (see Figure 4). Further to that, the nozzle and build plate
temperatures were adjusted according to the temperature profiles, which was 215 ◦C for
the PLA material and 60 ◦C for all other materials. The tensile strength analysis on printed
samples according to the ASTM D638 type V standard specimens is depicted in Figure 4
and the data are summarized in Table 2.

The decreasing trend in tensile strength for composites is most likely due to lignin’s
lower tensile strength when compared to PLA. In general, the tensile strength is influenced
by lignin–lignin intermolecular interactions, PLA–PLA interactions, and PLA–lignin inter-
actions, as well as the rigidity of lignin particles [31]. Furthermore, this trend is attributed
to a lack of interfacial bonding between constituents, particularly the hydroxyl groups
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found in unmodified lignin macromolecules. Increased miscibility can thereby be achieved
by replacing the hydroxyl group with other functional groups that can strengthen the
bond between the matrix and the filler [20]. Similar results are summarized in Table 3 and
while most cases showed reduced tensile strength, the use of lignin as a biofiller greatly
benefits the 3D printing filament functionalization. Although lignin incorporation into the
biocomposite reduces the modulus of the tensile strength, these mechanical properties can
be improved by optimizing 3D printing temperatures [32].

Table 2. Mechanical properties of extruded filaments and 3D printed PLA and PLA incorporated
with lignin at different horizontal (0◦) and vertical (90◦) orientations.

Sample Tensile Strength
(MPa)

Tensile Strain
(%)

Young’s Modulus
(MPa)

Filament PLA 49.57 ± 0.89 38.66 ± 0.50 377 ± 0.03
Filament PLA-3%L 31.01 ± 0.93 18.39 ± 0.64 417 ± 0.02
Filament PLA-5%L 37.33 ± 0.75 24.41 ± 0.83 419 ± 0.04
Filament PLA-10%L 12.8 ± 0.57 12.54 ± 0.22 288 ± 0.05

PLA (0◦) 49.25 ± 0.21 12.85 ± 0.16 488 ± 0.03
PLA-3%L (0◦) 31.48 ± 0.30 7.70 ± 0.20 654 ± 0.02
PLA-5%L (0◦) 30.23 ± 0.12 7.37 ± 0.13 548 ± 0.04
PLA-10%L (0◦) 23.38 ± 0.09 5.8 ± 0.24 524 ± 0.05
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printed product as a comparison.

Therefore, 3D printing at a horizontal angle of 0◦and 90◦, PLA-3%L (0◦) shows the
highest Young’s modulus among other sample formulations. This emphasizes the impor-
tance of including lignin in polymer formulations, as both the orientation set-ups show the
improvement in Young’s modulus compared with the neat PLA (34 and 20% increment of
0◦and 90◦ with the addition of 3 and 5% of lignin, respectively). Therefore, the improvement
in Young’s modulus is mainly attributed to the excellent role of lignin as a rigid filler that
increased stiffness. This increase in stiffness can be linked to both hydrophobic interactions
and hydrogen-bond electrostatic forces between the lignin and the polymer [33]. In Table 2,
it can be observed that the Young’s modulus of PLA lignin composites gradually increases,
but then begins to decrease as higher amounts of lignin are incorporated. This decrease in
the modulus with the higher lignin content is a typical occurrence in green composites, as
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the increased presence of filler in the matrix reduces the molecular mobility of the polymer
chains, as referenced in [34].

The increment in Young’s modulus is comparable from the previous findings as-
sociated with the improvement in the interlayer adhesion of 3D printing [13,19,24,35].
Additionally, the mechanical analysis of 3D printed objects with lignin showed a higher
tensile strength and modulus compared to those printed with neat PLA (please refer to
Table 2). The inclusion of lignin improved the interlayer adhesion, resulting in a 57% and
31% increase in the Young’s modulus of PLA-3% and PLA-10%, respectively. Although a
higher lignin content was found to have a lower impact, the printing process nevertheless
managed to improve tensile and modulus properties by 82% with the PLA-10%L blend.

Fractured tensile samples underwent mechanical testing and were then examined
for their morphology to study the interaction of lignin with the polymer matrix (see
Figure 5). Optimal printing parameters showed that the manually extruded PLA matrix had
noticeable layers and provided significant gaps throughout the printing process. However,
the incorporation of lignin from 3 to 10% led to proper blending between the layers. As
a result of a higher lignin content and poor distribution process in the small extruder
system, the morphological structure of PLA-10%L revealed more lignin agglomeration in
the polymer matrix, allowing for weaker mechanical properties compared to other lignin
formulation ratios. As shown in Figure 6, the interlayer adhesion of lignin-incorporated
PLA at a 3% concentration resulted in a disrupted infill structure when compared to
the slicer program. The fracture of the ASTM D638 type V model at 90◦ demonstrated
no delamination between the layers of print, but rather a rugged fracture between the
printed layers.
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Table 3. Previous research on using lignin as a biofiller in FDM filament production.

Polymer/
Composite

Lignin
(wt.%)

Filament
Extrusion
Technique

Printing
Temp. (◦C)

Tensile
Strength(MPa) Improvement Ref.

PLA 40 Single-screw 215 45.65 50% antioxidant
potential/cm2 [11]

PHB 50 Twin-screw 190 - 34–78% less warpage [36]
ABS/NBR/
carbon fiber 40 Single-screw 230 65 Improved interlayer adhesion [13]

PLA 3 Single-screw 185–205 - Antioxidant property [19]

PLA/PEG 20 Twin-screw 210 50.84 Improved strength and
elongation [37]

3.4. Forecasting the Mechanical Strength

The mechanical strength data of 3D printed samples was further validated with the
integration of an artificial intelligence hybrid technique called the adaptive neuro fuzzy
inference system (ANFIS). The study aimed to predict the tensile strength of the printed
samples under different conditions using lignin concentration (3, 5 and 10 wt%), infill
(15 and 30%), and orientation (0◦ and 90◦) of the printed samples as input variables. The
tensile strength was obtained through UTM testing, and the ANFIS model was then trained
and tested using a Sugeno-type fuzzy inference system [38].

In this study, the ANFIS model structure consisted of multiple rules, with 27 rules
generated by tuning the three process parameters (lignin concentration, infill, orientation).
The training data were loaded into the network and then used to train and test the fuzzy
inference structure by adjusting the membership function parameters for optimal perfor-
mance. The output function was constructed linearly with a single response. The best
prediction for optimum tensile strength was achieved using 3 wt.% lignin at 15% infill
and horizontal orientation (0◦), with the highest strength being achieved by neat PLA at
15% infill and horizontal orientation. The ANFIS model results were consistent with the
experimental results, as shown in Table 4. The predictive model for estimating the tensile
strength of the FDM fabricated parts appears to be highly reliable, as indicated by the
high coefficient of determination (r2 = 0.986), as shown in Figure 7. This highlights the
effectiveness of the developed model and set-up as reported by other researchers [39–41].
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Table 4. Comparison experiment data with forecast data ANFIS.

Sample Tensile Strength
(MPa)

ANFIS Forecast
(MPa)

PLA (0◦) 49.25 ± 0.21 43.40
PLA-3%L (0◦) 31.48 ± 0.30 31.48
PLA-5%L (0◦) 30.23 ± 0.12 31.04
PLA-10%L (0◦) 23.38 ± 0.09 22.89

PLA (90◦) 13.72 ± 0.10 15.11
PLA-3%L (90◦) 9.48 ± 0.15 9.48
PLA-5%L (90◦) 4.96 ± 0.08 6.50

PLA-10%L (90◦) 1.75 ± 0.12 0.82
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4. Conclusions

3D printing filament made from a combination of biopolymer PLA and biofiller lignin
was extruded using a bench-top filament maker with an optimal diameter of 1.75 mm. All
factors such as the extrusion temperature, speed, and cooling fan speed were carefully
controlled and recorded, with the best results being achieved at 165/180/180/170 ◦C for
the biocomposite. The study found that using a 3% lignin formulation resulted in the
highest Young’s modulus for the biocomposite filament. The ANFIS model was used to
predict and validate the results and it was found that the biocomposite has potential for
use in 3D printing even in a small-scale production.
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