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Abstract: There has been a great interest in evaluating the potential of severe plastic deformation
(SPD) to improve the performance of magnesium for biological applications. However, different
properties and trends, including some contradictions, have been reported. The present study critically
reviews the structural features, mechanical properties, corrosion behavior and biological response of
magnesium and its alloys processed by SPD, with an emphasis on equal-channel angular pressing
(ECAP) and high-pressure torsion (HPT). The unique mechanism of grain refinement in magnesium
processed via ECAP causes a large scatter in the final structure, and these microstructural differences
can affect the properties and produce difficulties in establishing trends. However, the recent advances
in ECAP processing and the increased availability of data from samples produced via HPT clarify
that grain refinement can indeed improve the mechanical properties and corrosion resistance without
compromising the biological response. It is shown that processing via SPD has great potential for
improving the performance of magnesium for biological applications.
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1. Introduction

It has been suggested that biomaterials can be divided into different generations
depending on their bioactivity and clinical goals. Thus, the first generation were developed
solely to avoid harming tissues, and the materials were biologically inert. The second
generation were developed for tissue bonding, and the bioactivity developed via surface
erosion. The third generation were designed for tissue regeneration, and the bioactivity
provided via material biodegradation [1]. Magnesium alloys fit into the third generation,
and there are now multiple clinical reports of their successful use [2–4].

The performance of a biodegradable implant is linked to its tissue interaction, the
type of corrosion and corrosion rate, the load-bearing ability and the reliability of its use.
The performance is therefore affected by a combination of multiple properties, includ-
ing the material strength, ductility, corrosion and biocompatibility. These properties are
strongly affected by the material structure which depends on alloy composition and pro-
cessing operations. It follows that severe plastic deformation (SPD) techniques, such as
high-pressure torsion (HPT) and equal-channel angular pressing (ECAP), have attracted
significant attention as processing operations, with the ability to improve the properties and
performance of magnesium-based implants due to their impact on the grain refinement and
homogenization of the structure. These points are illustrated in the processing–structure–
properties–performance relationships, as shown in Figure 1.
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Figure 1. Summary of the relationship between processing, structure, properties and performance 
of magnesium for biomedical applications. 

There has been great interest in evaluating the structure and properties of magne-
sium alloys processed via SPD. Many advances were obtained in the past twenty years in 
understanding the mechanism of the grain refinement of magnesium alloys during ECAP, 
and processing routes were developed enabling the fabrication of magnesium alloys with 
ultrafine (<1 µm) grain structures. In addition, the HPT technique, which enables the pro-
cessing of magnesium and its alloys at room temperature and achieves significant grain 
refinement, gained considerable popularity in recent years. As a consequence, there is now 
a large number of studies on the use of SPD to process magnesium and its alloys aiming 
for biomedical applications. These studies reveal trends in the relationship between grain 
size and mechanical properties, whereas the effect of corrosion is not clear. Various topics, 
including the processing of Mg, mechanisms of microstructure refinement, mechanical 
and corrosion properties and the biological response, are critically reviewed in the present 
paper.  

2. Processing by Severe Plastic Deformation 
There are many different SPD techniques, including accumulative roll bonding 

(ARB), multi-directional forging (MDF), twist-extrusion (TE) and others [5]. Surface treat-
ments such as surface mechanical attrition treatment (SMAT) [6] and ultrasonic shot peen-
ing [7] can also induce large amounts of plastic deformation. It is fair to state that ECAP 
and HPT are the most common techniques used to process magnesium alloys. Therefore, 
the present paper focuses on these two processing operations, which are illustrated in 
Figure 2. A billet is pressed through a die containing two intersecting channels of an equal 
cross-section in ECAP. Shear deformation is imposed in the intersection between the chan-
nels, and the amount depends on the geometry of the die. The process can be repeated 
since the dimensions of the billet remain unchanged after passing through the die. In HPT, 
a sample in the shape of a disc is compressed between two rigid anvils and subjected to 
torsion deformation via the rotation of one of the anvils. The amount of deformation in-
troduced during HPT depends on the number of rotations and the dimensions of the sam-
ple. The main processing parameters include the temperature, deformation rate, amount 
of deformation imposed, shear orientation and hydrostatic stress state. The principles of 
the ECAP and HPT and the influence of processing parameters are summarized in earlier 
comprehensive reviews [8,9].  

The initial attempts to process magnesium via ECAP were carried out at very high 
temperatures, thereby compromising grain refinement due to their low formability at low 
temperatures. For example, an early report described the processing of pure magnesium 
and two magnesium alloys via ECAP at temperatures of 473 K and higher, but these high 
temperatures hindered the grain refinement and, as a consequence, the reported mini-
mum grain sizes were larger than 10 µm [10]. Later studies showed that the tendency for 
cracking could be reduced by increasing the angle between the channels in the ECAP die 
[11]. It was also found that a previous thermo-mechanical processing step, such as extru-
sion, enables ECAP processing at lower temperatures and leads to finer grain sizes [12]. 
The use of backpressure [13–16] also enables the processing of magnesium alloys at lower 
temperatures. 

Cracks are avoided during HPT processing due to the large hydrostatic stresses. As 
a consequence, magnesium and its alloys are readily processed by this technique at room 

Figure 1. Summary of the relationship between processing, structure, properties and performance of
magnesium for biomedical applications.

There has been great interest in evaluating the structure and properties of magnesium
alloys processed via SPD. Many advances were obtained in the past twenty years in un-
derstanding the mechanism of the grain refinement of magnesium alloys during ECAP,
and processing routes were developed enabling the fabrication of magnesium alloys with
ultrafine (<1 µm) grain structures. In addition, the HPT technique, which enables the
processing of magnesium and its alloys at room temperature and achieves significant grain
refinement, gained considerable popularity in recent years. As a consequence, there is
now a large number of studies on the use of SPD to process magnesium and its alloys
aiming for biomedical applications. These studies reveal trends in the relationship between
grain size and mechanical properties, whereas the effect of corrosion is not clear. Various
topics, including the processing of Mg, mechanisms of microstructure refinement, mechan-
ical and corrosion properties and the biological response, are critically reviewed in the
present paper.

2. Processing by Severe Plastic Deformation

There are many different SPD techniques, including accumulative roll bonding (ARB),
multi-directional forging (MDF), twist-extrusion (TE) and others [5]. Surface treatments
such as surface mechanical attrition treatment (SMAT) [6] and ultrasonic shot peening [7]
can also induce large amounts of plastic deformation. It is fair to state that ECAP and
HPT are the most common techniques used to process magnesium alloys. Therefore,
the present paper focuses on these two processing operations, which are illustrated in
Figure 2. A billet is pressed through a die containing two intersecting channels of an
equal cross-section in ECAP. Shear deformation is imposed in the intersection between
the channels, and the amount depends on the geometry of the die. The process can be
repeated since the dimensions of the billet remain unchanged after passing through the
die. In HPT, a sample in the shape of a disc is compressed between two rigid anvils
and subjected to torsion deformation via the rotation of one of the anvils. The amount
of deformation introduced during HPT depends on the number of rotations and the
dimensions of the sample. The main processing parameters include the temperature,
deformation rate, amount of deformation imposed, shear orientation and hydrostatic stress
state. The principles of the ECAP and HPT and the influence of processing parameters are
summarized in earlier comprehensive reviews [8,9].

The initial attempts to process magnesium via ECAP were carried out at very high
temperatures, thereby compromising grain refinement due to their low formability at low
temperatures. For example, an early report described the processing of pure magnesium
and two magnesium alloys via ECAP at temperatures of 473 K and higher, but these high
temperatures hindered the grain refinement and, as a consequence, the reported minimum
grain sizes were larger than 10 µm [10]. Later studies showed that the tendency for cracking
could be reduced by increasing the angle between the channels in the ECAP die [11]. It
was also found that a previous thermo-mechanical processing step, such as extrusion,
enables ECAP processing at lower temperatures and leads to finer grain sizes [12]. The
use of backpressure [13–16] also enables the processing of magnesium alloys at lower
temperatures.

Cracks are avoided during HPT processing due to the large hydrostatic stresses.
As a consequence, magnesium and its alloys are readily processed by this technique at
room temperature and exhibit significant grain refinement. The grain sizes achieved in



Materials 2023, 16, 2401 3 of 24

magnesium processed via HPT are typically smaller than in their counterparts processed
via ECAP. However, it has been shown that structural heterogeneities due to localized
deformation might develop in magnesium processed via HPT [17,18]. These heterogeneities
may affect the overall properties of the sample. For example, a recent report described
localized corrosion in discs of magnesium alloys, which was attributed to the development
of localized deformation during HPT processing [19].
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3. Structure Evolution

The mechanism of grain refinement in magnesium and its alloys during SPD pro-
cessing differs from the mechanism observed in other metallic materials. The difference
is attributed to the hexagonal close-packed (h.c.p.) structure and the occurrence of dy-
namic recrystallization at high temperatures. A detailed description of the mechanism
of recrystallization in magnesium is available elsewhere [22]. Thus, while materials with
face-centered cubic (f.c.c.) and body-centered cubic (b.c.c.) structures display homogeneous
grain refinement, magnesium displays grain refinement initially concentrated near grain
boundaries. A model was developed to illustrate the mechanism of grain refinement in
magnesium processed via ECAP [23,24]. Figure 3 shows an illustration of the model. Thus,
the grain structure evolution depends on the initial grain size, the ECAP processing con-
ditions (strain rate and temperature) and the amount of strain imposed on the material.
The size of the newly formed grains depends strongly on the temperature and strain rate
during ECAP. The lower the temperature and the higher the strain rate, the smaller the size
of the new grains which are formed along the grain boundaries of the starting material.
The difference in size between the initial grains and the new grains and the amount of
strain imposed during ECAP will affect the homogeneity in the final structure. Thus, in
situations in which the size of the initial grain structure, d, is larger than a critical grain
size, dc, the new grains will not occupy the whole volume and a heterogeneous grain size
distribution develops.
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Figure 3. Illustration of the mechanism of grain refinement of magnesium processed via ECAP [23].

ECAP processing of coarse-grained magnesium can lead to heterogeneous grain size
distribution if the processing is carried out at low temperatures, with this route being
illustrated in the top row of Figure 3, or a homogeneous distribution of moderate-sized
grains if the processing is carried out at high temperatures, and this is illustrated in the
second row. The incorporation of a preliminary thermo-mechanical processing operation
can refine the initial structure of the material, and this route, illustrated in the bottom rows,
can lead to the development of a homogeneous distribution of fine grains.

There is experimental evidence in the literature supporting the different grain structure
evolutions depicted in Figure 3. It is therefore expected that the grain structures produced
via ECAP vary significantly in different reports and that these different structures will dis-
play different properties. In fact, there is a great dispersion in the properties of magnesium
processed via ECAP in the literature, and this will be examined in the next sections.

The amount of strain imposed during HPT is typically much larger than in ECAP.
This means that, despite some heterogeneity in grain size distribution observed in the early
stage of processing, the grain structure usually evolves to a homogeneous distribution of
ultrafine grains. Figure 4 shows the evolution of the grain structure, observed using EBSD,
of pure magnesium at different stages of HPT processing [25]. High-angle boundaries
are depicted in black lines and low-angle boundaries in red. Coarse grains surrounded
by fine grains are observed at a low number of turns and a homogeneous distribution of
ultrafine grains is observed after multiple turns. As HPT processing is usually carried out
at room temperature, grain growth is prevented, and the final grain sizes are smaller than
in ECAP. For example, final grain sizes larger than 10 µm were reported in pure magnesium
processed via ECAP at high temperatures [10,26], while grain sizes smaller than 1 µm were
reported in pure magnesium processed via HPT at room temperature [25,27].
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Figure 4. Evolution of the grain structure of pure magnesium during HPT processing [28].

The grain sizes achieved during SPD processing can be reduced by the incorporation
of alloying elements and second phase particles which reduce grain boundary mobility.
Consequently, the average grain sizes reported in magnesium alloys processed via SPD
are usually smaller than the grain sizes obtained in pure magnesium. A summary of grain
sizes reported in magnesium and its alloys after HPT processing is available elsewhere [29].
Figure 5 shows the structure of an Mg–8.2%Gd–3.2%Y–1.0%Zn–0.4%Zr alloy in which a
mean grain size of only 35 nm was reported after processing via HPT [30].
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4. Mechanical Properties

There are multiple reports of higher strength in magnesium and its alloys after ECAP
processing and this is attributed to grain refinement. There is also a significant dispersion
in the mechanical properties of magnesium processed via ECAP. The dispersion is a
consequence of the multiple processing routes which produce different microstructures,
as discussed in the previous section. Moreover, the mechanical behavior of magnesium
depends strongly on the sample texture and loading direction. The texture developed in
magnesium is affected by the number of passes [31,32], the die geometry [33] and the ECAP
route [31], which is defined by the sequence of rotations of the billet between successive
passes. The alloy composition can also affect the intensity of the texture [32].

The mechanical behavior of magnesium alloys processed via ECAP varies significantly
depending on the loading direction [34,35]. Accordingly, ECAP processing might produce
a texture meaning basal slip is favored for loading along the billet direction, and this leads
to enhanced ductility for tensile tests in this direction [34,36]. Nevertheless, high strength
can also be achieved by controlling ECAP processing parameters and texture development.
Figure 6 shows tensile stress–strain curves for a magnesium alloy AZ31 processed via ECAP
in which the grain size was significantly refined [37]. Increasing strength with decreasing
grain size is observed.
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The grain refinement introduced via SPD processing might also soften magnesium.
Pure magnesium displays inverse Hall–Petch behavior at room temperature so that grain
refinement below a certain level can decrease its strength [38]. It is interesting to note
that the decrease in strength in ultrafine-grained pure magnesium is associated with a
remarkable increase in ductility. Figure 7 shows the appearance of tensile samples of pure
magnesium processed via HPT and tested at room temperature. The average grain size
produced by this SPD technique was only 0.32 µm [25]. Elongations as high as 360% are
observed in this material. Such exceptional elongations are attributed to the occurrence
of grain boundary sliding in this fine-grained pure magnesium. Recent papers show
that exceptional elongations and ductilities may also develop in some fine-grained Mg
alloys [39–42], including superplastic elongations in an Mg–Li alloy processed via HPT [43].
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Figure 7. Appearance of specimens of pure magnesium processed via HPT and pulled to failure at
room temperature [25].

The effect of grain size on the mechanical properties of magnesium and its alloys
has been recently reviewed, and some trends were revealed [44]. Experimental data on
flow stress and elongation from over 300 papers were collected and then plotted as a
function of the grain size. The data from samples processed via SPD, including both ECAP
and HPT, are incorporated into the analysis. It was reported that the amount of alloying
elements affects the strength and ductility of magnesium alloys. Two trends were revealed
for different grain size ranges in magnesium alloys. For grain sizes larger than ~4 µm, the
deformation is twinning-controlled and the data follow a Hall–Petch relation. However,
there is a break in the flow stress relationship (σ, vs. the grain size, d) for grain sizes smaller
than ~4 µm, and the data follow the relationship predicted by the mechanism of grain
boundary sliding [45], which is in good agreement with other metallic materials [46–48].
This regime is then characterized as slip-controlled.

The data are shown in Figure 8 and the different deformation regimes are depicted.
It follows that the slope between flow stress, σ, and grain size, d, is lower in the fine
grain regime, which limits the ability of grain refinement strengthening in magnesium
alloys. A plateau in strength and inverse Hall–Petch behavior is predicted at very small
grain sizes, and this agrees with experimental observations [49,50]. The data for elon-
gation in tension are also plotted in Figure 8 and show different trends. Ductility tends
to decrease with increasing grain size in the twinning-controlled regime (coarse grains),
and the opposite trend, ductility decreasing with decreasing grain size, is observed in the
slip-controlled regime (fine and ultrafine grains). A peak in ductility is observed in the
grain size range in which there is a transition between the deformation mechanisms, which
is highlighted by a different shade. Pure magnesium and a few alloys are the exceptions to
this trend since these materials display increased ductility with decreasing grain size in the
slip-controlled regime.
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Figure 8. Flow stress and elongation in tension of multiple magnesium alloys plotted as a function of
the grain size [44].

The experimental data of flow stress of magnesium alloys were also plotted as a
function of the elongation in tension to evaluate the strength–ductility relationship [44].
It was reported that grain refinement improves the mechanical properties of magnesium
alloys, leading to a significant expansion of range in flow stress, σ, vs elongation plots. This
is shown in Figure 9, in which the data from coarse-grained magnesium (d > 20 µm) and fine-
grained (d < 2 µm) are plotted with different symbols. Fine-grained magnesium can display
higher strength, a better combination of strength and ductility and exceptional ductility
compared to their coarse-grained counterparts [44]. Accordingly, the trends revealed in
this analysis show that SPD processing can significantly improve the mechanical properties
of magnesium and its alloys due to its ability to promote grain refinement.
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5. Corrosion Behavior

It has been suggested that grain refinement increases the corrosion resistance of mag-
nesium [51–53]. It is expected that severe plastic deformation via ECAP and HPT increases
the corrosion resistance, provided a significant structure refinement and homogeneity are
introduced. This modification has a favorable effect on corrosion resistance and pitting
susceptibility. In a more homogeneous surface, corrosion behavior tends to change from
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local to uniform and general corrosion. The increasing grain boundary density can lead to
an improvement in passive film formation and adhesion.

A review [54] on the effect of SPD on corrosion behavior concluded that SPD does not
compromise corrosion resistance and, in many cases, improves it, despite some contradic-
tory results. There are to date a large number of investigations of the corrosion behavior
of magnesium processed via ECAP and HPT, and Table 1 displays the comprehensive
summary based on the material, SPD processing method, grain size, mechanical properties,
corrosion testing conditions and results. Despite a large number of investigations, it is
not easy to establish trends in the corrosion behavior of Mg due to the multiple variables,
including alloy composition, type of test and corrosion media, which affect the output.
Many papers reported that SPD improves the corrosion resistance of Mg and its alloys, but
there are also reports that it does not affect, or it even deteriorates, the corrosion resistance.
This divergence is discussed next.

Table 1. Summary of magnesium alloys, SPD processing method, grain size (d), flow stress (σ),
elongation to failure (El.), corrosion rate (C.R.), corrosion media, corrosion tests and reported SPD
effect on corrosion resistance.

Material Method D
(µm)

σ
(MPa)

El.
(%)

C.R.
(mm/yr) Media * Corrosion

Test **

SPD Effect
on

Corrosion
Resistance

Reference

Pure Mg

As cast 1500 12 5.9 3.62

SBF

E.P.

Improved [55]ECAP (4 passes)

365 37 8.1
0.13 W.L.
0.09 E.P.

65 48 10.3
0.38 W.L.
0.32 E.P.

30 51 16.5
0.73 W.L.
0.67 E.P.

9 58 15.9
0.59 W.L.
0.36 E.P.

Pure Mg
As cast 125.00 0.24

0.1 M NaCl E.P. Improved [52]ECAP (1 pass) 25.00 0.19
ECAP (8 passes) 2.60 0.14

Pure Mg

As cast 1150.00
12.60

3.5 wt%.
NaCl

W.L.

Deteriorated [56]

1.14 E.P.

ECAP (1 pass) 150.00
121.00 W.L.
2.74 E.P.

ECAP (6 passes) 75.00
236.00 W.L.
6.17 E.P.

Pure Mg As cast 1500.00 13 5.9 3.12
HS E.P. / H.E. Improved [57]ECAP (4 passes) 9.00 58 15 0.51

Pure Mg ECAP (6 passes) 1.00 30 12 0.55
In Vivo µ-T.

Deteriorated
[58]Mg-1%Ca ECAP (6 passes) 1.00 125 7 0.24 Improved

Mg-2%Sr ECAP (6 passes) 2.00 110 8 0.30 Improved

Pure Mg As cast 250.00 44 4.4 1.02 PBS E.P. No
significant

effect [59]ECAP (6 passes) 22.00 45 10.3 1.02 PBS E.P.

ZK60
Extruded 2~15 290 15 1.38 PBS E.P. ImprovedECAP (4 passes) 0.70 220 33 1.28 PBS E.P.

AE21 ECAP (8 passes) 2.50
0.1 M NaCl E.I.

Deteriorated [60]AE42 ECAP (8 passes) 2.50 Improved
AE42 Extruded 4.50 2.54

KSBF
Atomic

Absorption
Spectrometry

Improved [61]AE42 ECAP (8 passes) 1.50 2.29

AZ31
Squeeze cast 450.00 0.32

HS W.L. Improved [62]ECAP (4 passes) 2.5 0.27

AZ31
Extruded 28.00 2.09

HS E.P. Improved [63]ECAP (4 passes) 8.5 0.38
ECAP-BP (4 passes) 1.70 0.58

AZ31
As cast 30.00 125.00 3.5 wt%.

NaCl E.P. Deteriorated [64]ECAP (4 passes) 12.00 200 220.00

AZ31
Annealed 47.00

18.00 SBF

W.L. Improved [65]1.6 In Vivo

ECAP (4 passes) 1~5
6.00 SBF
1.1 In Vivo

AZ31

As received 27.5 97.7 14.2 4.92

KSBF E.P./H.E. Deteriorated [66]ECAP (1 pass) 8.3 122.7 22.8 1.91
ECAP (2 passes) 6.8 109.5 36.0 6.54
ECAP (4 passes) 6.5 86 46.8 7.97

AZ91 ECAP (12 passes) 1.50
120 3.5 wt%.

NaCl
W.L.

Deteriorated [67]3.15 E.P.
LAE442 ECAP (12 passes) 1.5 0.1 M NaCl E.P. Improved [68]
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Table 1. Cont.

Material Method D
(µm)

σ
(MPa)

El.
(%)

C.R.
(mm/yr) Media * Corrosion

Test **

SPD Effect
on

Corrosion
Resistance

Reference

LAE 442
Extruded 21.00

0.80 KBM

W.L. Improved [69]0.92 MEM

ECAP (12 passes) 1.7
0.59 KBM
0.69 MEM

WE43
Extruded 9.1 [70] 189 20.9 0.494

Hank’s
solution E.P. Improved [71]ECAP (1 pass) 6 [70] 245 15 0.15

ECAP (2 passes) 8 [70] 285 14 0.23

WE43
As cast 135.00 170 9.70

In Vivo Improved [72]ECAP (4 passes +
extrusion) 50.00 225 12.2

WE43
Homogenized 65 161 9

0.49

0.9% NaCl

E.P.

Improved [73]2.29 W.L.

ECAP (12 passes) 0.69 260 13.2
0.50 E.P.
1.17 W.L.

ZE41A ECAP (60 passes) 2.5
2.46 DMEM

solution
H.E. Improved [74]0.47 E.P.

ZE41
As cast 48.00

24.70 1 M NaCl

E.P. Improved [75]3.00 0.1 M NaCl

ECAP (6 passes) 15.00
12.20 1 M NaCl
5.00 0.1 M NaCl

ZFW MP

Extruded 5.00 261 8.4 0.16

HS E.P. Deteriorated [76]ECAP (1 pass) 269 2.3 1.13
ECAP (3 passes) 0.50 291 11.4 1.2
ECAP (4 passes) 303 5.8 1.76

ZK60
Extruded 1~20 290 18

4.03

PBS

W.L.

Improved [77]1.38 E.P

ECAP (4 passes) 0.6 280 30
2.88 W.L.
1.28 E.P

ZM21

As rolled 45.00 150 20 1.03

HS E.P. Deteriorated [78]
ECAP (1 pass) 18.4 136 21 3.34

ECAP (2 passes) 10.9 154 22 1.08
ECAP (3 passes) 5.0 128 23 1.28
ECAP (4 passes) 5.4 137 27 1.99

Mg-2.9Gd-
1.5Nd-0.3Zn-

0.3Zr

AS cast 40.00 85.8 11.8
0.24

SBF

W.L.

Improved [79]0.33 E.P.

ECAP (4 passes) 2.50 217.3 18.5
0.13 W.L.
0.19 E.P.

Mg-4.7%
Gd-1.42%
Nd-0.59%

Zn-0.37% Zr

Homogenized 80.00 125 22.7
0.25

HS

H.E. Deteriorated
but changed

pitting
corrosion to

uniform
corrosion

[80]

0.09 E.P.

ECAP (4 passes) 1.50 215 30.1
0.80 H.E.
0.19 E.P.

ECAP (8 passes) 1.00 *** 223 36.2
1.20 H.E.
0.29 E.P.

Mg-1.0%Zn-
0.3%Ca

As received
(Homog. + Extr.) 106.00 92 13 0.9 wt%.

NaCl W.L.
No

significant
effect

[81]
ECAP (4 passes) 6.00 106 24

Mg-1.0%Zn-
0.3%Ca

As received
(Homog. + Extr.) 106.00 92 13

1.15 FBS W.L.
No

significant
effect

[82]2.74 0.9 wt%.
NaCl E.P.

ECAP (4 passes) 6.00 106 24
0.94 FBS W.L.

2.17 0.9 wt%.
NaCl E.P.

Mg-2%Zn-
0.5%Mn-

1%Ca-
1.35%Ce

As cast 60.00 75 4.7 0.63
HS E.P. Deteriorated [83]ECAP (12 passes) 1 *** 170 12.5 0.90

Mg-4%Zn-
1%Mn

Homogenized 260.00 92 5.8 7.03

HS E.P. Deteriorated [84]
ECAP (1 passes) 64.00 117 7.5 14.38
ECAP (2 passes) 40.00 124 16.5 17.79
ECAP (3 passes) 12.00 174 18 20.38
ECAP (4 passes) 8.00 156 21 27.19

Mg-4%Zn-
1%Si

Homogenized 210.00 86
7 9.08

SBF

E.P.

Deteriorated [85]

9.34 H.E.

ECAP (1 pass) 44.00 105
8.2 9.84 E.P.

10.90 H.E.

ECAP (2 passes) 20.00 109
8.7 14.02 E.P.

14.55 H.E.

ECAP (3 passes) 12.00 126
9.4 23.75 E.P.

29.81 H.E.

ECAP (4 passes) 6.00 120
12 24.14 E.P.

32.70 H.E.

Mg-
4.71%Zn-
0.6%Ca

As cast 54.5 178 6.2
0.83

HS

W.L.

Improved [86]2.08 E.P.

ECAP (4 passes) 1.6 246 11.3
0.60 W.L.
0.72 E.P.
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Table 1. Cont.

Material Method D
(µm)

σ
(MPa)

El.
(%)

C.R.
(mm/yr) Media * Corrosion

Test **

SPD Effect
on

Corrosion
Resistance

Reference

Mg-6%Zn Homogenized 75 26 10.00
0.9 wt%.

NaCl H.E. Deteriorated [87]ECAP (4 passes) 302 0.7 20.00

Mg-12%Zn Homogenized 150.00 150 19 20.00
ECAP (4 passes) 385 0.6 45.00

Pure Mg

As cast 480.00 34
5 0.16

3.5 wt%.
NaCl

E.P.

Improved [88]

2.72 H.E.

ECAP (4 passes) 3.20 140
8 0.91 E.P.

1.26 H.E.

HPT (N = 10) 0.56 80
130 0.20 E.P.

0.96 H.E.

Pure Mg As cast 18 46 - 3.5 wt%.
NaCl E.I.

No
significant

effect

[89]

HPT (N = 5) 2.00 142 38 -
Pure Mg HPT (N = 5) 1.20 116.9 29.2 0.41

In vivo µ-T.
Deteriorated

[90]Mg-1%Ca HPT (N = 5) 0.17 229.4 1.6 0.29 Improved
Mg-2%Sr HPT (N = 5) 0.72 166.4 2.6 0.28 Improved

Pure Mg As cast 1000.00 0.03

HS E.P.

Improved

[91]

HPT (N = 10) 0.51 0.03

AZ31
Extruded 16.00 0.02 No

significant
effect

HPT (N = 10) 0.13 0.02

AZ91
Solution-Treated 110.00 0.01 No

significant
effect

HPT (N = 10) 0.10 0.02

ZK60
Extruded 2.9 0.22

DeterioratedHPT (N = 5) 0.16 0.04
Pure Mg

HPT (N = 5)

140 0.12

HS µ-T. No effect [19]

Mg-1% Zn 1.30 235 0.18
Mg-1%

Zn-0.5% Ca 223

Mg-4%
Li-1% Y 0.18 330 0.42

Mg-8%
Li-1% Y 0.21 360 0.28

WE43 275 0.11

Pure Mg As cast 1000.00 0.4

3.5 wt%.
NaCl E.P.

Improved

[92]

HPT (N = 10) 0.51 212 0.30

AZ31
Extruded 16.00 0.37 No

significant
effectHPT (N = 10) 0.13 392 0.39

AZ91
Solution-Treated 110.00 0.8 No

significant
effectHPT (N = 10) 0.10 457 0.60

ZK60
Extruded 2.9 2.5 No

significant
effectHPT (N = 5) 0.16 359 3.40

ZK60
Extruded - 1.32

0.1 M NaCl H.E.
Improved
(after 20

turns)

[93]HPT (N = 5) 0.7 1.41

WE43
Homogenized 65.00 161 9.0 0.47

0.9 wt%.
NaCl E.P.

Improved
[94]HPT (200 ◦C, N =

10) 0.05 *** 333 1 0.43

HPT (200 ◦C, N =
10) + T.T. (200 ◦C/2

h)
0.07 383 1 1.16 Deteriorated

Mg-1%Ca
As cast 42.00 1.18

Ringer’s
solution E.P.

Improved
[95]HPT (N = 10) 0.10 0.11

HPT (N = 10) + T.T.
(250 ◦C/6h) 1.1 0.07 Improved

Mg-
0.45%Zn–
0.45%Ca

HPT (N = 10) 1.70 PBS E.I. Deteriorated [96]

Mg-2%Zn-
0.24%Ca

As cast 97.00 12.11
KSBF E.P. Improved [97]HPT (N = 5) 1.2 0.07

Mg-2%Zn-
0.24%Ca

As cast 11.00 3.92
SBF E.P. Improved [98]HPT (N = 5) 0.13 0.50

Mg-2%Zn-
0.24%Ca

Solution-Treated 5.90
SBF H.E. Improved [99]HPT (N = 5) 0.10 4.40

HPT (N=5) + T.T
(210 ◦C/30 min) 0.31 1.80
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Table 1. Cont.

Material Method D
(µm)

σ
(MPa)

El.
(%)

C.R.
(mm/yr) Media * Corrosion

Test **

SPD Effect
on

Corrosion
Resistance

Reference

Mg-1%Zn-
0.2%Ca

Homogenized 270.00 134 1.67

Ringer’s E.P. Improved [100]
HPT (N = 10) 0.090 323 1.22

HPT (N = 10) + T.T.
200 ◦C 0.24 327 1.12

HPT (N = 10) + T.T.
250 ◦C 0.55 212 1.04

HPT (N = 10) + T.T.
300 ◦C 4.00 196 1.01

* Corrosion media: Phosphate Buffer Solution (PBS), Simulated Body Fluid (SBF), Kokubo’s Simulated Body
Fluid (KSBF), Hank’s solution (HS). ** corrosion test type: electro-chemical polarization (EP), electro-chemical
impedance (EI), weight loss (WL), hydrogen evolution (HE), micro-tomography (µ-T). *** estimated grain size.

It is important to keep in mind that grain size and homogeneity should affect the
corrosion behavior. SPD processing via ECAP is usually carried out at high temperatures
due to the limited ductility of magnesium and its alloys at lower temperatures. As dis-
cussed previously, processing at high temperatures compromises the grain refinement
ability, and therefore many papers reported coarse grain structures after ECAP processing.
Additionally, the mechanism of grain refinement of magnesium differs from other metallic
materials in a way that a heterogeneous grain size distribution might develop after a few
passes of ECAP [23,24,101]. Therefore, the results summarized in Table 1 include studies in
samples in which SPD processing did not refine the grain structure significantly, and the
grain structure is rather heterogeneous. The corrosion rate in samples processed via ECAP
and HPT are plotted as a function of the grain size in Figure 10, and different symbols are
used to separate the results in which the authors reported that SPD improved corrosion
resistance from the results in which SPD did not affect or deteriorated the corrosion re-
sistance. Different symbols are also used to separate results from samples processed via
ECAP and samples processed via HPT.
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Figure 10. Corrosion rate reported in samples of magnesium processed via ECAP [52,55–59,61–
67,69,71,73–80,82–87] and HPT [19,88,90–95,97–100] plotted as a function of the grain size.

It is apparent that many studies in which the material was processed via ECAP failed
to produce samples with ultrafine (less than 1 µm) grain sizes. Most of the studies reporting
that SPD deteriorated corrosion resistance made use of samples in which the grain structure
was not ultrafine. Careful observation of the data in Figure 10 shows that decreasing the
grain size decreases the corrosion rate, despite the different alloy compositions and testing
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methods. This observation supports the theory that the grain interior acts as a cathode and
the grain boundary as an anode during corrosion and that a decrease in the ratio between
the cathode and anode area fraction can decrease the corrosion rate [54,102]. It is also
apparent that samples produced via HPT display smaller grain sizes and lower corrosion
rates. This is attributed to the lower temperature in which HPT is usually carried out and
the larger amount of strain imposed. The former reduces the grain size, and the latter
increases the homogeneity of the structure.

It is worth noting that the homogeneity of the structure can significantly affect the cor-
rosion behavior of magnesium processed via SPD. An early paper reported the processing
of pure magnesium via ECAP at different temperatures, a process which led to different
average grain sizes and grain size distributions. A higher corrosion rate was reported in
a sample in which the grain size distribution was less homogeneous [55]. A deteriorated
corrosion resistance was reported in a ZK60 magnesium alloy processed by a few turns
of HPT and was also attributed to heterogeneous grain size distribution [93]. However,
further processing of this alloy to a larger number of turns caused homogenization of
the grain structure and improved the corrosion resistance [93]. A recent paper showed
that localized corrosion can develop in areas in which deformation heterogeneity takes
place during HPT processing. This might include the center and the edge of the discs [19].
Therefore, it is of great importance that SPD processing routes are developed in order
to produce homogeneous structures. Moreover, recent papers have shown that residual
stresses imposed with surface treatments can affect the corrosion behavior of magnesium
alloys [103,104]. Improvement in corrosion resistance has also been reported in magnesium
alloys processed via friction stir processing [105] and multi-axial isothermal forging [106].

6. Biological Response

It is now well known that magnesium displays a good biological response and there
are prospects of increasing its use as an implant material [2,4,107,108]. The previous sections
showed that severe plastic deformation can improve both the mechanical properties and
the corrosion behavior of this material. However, it is important to review studies on
whether such processing could compromise their biological response. Table 2 summarizes
the output of cytotoxicity tests carried out in magnesium processed via ECAP or HPT.
Different alloys and different cell types were considered in these investigations, and in
practice, there is no report of any significant toxicity. In fact, an increase in cell viability and
cell proliferation was reported in a WE43 magnesium alloy processed via ECAP compared
to the homogenized state [73].

In addition to cytotoxicity tests, many studies evaluated the in vivo response of im-
plants produced from magnesium processed via ECAP and HPT. These studies were carried
out using rats, mice, rabbits and dogs as animal models, and most of them focused on bone
implants. Table 3 summarizes these tests, and it is shown that, generally, the implants from
magnesium processed via SPD display good in vivo responses. One of the major concerns
regarding the degradation of magnesium in biological applications is the accumulation
of hydrogen gas, which is a by-product of corrosion. However, only one of the studies,
in which the implants from an Mg–Zn–Ca alloy were inserted subcutaneously, reported
the formation of gas under the skin [82]. A good biological response including bone for-
mation around the implant was observed in pure magnesium and Mg–Ca and Mg–Sr
alloys processed via ECAP [58] and via HPT [90]. Figure 11 shows the three-dimensional
reconstruction of the implants of material processed via ECAP (gray) and the surrounding
bone (green). All the materials degrade gradually, maintained the rod shape of the implant
during the whole implantation period and no severe local corrosion was observed. After
12 weeks post-operation, the volume of implants remained around 75% of their original
volumes, and at 24 weeks, for the ECAP-processed pure Mg group, around ~25% of implant
volume remained, while over 50% of implant volume was left for the ECAP-processed
Mg–1Ca alloy and Mg–2Sr alloy groups.
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Table 2. Summary of in vitro tests of cytotoxicity carried out in Mg and Mg alloys processed via SPD.

Material SPD Process d (µm) Test Cell Type Time (Days) Result Ref.

Pure Mg ECAP 3.2
Cytotoxicity Cell

viability Human osteosarcoma
cell line (SAOS-2) 1

No significant
alterations in their

mitochondrial
metabolic activity.

[88]

Live/Dead The cells exposed
preserved a vital status.

Pure Mg
ECAP

0.5~1.5 Cytotoxicity Cell
viability

Pre-osteoblasts
MC3T3-E1 and human

mesenchymal stem cells
(hMSC)

5

Cell viability was near
or exceed 80%. [58]

Mg-1%Ca 1 Cell viability was near
or exceed 80%.

Mg-2%Sr 2 Cell viability was near
or exceed 80%

AZ31 ECAP 1.7 Cytotoxicity Cell
viability MG63 cells 3

Cell viability over 70%
in the sample with 4

passes of ECAP. Slightly
lower viability was

observed in the sample
with only 3 passes.

[63]

AZ31 ECAP 1~5 Cytotoxicity Cell
viability

Rat skeletal muscle (L6)
cells 3 Cell viability was near

or exceed 80% [65]

LAE 442 ECAP 1.7 Cytotoxicity Cell
viability

L929 cells
(murinefibro-blasts) 4 The cell viability was

over 70% [69]

WE43 ECAP 0.69

Cytotoxicity Cell
viability Mouse white blood cells 1

Improved cell viability
compared to the initial

state. [73]

Hemolysis Mouse red blood cells 1
No significant effect

compared to the initial
state.

Cell proliferation
Mouse Multipotent

mesenchymal stromal
cells (MMSCs)

7
Improved cell

proliferation compared
to the initial state.

ZM21 ECAP 5.4
Cytotoxicity Cell

viability Human osteoblast-like
cells (MG63) 3

The cell viability was
over 99%. [78]

Live/Dead Large number of living
cells were found.

Mg-1% Zn-0.3%
Ca ECAP 4~8

Cytotoxicity Cell
viability

Mouse mononuclear
leucocytes (ML) 1

No statistically proven
hemolysis and cytotoxic

effects. [82]
Cell adhesion Mouse Multipotent

mesenchymal stromal
cells (MMSCs)

7 Exceeded 100% of
adhesion.

Cell proliferation 7
Decrease in cell

proliferation compared
to control.

Osteogenic
differentiation 21

Osteoinductive activity
increased 14%

compared to control.

Pure Mg HPT 0.56
Cytotoxicity Cell

viability Human osteosarcoma
cell line (SAOS-2) 1

No significant
alterations in their

mitochondrial
metabolic activity.

[88]

Live/Dead The cells exposed
preserved a vital status.

Pure Mg
HPT

0.59~1.8 Cytotoxicity Cell
viability

MC3T3-E1 cells and
humanmesenchymal
stem cells (hMSCs)

5

Exceeded 80% of cell
viability. [90]

Mg-1%Ca 0.171 Exceeded 80% of cell
viability.

Mg-2%Sr 0.72 Exceeded 80% of cell
viability.

Pure Mg

HPT

0.51
Cytotoxicity Cell

viability

Human osteosarcoma
cell line (SAOS-2) 1

The cell metabolic
activity was over 80%.

[91]
Live/Dead

Most of the cells
exposed preserved a

vital status.

AZ31 0.13
Cytotoxicity Cell

viability
The cell metabolic

activity was over 80%.

Live/Dead
Most of the cells

exposed preserved a
vital status.

AZ91 0.10
Cytotoxicity Cell

viability
The cell metabolic

activity was over 80%.

Live/Dead
Most of the cells

exposed preserved a
vital status.

ZK60 0.16
Cytotoxicity Cell

viability
The cell metabolic

activity was over 80%.

Live/Dead
Most of the cells

exposed preserved a
vital status.
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Table 3. Summary of in vivo tests carried out in Mg and Mg alloys processed via SPD.

Material (Process) Animal Model
Number of

Days
Implanted

Implant Design In Vivo Corrosion Findings Ref.

Pure Mg
(HPT)

Rats
Femur lateral

epicondyle
24 weeks Cylindrical rods 0.41 mm/year

New bone formed around the surface
of implant.

Good biocompatibility. [90]

Mg–1%Ca (HPT)
Rats

Femur lateral
epicondyle

24 weeks Cylindrical rods 0.29 mm/year
New bone formed around the surface

of implant.
Good biocompatibility.

Mg–2%Sr
(HPT)

Rats
Femur lateral

epicondyle
24 weeks Cylindrical rods 0.28 mm/year

New bone formed around the surface
of implant.

Good biocompatibility.

Pure Mg (ECAP)
Rats

Femur lateral
epicondyle

24 weeks Cylindrical rods 0.55 mm/year
At 24 weeks, around ~25% implant

volume remained.
Good osseointegration. [58]

Mg–1%Ca (ECAP)
Rats

Femur lateral
epicondyle

24 weeks Cylindrical rods 0.24 mm/year
At 24 weeks, around 50% implant

volume remained.
Good osseointegration.

Mg–2%Sr (ECAP)
Rats

Femur lateral
epicondyle

24 weeks Cylindrical rods 0.30 mm/year
At 24 weeks, around 50% implant

volume remained.
Good osseointegration.

AZ31
(ECAP)

Rabbits Femoral
bone 60 days Thin plates 1.1 mm/year

No indication of the hydrogen
accumulation and new bone formed.
The presence of mild inflammatory
response indicates that the material

used is biocompatible.

[65]

Mg–Zr–Y–Nd–La
(ECAP + Extrusion) Dog Femur bone 12 weeks Screws ECAP reduced the

corrosion rate.

A mild inflammatory response in
comparison with the unprocessed

sample.
No sign of hydrogen accumulation

and no harmful health effects on the
animal bod.

New bone formed.

[72]

Mg–1%Zn-0.3%Ca
(ECAP)

Mice
subcutaneously 4 weeks Thin plates 20% mass loss in

2 weeks.

Rapid biodegradation of the samples.
Significant volume of gas released

under the skin near the implant.
Penetration of adjacent tissues

by crystals of biodegradation products.

[82]

Materials 2023, 16, x FOR PEER REVIEW 15 of 24 
 

 

observed. After 12 weeks post-operation, the volume of implants remained around 75% 
of their original volumes, and at 24 weeks, for the ECAP-processed pure Mg group, 
around ~25% of implant volume remained, while over 50% of implant volume was left for 
the ECAP-processed Mg–1Ca alloy and Mg–2Sr alloy groups. 

 
Figure 11. Micro-CT 3D reconstruction of implants (gray in color) of Mg, Mg–1%Ca and Mg–2%Sr 
processed via ECAP and bone around the implant (green in color) after 2, 4, 16 and 24 weeks of in 
vivo degradation [58]. 

Table 3. Summary of in vivo tests carried out in Mg and Mg alloys processed via SPD. 

Material (Pro-
cess) 

Animal Model 
Number of Days 

Implanted 
Implant De-

sign 
In Vivo Cor-

rosion 
Findings Ref. 

Pure Mg  
(HPT) 

Rats  
Femur lateral epi-

condyle 
24 weeks 

Cylindrical 
rods   

0.41 mm/year 
New bone formed around the surface of implant.  

Good biocompatibility. 

[90] 
Mg–1%Ca 

(HPT) 

Rats  
Femur lateral epi-

condyle 
24 weeks 

Cylindrical 
rods   

0.29 mm/year 
New bone formed around the surface of implant.  

Good biocompatibility. 

Mg–2%Sr 
(HPT) 

Rats  
Femur lateral epi-

condyle 
24 weeks Cylindrical 

rods  
0.28 mm/year New bone formed around the surface of implant.  

Good biocompatibility. 

Pure Mg 
(ECAP) 

Rats  
Femur lateral epi-

condyle 
24 weeks 

Cylindrical 
rods   

0.55 mm/year 
At 24 weeks, around ~25% implant volume re-

mained.  
Good osseointegration. 

[58] 
Mg–1%Ca 

(ECAP) 

Rats  
Femur lateral epi-

condyle 
24 weeks 

Cylindrical 
rods   

0.24 mm/year 
At 24 weeks, around 50% implant volume remained. 

Good osseointegration. 

Mg–2%Sr 
(ECAP) 

Rats  
Femur lateral epi-

condyle 
24 weeks 

Cylindrical 
rods  

0.30 mm/year 
At 24 weeks, around 50% implant volume remained. 

Good osseointegration. 

AZ31 
(ECAP) 

Rabbits Femoral 
bone 

60 days Thin plates 1.1 mm/year 

No indication of the hydrogen accumulation and 
new bone formed.  

The presence of mild inflammatory response indi-
cates that the material used is biocompatible. 

[65] 

Figure 11. Micro-CT 3D reconstruction of implants (gray in color) of Mg, Mg–1%Ca and Mg–2%Sr
processed via ECAP and bone around the implant (green in color) after 2, 4, 16 and 24 weeks of
in vivo degradation [58].



Materials 2023, 16, 2401 16 of 24

7. Overall Performance

The previous sections showed that severe plastic deformation can effectively refine the
grain structure of magnesium and its alloys, improve the mechanical properties and increase
the corrosion resistance without compromising biocompatibility. There are contradictory
reports which are mostly related to samples processed via ECAP in which the grain
structure was not significantly refined and/or there was heterogeneity in the grain size
distribution. The relationship between the corrosion rate and mechanical strength is
depicted in Figure 12 for samples of unprocessed material and samples processed via
ECAP and HPT. Thus, the data for samples processed via ECAP do not differ notably
from the unprocessed material. The range of data suggests a slight increase in strength
but a slight increase in corrosion rate as well. There is a notable trend that the data for
samples processed via HPT show an improvement in overall performance. The range of
data for these samples extends to higher strength with lower corrosion rates. This improved
performance in magnesium and its alloys processed via HPT is then attributed to the ability
of HPT to promote significant grain refinement and structural homogenization.
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Figure 12. Corrosion rate vs. flow stress of magnesium and its alloys before and after SPD processing.
Data from the literature [19,57–59,64,66,70,72,76–80,82–88,90–92,94,100].

The positive effect of SPD on corrosion is not limited to a decrease in the average
corrosion rate. It is also expected that corrosion becomes uniform [102], and homogeneous
corrosion has been reported after HPT processing of an Mg–Zn–Ca alloy [97]. Figure 13
shows the appearance of scaffolds of pure magnesium with different processing histories
after immersion in Hank‘s solution for 14 days. It was reported that the samples processed
via ECAP and HPT exhibited lower corrosion rates and more uniform corrosion, while the
as-cast material displayed localized corrosion [109].
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8. Magnesium Composites

The performance of magnesium implants can be improved by the incorporation of
other materials into composites [110]. High-pressure torsion provides the opportunity
to consolidate different metallic materials, including magnesium, into a bulk sample in
which the structure is significantly refined [111,112]. Thus, recent papers have exploited
this procedure, and different composites and hybrids have been produced using HPT. For
instance, it is now known that the strength of magnesium can be significantly increased by
mixing it with other metallic materials such as Al [113–115] or Zn [116–119]. The Mg–Zn
system is especially interesting since both materials are biodegradable, and its corrosion
behavior in SBF has been investigated [119].

It is also possible to incorporate hard ceramic particles into a magnesium matrix
through HPT, and this provides the opportunity to produce magnesium composites with
bioactive particles. Recent papers reported the incorporation of bioactive glass [120] and
hydroxyapatite [120,121] into the magnesium matrix. Cytotoxicity tests showed the Mg–HA
composite is biocompatible [120]. Figure 14 shows an elemental composition map across a
cut on the surface of the composite after immersion in Hank’s solution. A hydroxyapatite
particle and the corrosion product layer are rich in Ca and P, and it was reported that the
corrosion product layer is uniformly distributed on the surface of the sample [121]. It is
expected that such a surface layer improves the interaction between a magnesium implant
and the surrounding tissue.
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9. Summary and Conclusions

The structural features, mechanical properties, corrosion behavior and biological
response of magnesium and its alloys subjected to severe plastic deformation are critically
reviewed. The following trends were highlighted.

1. The unique mechanism of grain refinement of magnesium subjected to ECAP process-
ing is associated with a dispersion in grain structure which includes a broad range of
average grain sizes and grain size distributions. Processing via HPT is more effective
than other processing techniques for grain refinement and structure homogenization,
although there are some reports of localized deformation.

2. The mechanical properties of magnesium and its alloys are significantly improved via
grain refinement. High strength and exceptional ductility are observed in fine and
ultrafine-grained magnesium processed via SPD.

3. There seems to be a trend of increased corrosion resistance with decreasing grain size
in magnesium and its alloys. Most of the studies report improved corrosion resistance
after SPD processing. The reports of decreased corrosion resistance after SPD are
mostly related to samples processed via ECAP in which the grain structure was not
significantly refined and/or the grain structure was heterogeneous.

4. Biocompatibility tests and in vivo investigations reveal no detrimental effect of SPD
processing on the biological response of magnesium.
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5. The best combinations of improved strength and corrosion resistance are observed
in magnesium and alloys processed via HPT. There are also reports of a reduced
tendency for localized corrosion in magnesium processed via HPT.

6. High-pressure torsion can also be used to produce magnesium-based composites with
improved strength and with the incorporation of bioactive particles.

7. Overall, the present review shows that care must be taken during SPD processing in
order to attain a homogeneous structure with ultrafine grains in magnesium. Future
research in this field should evaluate the degree of homogeneity of the structure at
different locations of the processed material and relate this information to mechanical
properties and corrosion behavior.
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