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Abstract: This research studied the effect of accelerated carbonation in the physical, mechanical
and chemical properties of a non-structural vibro-compacted porous concrete made with natural
aggregates and two types of recycled aggregates from construction and demolition waste (CDW).
Natural aggregates were replaced by recycled aggregates using a volumetric substitution method and
the CO2 capture capacity was also calculated. Two hardening environments were used: a carbonation
chamber with 5% CO2 and a normal climatic chamber with atmospheric CO2 concentration. The effect
of curing times of 1, 3, 7, 14 and 28 days on concrete properties was also analysed. The accelerated
carbonation increased the dry bulk density, decreased the accessible porosity water, improved
the compressive strength and decreased the setting time to reach a higher mechanical strength.
The maximum CO2 capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t).
Accelerate carbonation conditions led to an increase in carbon capture of 525% compared to curing
under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled
aggregates from construction and demolition waste is a promising technology for CO2 capture and
utilisation and a way to mitigate the effects of climate change, as well as promote the new circular
economy paradigm.

Keywords: construction and demolition waste; porous concrete; CO2 uptake; accelerated carbonation

1. Introduction

Since the mid-19th century, the rise of the economy and industry has grown exponen-
tially. This has led to an increase in pollution and greenhouse gas (GHG) emissions, and
soon the scarcity of raw materials and natural resources will be more evident [1]. For this
reason, one of the main global challenges today is the preservation of the planet, which
includes sustainable use of natural resources and raw materials, the reuse of waste for
new production processes (circular economy) and the mitigation of climate change. The
construction sector has contributed to these problems, being one of the industries with the
greatest impact on the environment due to the massive consumption of non-renewable
natural resources such as aggregates and the emission of CO2 into the environment derived
from both the production of Portland cement and transportation of materials. During the
construction, use, maintenance and subsequent demolition of building and infrastructures,
large amounts of construction and demolition waste (CDW) are produced [2–7] that must
be properly managed.

Carbon dioxide (CO2) is the main greenhouse gas and is one of the main causes of
global warming [8–10]. Up to 55% of greenhouse gas (GHG) emissions correspond to CO2.
In the construction sector, the manufacture of building materials generates approximately
73% of carbon, of which the manufacture of Portland cement accounts for 41%, hence
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the scientific and social alarm around the carbon footprint of building materials and their
influence on climate change [10]. In concrete production, it is estimated that 0.2 to 0.4 tonnes
of CO2 equivalent are produced per cubic metre of concrete [11,12]. Globally, the total
cement production was 4.6 billion tonnes in 2015, increasing at a rate of 2.5% per year [13].
Concrete is the most widely used building material in the world, estimated to be used five
times more by weight than steel, and in some countries this ratio can even be as high as
10 to 1 [14], due to the fact that in both civil and building structures the concrete sector is
much larger than that of steel and even in non-structural precast elements the use of steel is
not necessary. As a positive aspect, concrete and cement-based materials have the capacity
to fix atmospheric CO2 irreversibly through the process of cement carbonation [15].

Concrete carbonation is a natural process affected by natural exposure conditions.
The progress of carbonation depends mainly on the permeability of concrete, the relative
humidity (RH) content and the concentration of CO2 available in the environment. When
concrete is exposed to the CO2 environment, the gas penetrates into it, mainly through
pores and microcracks. Once there, the carbon dioxide reacts with the primary hydration
products (e.g., calcium hydroxide Ca(OH)2 or CSH), resulting in calcium carbonate CaCO3
and silica gel, as shown in Equations (1) and (2) [13,16–21]. Atmospheric CO2 can also
react with calcium aluminate hydrate to form CaCO3, according to Equation (3) [13,17–21].
In addition, non-hydrated cement clinkers of cementitious materials, such as tricalcium
silicate (C3S), also called alite, or dicalcium silicate (C2S), also called belite, can further react
with CO2, as shown in Equations (4) and (5), respectively [13,21–23].

Ca(OH)2 + CO2 → CaCO3 + H2O (1)

C− S−H + CO2 → CaCO3 + SiO2·µH2O (2)

4Cao·Al2O3·13H2O + 4CO2 → 4CaCO3 + 2Al(OH)3 + 10H2O (3)

C3S + (3− x)CO2 + yH2O→ CxSHy + (3− x)CaCO3 (4)

C2S + (2− x)CO2 + yH2O→ CxSHy + (2− x)CaCO3 (5)

The carbonation phenomenon is based on atmospheric CO2 concentration, so in order
to achieve accelerated carbonation, special curing conditions with a high concentration of
CO2 must be used [13,16,24]. Other factors that affect the carbonation process are atmo-
spheric pressure, temperature, humidity and the chemical composition of the cement [20].
As the amount of clinker increases, the amount of CO2 absorbed increases, but the greater
the amount of cement per cubic metre of concrete, the lower the CO2 penetration [13,25,26].
In cement-based materials, CO2 curing makes the microstructure denser, decreases the
necessary curing time, decreases permeability and improves mechanical properties [26–28].

The use of recycled aggregates from CDW in cement-based materials is a viable
alternative to reducing the environmental and economic impact in the construction sector.
Although it is difficult to measure the current world production of CDW, it is estimated that
it exceeds 3.1 × 109 tonnes per year [29]. Therefore, the use of these recycled aggregates in
new constructions would contribute to reducing the impact of CDW in landfills and close
the life cycle of these products, which is a clear example of promoting the new circular
economy paradigm. There are two major types of recycled aggregates from CDW: recycled
concrete aggregates (RCA) composed mainly of concrete particles and unbound aggregates
(≥90%) and mixed recycled aggregates (MRA) that can contain up to a maximum of 30%
ceramic particles [30]. Recycled aggregates from CDW (RA) are rougher and have higher
porosity than natural aggregates (NA), so the particle density would be lower and water
absorption higher [20]. The presence of micro-cracks and lower resistance to fragmentation
is also one of the properties of recycled aggregates; these differences between RA and NA
are mainly due to the attached cement paste. The replacement of NA by RA in cement-
based materials generally reduces their mechanical and durability properties [31,32] and the
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rheological properties are also affected by the substitution of NA with RCA [33]. However,
in many cases this behaviour may be due to the method of substitution used. The authors
have successfully used different recycled aggregates in previous studies [20,34–36].

There are two possibilities for using CO2 treatment to improve the properties of
cement-based materials made with RA: (i) pre-treatment of recycled aggregates with CO2
and (ii) accelerated carbonation of fresh cement-based mixtures. Although the carbonation
mechanisms in both situations are similar, some difficulties arise in the latter. In the case
of RA, pre-treatment with CO2 increases the density and decreases the crushing value,
water absorption and porosity. It also improves the interfacial transition zone between the
carbonated RA and the cement paste, improving the mechanical properties of concrete
made with pre-treated RA [13,17,24,37–43].

For concrete or mortar made with RA, accelerated carbonation reduces the necessary
curing times to reach a certain mechanical strength, water absorption and shrinkage, as
well as increasing density and improving mechanical properties. The main problem with
accelerated carbonation is that it depends on CO2 penetrating through the pores of the
concrete matrix, which, as it becomes denser, hinders the entry of CO2 and the carbonation
of the entire mass. Hence, the porous mixtures, where the entire mass is accessible to CO2,
are more suitable for applying new accelerated carbonation technologies [13,17,24,38–43].

Moreover, the use of porous concrete in pavements allows the infiltration of rainwater,
reduces the runoff flow and the damage caused by floods, as well as favours the recharge
of aquifers and the growth of trees in cities. Because of this, porous pavements are a very
good alternative to mitigate the effects of climate change.

This article studies the effect of accelerated carbonation on the physical–mechanical
and chemical properties of vibro-compacted porous concrete for the manufacture of eco-
friendly precast elements made with the main types of recycled aggregates from CDW
(RCA and MRA). It can be divided into three sections: characterisation of the starting
materials, the study of the dry bulk density, water absorption, accessible porosity for water
and compressive strength of hardened concrete and the carbon capture of the different
mixtures and curing methods.

Due to the great porosity of this vibro-compacted porous concrete, this study has an
added advantage, which is that of a draining property of the runoff from rainfall. In recent
years, we have seen more torrential rains due to the effects of climate change, so it would
help the evacuation of water more quickly and in an environmentally friendly manner, as
we could contribute to the recharge of underground aquifers under our roads made with
this porous material.

There are currently no CO2 capture studies with non-structural porous vibro-compacted
concrete made with recycled aggregates from construction and demolition at 28 days of curing,
measuring the amount of CO2 sequestered by the concrete using the DTA/TGA technique.

2. Materials and Methods
2.1. Materials

Three types of natural aggregates were used: (i) natural aggregate 0/3 (NA-0/3),
(ii) natural gravel 5/7 mm (GN-5/7) and (iii) natural gravel 4/12.5 (GN-4/12.5). Two types
of recycled aggregates from CDW obtained from a recycling plant located in Cordoba
(Spain) were used: (i) recycled concrete aggregate 2/12.5 (R1) and (ii) mixed recycled
aggregate 2/12.5 (R2). The cement used was CEM II/A-L 42.5 R (UNE-EN 197-1: 2011 [44]).
A superplasticiser called BASF GLENIUM 3030 NSS with a density of 1210 kg/m3 was
also used.

Table 1 shows the dry particle density and water absorption of the aggregates calcu-
lated in accordance with the standard UNE-EN 1097-6:2013 [45], The cement had a dry
bulk density of 2.89 g/cm3 according to the data provided by the manufacturer.
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Table 1. Dry particle density and water absorption.

Material Dry Particle Density
(g/cm3)

Water Absorption
(%)

Natural aggregate (NA-0/3) 2.62 1.78
Natural gravel (GN-5/7) 2.43 2.64

Natural gravel (GN-4/12.5) 2.47 3.14
Recycled aggregate (R1) 2.21 7.43
Recycled aggregate (R2) 2.17 9.03

2.2. Mix Design

Three mixtures of porous concrete (PC) were tested: (i) reference, where only natu-
ral aggregates were used (PC-REF); (ii) total replacement of GN-5/7 and GN-4/12.5 for
recycled aggregate R1 (PC-R1), and (iii) total replacement of GN-5/7 and GN-4/12.5 for
recycled aggregate R2 (PC-R2). A volumetric substitution was made and the replacement
was carried out according to Equations (6) and (7). Table 2 shows the three types of porous
concrete mixtures tested.

WR1 =
ρR1·WGN−4/12.5

ρGN−4/12.5
+

ρR1·WGN−5/7

ρGN−5/7
(6)

WR2 =
ρR2·WGN−4/12.5

ρGN−4/12.5
+

ρR2·WGN−5/7

ρGN−5/7
(7)

where WR1 and WR2 are the weights of the recycled aggregates R1 and R2, respectively, in
kg/m3, used in each of the mixtures, ρR1 and ρR1 are the dried particle densities in g/cm3

of the aforementioned aggregates and WGN−5/7 and WGN−4/12.5 are the weights of the
natural aggregates to replace.

Table 2. Dosage of vibro-compacted concrete samples (per cubic metre).

Materials PC-REF
(kg/m3)

PC-R1
(kg/m3)

PC-R2
(kg/m3)

CEM 240.00 240.00 240.00
GN-4/12.5 800.00 - -

NA-0/3 500.00 500.00 500.00
GN-5/7 900.00 - -

R1 - 1535.74 -
R2 - - 1504.69

Absorption water * 57.74 122.96 143.59
Effective water 96.00 96.00 96.00

Total water 153.74 218.96 239.59
w/c ** 0.4 0.4 0.4

BASF GLENIUM 3030 NSS 0.60 0.60 0.60
* Aggregate absorption water calculated according to Table 1. ** Effective water/cement ratio.

The mixtures were made by pouring dry materials from largest to smallest particle
size. Later, the saturation water of the aggregates was added and was left for 10 min so
that the greatest amount of water possible was absorbed, then the cement and the effective
water with the additive were poured. Moulds of 10 cm × 10 cm × 10 cm were used and the
concrete mixture was placed in two layers, which were vibro-compacted with a duration of
5 s each layer. The time was adjusted experimentally in the laboratory so that the reference
mixture (PC-Ref) had the same density and resistance as the mixture on an industrial
scale in the manufacture of draining blocks. This allowed the samples to be demoulded
immediately after compaction, just as it is done on an industrial scale.

2.3. Hardening Environments

Two types of hardening environments were used:
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- Normal climatic chamber (NCC): temperature of 21 ± 2 ◦C and relative humidity of
65 ± 10%. The concentration of CO2 was 0.04% (approximately atmospheric conditions).

- Accelerated carbonation chamber (ACC): same temperature and relative humidity as
that for NCC. Only the concentration of CO2 was different: 5% CO2.

2.4. Test Methods
2.4.1. X-ray Diffraction (XRD) Pattern

Raw materials (aggregates and cement) and hardened concrete samples were char-
acterised by X-ray diffraction (XRD). Bruker D8 Discover A25 equipment with CuKα

(λ = 1.54050 Ȧ; 40 Kv; 30 mA) was used. Diffraction patterns were measured between 10◦

and 70◦ (2θ) at a rate of 0.006 θ min−1. In hardened concrete samples, the XRD pattern was
analysed at 28 days. The hardened samples were ground to a powder to obtain a represen-
tative sample. The samples were immersed in ethanol for the desired curing age for 48 h,
in order to stop the hydration reactions of the cement at that age of study [20,46,47].

2.4.2. X-ray Fluorescence Spectrometry (XRF) Analysis

To determine the elemental chemical composition of the raw materials, a wavelength
dispersive X-ray fluorescence spectrometry (XRF) analysis was carried out with a power of
4 kW and a ZSX PRIMUS IV (Rigaku).

2.4.3. Thermogravimetric Analysis and Differential Thermal Analysis (TGA-DTA)

Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were per-
formed for raw materials and hardened concrete samples at 28 days of curing. TGA was
performed on a Setaram Setsys Evolution 16/18 apparatus at a heating rate of 5◦ min−1.
The test temperature ranged from room temperature to approximately 1000 ◦C. The TGA
indicates the mass at each temperature and the DTA indicates the differential thermal
analysis. Differential thermal analysis (DTA) measures endothermic and exothermic transi-
tions as a function of temperature. This is useful for understanding the temperature range
in which significant phase changes occur for inorganic compounds. With TGA, we can
observe the variability of mass as a function of temperature.

2.4.4. Carbonation Depth

The carbonation depth was determined by spraying a freshly divided surface with
phenolphthalein (1 g phenolphthalein, 70 mL ethanol and 100 mL distilled water) according
to the standard UNE-EN 14630:2007 [48]. The carbonation depth was measured at 28 days
for all hardened samples. Two depths were measured for each sample (one for each
half prism).

2.4.5. Compressive Strength of Hardened Specimens

The compressive strength (CS) was measured in accordance with the European stan-
dard UNE-EN 12390-3:2020 [49] at the curing ages of 1, 3, 7, 14 and 28 d. A servo-controlled
universal testing machine (Ibertest, Mod: MEH-2000/LCW, Madrid, Spain) was used to
apply a load at constant speed (300 N/s for CS). Three samples per mixture were tested.

2.4.6. Physical Characterisation of Hardened Samples

The determination of the water absorption, dry bulk density and water-accessible
porosity of the concrete was carried out in accordance with the European standard UNE
83980:2014 [50].

3. Results and Discussion
3.1. Characterisation of Raw Materials

A particle size distribution analysis was carried out according to the European stan-
dard UNE-EN 933-1:2012 [51]. The first graph of Figure 1 shows the particle size distribution
of the three natural aggregates used (NA-0/3, GN-5/7 and GN-4/12.5). To replace the
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natural aggregates with recycled aggregates, the particle size distribution of the proportions
indicated in Table 2 of natural coarse aggregates (GN-5/7 and GN-4/12.5) is represented by
Mix GN in the second graph of Figure 1. Both recycled aggregates (R1 and R2) were sieved
by 2/12.5 mm fractions. The particle size distributions of R1 and R2 sieved by 2/12.5 mm
and Mix GN are practically the same.
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Table 3 shows the results of XRF for the raw materials. For cement, CaO was the highest
oxide. This result is in accordance with several authors [36,52,53]. The majority composition
for the natural aggregates (GN-4/12.5, GN-5/7 and NA-0/3) was CaO (calcium oxide),
which is consistent with the calcareous nature of these aggregates (gravel and sand).
Unlike native aggregates, in the recycled aggregates from CDW (R1 and R2), the majority
composition is SiO2 and CaO, although it should be noted that the amount of SiO2 is
significantly higher than that of CaO, which may be due to the nature of the sands or coarse
sand used for the manufacture of mortar or concrete from which this waste comes. These
values are consistent with those obtained by Suescum et al. [20]. It can be seen that for
R2, there is an increase in the amount of SiO2 and Al2O3 with respect to R1. This is due
to the incorporation of the ceramic particles that make up this aggregate, given that the
manufacture of the ceramic material contains a large amount of silica (SiO2) and alumina
(Al2O3) [54].
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Table 3. X-ray fluorescence (XRF) of the raw materials.

Oxides Cement GN-4/12.5 NA-0/3 GN-5/7 R1 R2

Na2O 0.24 - - - 0.81 0.82
MgO 1.32 0.89 0.64 0.96 2.77 3.15
Al2O3 3.73 0.20 0.78 0.73 7.77 10.79
SiO2 15.58 0.39 1.76 2.13 51.41 52.15
P2O5 0.10 - - - 0.11 0.12
SO3 4.80 0.07 0.09 0.11 1.13 1.37

Cl2O3 0.18 - - 0.05 0.06 0.12
K2O 1.21 0.04 0.15 0.09 1.79 2.43
CaO 70.02 98.32 92.09 95.76 30.62 24.55
TiO2 0.22 - - - 0.43 0.55

MnO2 0.06 - - - 0.09 0.09
Fe2O3 2.45 0.09 4.50 0.18 2.75 3.67
CuO - - - - - -
ZnO 0.03 - - - - -
SrO 0.08 - - - 0.03 0.04

Rb2O - - - - - -
Cr2O3 - - - - 0.21 0.15

The X-ray diffraction patterns of the raw materials used for this study are shown in
Figure 2. Due to the limestone nature of GN-5/7, GN-5/12.5 and NA-0/3, the phase
found in these materials is calcite (CaCO3) (05-0603) [55]. It was also observed that
for the larger aggregates (GN-5/7 and GN-5/12.5), there was a secondary phase iden-
tified, which was dolomite (36-0426) [55]. For aggregates from CDW (R1 and R2), the
main phase found was quartz (SiO2) (05-0490) [55], while other phases found in this
material with high intensities, although not as high as quartz, included calcite (CaCO3)
(05-0586) [55], and other minority phases shown were of albite (Na(Si3Al)O8) (10-0393) [55],
illite K(AlFe)2AlSi3O10(OH)2·H2O (15-0603) [55], belite(Ca2SiO4) (09-0351), portlandite
(44-1481) and gypsum (21-0816) [55]. In addition to these compounds, feldspar (AlSi3O8)
(89-8574) [55] is also present, although in a very minor form. The presence of belite may be
due to the remains of cement found in R1 that have not hydrated [20]. The phases detected
for the cement were alite (C3S)(86-0402), brownmillerite (11-0124) [55], calcite (05-0586) [55],
gypsum (21-0816) [55] and portlandite (44-1481) [55], which is an expected result for
a cement [44]. These results are in accordance with other authors [20,56–58] and correlate
with the chemical composition in Table 3.

Figure 3 shows the thermogravimetric analysis (TGA) and differential thermal analysis
(DTA) for the raw materials used in this study. Different stages can be observed depending
on the material analysed. For the natural aggregates (NA-0/3, GN-4/12.5 and GN-5/7),
it was observed that the results were similar, since according to XRD and XRF, their main
composition was the same (calcite), and it must be taken into account that in these materials
we would only have one phase, which is the decomposition of calcite (from 430◦ to 1000◦),
according to Equation (8):

CaCO3 → CO2 + CaO (8)

For aggregates from CDW (R1 and R2), three sections were identified: (i) the loss of
moisture that can be seen from room temperature to 105 ◦C; (ii) the loss of aluminates and
calcium silicates from 105 ◦C to 430 ◦C; (iii) and the last section, which is the decomposition
of calcium carbonate (according to Equation (8)) that ranges from 430 ◦C to 1000 ◦C. For
R2, a peak at 120 ◦C (between 105 ◦C and 130 ◦C) was observed, which is due to the
decomposition of gypsum, identified by XRD [59]. In addition, a delay in weight loss was
observed in R2 compared to R1, with the endothermic peak showing a more pronounced
delay. This is due to the lower amount of calcite R1 and the clear presence of illite and
albite, which decomposes at a lower temperature (about 660 ◦C) than calcite.

In TGA/DTA of cement, four stages can be observed: (i) from room temperature
to 105 ◦C, which corresponds to the elimination of moisture; (ii) from 105 ◦C to 380 ◦C,
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dehydration of aluminates and calcium silicates takes place [36,53]; (iii) decomposition of
portlandite from 380 ◦C to 430 ◦C (identified by XRD) [36,53] due to this decomposition,
an endothermic peak appears at 410 ◦C; (iv) calcite decomposition [58,60] occurs between
430 ◦C and 1000 ◦C according to Equation (8).
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3.2. Dry Bulk Density, Water Absorption and Accessible Porosity for Water

Figure 4 shows the results of water absorption, accessible porosity for water and dry
bulk density at the curing age of 28 d.
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As shown in Figure 4, the mixes made with RA (PC-R1 and PC-R2) obtained higher
water absorption and lower dry bulk density than reference concrete made with NA (PC-
RER), which may be due to the higher porosity of the RA [61,62]. Recycled aggregates (R1
and R2) showed a lower particle dry bulk density and higher water absorption than NA
(Table 1), which is an intrinsic property of recycled aggregates from CDW [20,63–65].

Accelerated carbonation in the ACC environment on the PC-REF samples slightly
decreases the accessible porosity for water and the percentage of water absorption, despite
maintaining the dry bulk density, which may be because the penetration of CO2 in this
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mixture is more complicated due to the lower porosity of the aggregates that compose its
mixture [20,38,40].

Regarding the effect of curing in a CO2 environment on the specimens made with RA
(PC-R1 and PC-R2), it was observed that the dry bulk density values increased and that the
water absorption and accessible porosity for water increased. The lowest dry bulk density
obtained is for the PC-R2 mix, which also leads to the highest porosity. These results are
in accordance with previous studies on the use of recycled masonry aggregates for the
manufacture of concrete blocks for masonry mortars [66]. This is due to the densification
that occurs in the samples cured with CO2 (see Figure 4), caused by the appearance of
calcium carbonate (CaCO3) during the carbonation process, shown in Equations (1)–(5).
The appearance of this compound fills the pores of the hardened sample, increasing the
dry density and decreasing the porosity [20,38,40].

3.3. Compressive Strength

Figure 5 shows the mean and dispersion of the compressive strength values of the
different mixtures studied in both curing environments. The mean compressive strength
values for all samples and curing environment increased over time, which is a typical
response of Portland cement-based materials [67–71].
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In the NCC curing environment, mixes made with RA (PC-R1 and PC-R2) at all curing
ages showed lower compressive strength mean values than the reference mixture (PC-
REF), even though the substitution was made using the volumetric method that usually
gives better results than substitution by weight [72–78]. This is in accordance with other
studies [20,36,79] due to RA from CDW having poorer mechanical properties compared
to natural aggregates. The compressive strength mean values of PC-R1 were reduced by
an average of 24.4% (range 21–27%) with respect to PC-REF and in the case of PC-R2 the
average reduction was 21.2% (range 16–26%). In both cases, the mechanical strength drop
percentages were not affected by the curing time.

In the case of the ACC environment, the average value of the compressive strength
of PC-R1 was reduced by an average of 22.6% (range 10–36%), although in this case, the
curing time significantly affected this percentage of reduction. The difference was higher
at early stages and lower after 14 days of curing. On the contrary, the PC-R2 mixture
showed a reduction in compressive strength of 18% compared to PC-REF with one day of
curing, but its mechanical strength evolved very favourably over time, with PC-R2 showing
compressive strength mean values slightly higher than PC-REF at 3, 7 and 14 days of curing
and similar values at 28 days.

The mean compressive strength values of the PC-REF mixtures significantly increased
under accelerated carbonation conditions. The mechanical strength increased by more than
36% at one day of curing, which can be beneficial for the precast industry since they can
reduce the curing time products and productivity of the factory, lower energy consumption,
or even reduce the amount of cement and carbon footprint of the precast element [67]. In
the mixture made with aggregate R1 (PC-R1), the mechanical strength also increased with
CO2 curing.

For the mixture made with R2 aggregate (PC-R2), the effect of carbonation appeared
more prominent at 3, 7 and 14 days, even exceeding the compressive strength mean values
of the mixtures made with NA (PC-REF). Similar conclusions were found by Suescum et al.
in other studies carried out using mortars made with mixed recycled aggregates [20,22,26].
This increase in compressive strength in CO2 curing environment could be due to the
carbonation of the mixture and thus to the slight densification of the mixture, as can be
seen in Figure 4.

Although the mean compressive strength values were generally reduced with the use
of recycled aggregates from CDW, it was observed that curing in a CO2 environment was
more effective when using this type of aggregate, which can be explained by the fact that
the particles of aggregates R1 and R2 are more porous than NA (Table 1) and have a higher
specific surface area in contact with the cement and gases [71].

Finally, the highest increases in the CO2 environment occurred early—1, 3, and 7 days.
This growth in mechanical strength properties at these early stages can be observed, es-
pecially for PC-R2/ACC, where it reaches an increase of more than 72%. This is due to
the fact that at shorter curing times, the portlandite from the cement reacts with CO2,
forming calcium carbonate (Equations (1)–(5)). However, the percentage of growth in
mechanical strength decreases at later stages, as can be observed for PC-R2/ACC, where
the increase between day 14 and day 28 was less than 3%. This can be attributed to
the calcium carbonate formed during the first days of curing with high concentrations
of CO2 densifying the pores and preventing the entry of CO2 and the consequent car-
bonation reactions in the internal concrete matrix. Similar conclusions were drawn by
Pingping et al. [78].

3.4. XRD of Hardened Mixtures

Figure 6 shows the XRD patterns obtained for the PC samples cured in ACC and NCC
at 28 days.
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Figure 6. X-ray diffraction patterns of hardened concrete at 28 days of curing in NCC and
ACC environment.

For the PC-REF/28DAYS/NCC mix, one main phase was identified as calcite
(05-0586) [55], which is in accordance with the nature of the aggregates used in this
mix. As other secondary phases, ettringite (02-0059) [55], portlandite (441881) [55], belite
(09-0351) [55] and alite (86-0402) [55] were identified.

However, for the PC-REF/28DAYS/ACC mixture, a majority phase was identified
as calcite (05-0586) [55] and a very minor phase was identified as ettringite (02-0059) [55],
which shows the complete carbonation of the mixture, due to the densification of the
internal structure. These results were similar to those found by Suescum et al. in their
study of mortars made with MRA [20].

For the samples made with R1 (PC-R1), the same main phases were identified in both
ACC and NCC, quartz (05-0490) [55], calcite (05-0586) [55] and dolomite (36-0426) [55].
However, other secondary phases were identified in the mixture cured in the normal
climatic chamber (NCC), which were portlandite (44-1881) [55], alite (86-0402) [55], belite
(09-0351) [55] and ettringite (02-0059) [55], due to the densification of the sample during
curing in the NCC environment as a result of the carbonation of the mixture.

For the samples with R2 aggregate (PC-R2), the same main phases were identified
in both ACC and NCC as occurred with the mixture made with R1 aggregate: quartz
(05-0490) [55], calcite (05-0586) [55] and dolomite (36-0426) [55]. Other secondary phases
were also identified in the mixture cured in the normal climatic chamber (NCC), which
were portlandite (44-1881) [55], alite (86-0402) [55] and belite (09-0351) [55]. In both curing
environments, the presence of the gypsum phase (21-0816) [55] was detected, which is
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in accordance with the XRD carried out on the raw material, where this same phase was
observed in the R2 aggregate.

3.5. Depth of Carbonation

Figure 7 shows the carbonation depth of the different mixtures at 28 days of curing in
the NCC and ACC environments. The purple indicates the part of the mixture that has not
carbonated, and the whitish area the part that has.
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It is observed that for samples PC-REF/28DAYS/NCC and PC-R1/28DAYS/NCC,
there was an average carbonation depth of 3 and 4 mm, respectively, while for sample
PC-R2/28DAYS/NCC, no carbonated part was observed.

Samples PC-REF/28DAYS/ACC, PC-R1/28DAYS/ACC and PC-R2/28DAYS/ACC
had an average carbonation depth of 23.5, 34.6 and 22.5 mm respectively.

Therefore, it can be said that the substitution of NA for RCA favours carbonation, due
to the increased porosity of the RCA aggregate as opposed to the lower porosity of NA,
which contributes to greater CO2 sequestration and therefore an increase in mass from the
densification of the aggregate and therefore of the mixture [13,61,80].

It can also be observed that in the mixtures PC-REF/28DAYS/ACC and PC-R2/28DAYS/
ACC, the carbonation fronts are irregular due to the irregularity of the interconnected pores,
so that in addition to this qualitative test, it is convenient to carry out TGA/DTA analyses
and to account for the carbonated part in a more exhaustive way.

3.6. TGA/DTA of Hardened Mixtures

Figure 8 shows the different graphs of the TGA (solid lines) and DTA (dashed lines) of
the different mixtures at 7, 14 and 28 days of curing in the NCC and ACC environments.
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A five-stage division was observed:

(i) From room temperature to 105 ◦C. In this phase, the loss of physically absorbed
water was observed, i.e., moisture was lost. The mixtures PC-R1 and PC-R2 showed
a higher moisture content related to the higher water absorption presented by R1 and
R2, observable on practically all the curing days, since the DTA peak is higher than
for the reference simples [20,47].

(ii) In the second stage, from 105 ◦C to 400 ◦C, dehydration of the calcium silicates and
aluminates took place, also according to the analyses carried out on the raw materials
previously used [53].

(iii) In the third stage, from about 400 to 480 ◦C, the decomposition of portlandite oc-
curred, which was identified by an endothermic peak at around 410–420 ◦C. For the
case of the reference mixture, a peak was found for all curing times in the normal
climatic environment. However, for this same mixture in the CO2 curing environment
the portlandite disappeared for all the curing times studied. This indicates that the
carbonation is complete as indicated by XRD. This is also in accordance with the
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observed improvements in compressive strength (see Figure 5). For the mixtures
PC-R1 and PC-R2, cured in the NCC environment, portlandite was also observed for
all curing times studied. However, for these same mixtures cured in the ACC, the
portlandite practically disappears for the curing times analysed. The difference that
exists to be able to observe the peak of the portlandite at the minimum curing age
studied (7 days) is due to the amount of this compound in the mixture [81].

(iv) The fourth stage, ranging from 480 to 640 ◦C, comprised the section where weight
loss occurred due to the initial decomposition of carbonates formed during the hard-
ening process [82].

(v) Finally, in the fifth and last stage from 640 to 1000 ◦C, decomposition of calcium
carbonate occurred [83].

Once all the TGA/DTA analyses of the hardened samples for both curing environ-
ments were shown, the amount of CO2 sequestered (as a percentage) by the different
samples, curing environments and days of curing were calculated from the TGA/DTA
analysis. A summary of the results can be seen in Table 4. These results determine the
percentage mass loss variation corresponding to each phase previously found in the TGA,
thus attributing each percentage mass loss to each compound that formed the mixture.
Once these mass losses are attributed to the compounds, the difference between the mass
loss associated with calcium carbonate between the carbonation chamber and the normal
climatic chamber corresponds to the CO2 absorption according to Equation (9) This is
because when comparing two equal samples, in which the only variant from one chamber
to the other is the CO2 concentration, it is obvious that the difference corresponds to the
sequestered CO2, shown as a product of the carbonation reaction.

Sequestration CO2 = % CaCO3 (ACC)−% CaCO3 (NCC) (9)

Table 4. CO2 sequestration results for each mixture in the different curing environments for curing of
7, 14 and 28 days.

Mixtures
∆Mass (%) H2O Cement Portlandite CaCO3 CO2 Seq CO2 Seq

105–400 ◦C 400–480 ◦C 480–640 ◦C 640–1000 ◦C (%) (%) (%) (%) (g/t)

PC-REF/7DAYS/NCC −1.2752 −1.7077 −2.3130 −40.5267 1.2752 0.4325 38.8190 0.1592 1592.4310PC-REF/7DAYS/ACC −0.8015 −1.0649 −2.2948 −40.0432 0.8015 0.2635 38.9782
PC-R1/7DAYS/NCC −3.1483 −3.9885 −5.1963 −18.3624 3.1483 0.8402 14.3739 4.0476 40,476.3909PC-R1/7DAYS/ACC −2.8449 −3.4805 −5.8313 −21.9021 2.8449 0.6356 18.4216
PC-R2/7DAYS/NCC −2.3160 −2.7638 −3.5338 −20.2394 2.3160 0.4478 17.4757 0.2415 2415.0101PC-R2/7DAYS/ACC −2.1509 −2.6213 −4.4900 −20.3385 2.1509 0.4704 17.7172

PC-REF/14DAYS/NCC −1.3326 −1.8820 −2.6694 −39.6945 1.3326 0.5494 37.8125 1.2012 12,012.1098PC-REF/14DAYS/ACC −0.9163 −1.1992 −2.4841 −40.2129 0.9163 0.2829 39.0137
PC-R1/14DAYS/NCC −3.1467 −3.8229 −5.2193 −23.6197 3.1467 0.6763 19.7968 4.1610 41,610.4493PC-R1/14DAYS/ACC −2.6401 −3.2689 −5.7487 −27.2267 2.6401 0.6288 23.9578
PC-R2/14DAYS/NCC −2.6237 −3.1832 −4.3868 −18.7149 2.6237 0.5595 15.5316 0.3791 3791.0311PC-R2/14DAYS/ACC −1.8525 −2.3550 −4.3778 −18.2658 1.8525 0.5025 15.9107

PC-REF/28DAYS/NCC −0.8775 −1.2202 −2.0380 −39.5306 0.8775 0.3427 38.3103 1.2369 12,368.6202PC-REF/28DAYS/ACC −0.6853 −0.9253 −2.0187 −40.4725 0.6853 0.2400 39.5472
PC-R1/28DAYS/NCC −2.9087 −3.4849 −4.9369 −23.0493 2.9087 0.5761 19.5644 5.2526 52,526.2249PC-R1/28DAYS/ACC −2.4322 −3.1562 −6.0719 −27.9732 2.4322 0.7240 24.8170
PC-R2/28DAYS/NCC −2.5870 −3.0668 −4.3516 −17.0063 2.5870 0.4798 13.9395 0.5509 5508.6438PC-R2/28DAYS/ACC −1.7986 −2.3600 −4.5540 −16.8504 1.7986 0.5614 14.4904

Mass losses between 105 ◦C and 400 ◦C were assigned to the setting water of the
cement, which is the water of the hydrated calcium silicates and aluminates. Losses
between 400 ◦C and 480 ◦C were attributed to portlandite. Finally, the fourth and fifth
TGA/DTA stages were unified to quantify the decomposition of CaCO3, which is shown in
Table 4 in the column corresponding to calcium carbonate.

The amount absorbed by the samples cured in the NCC environment has been consid-
ered a reference, although in reality a small sequestration would occur, which for practical
purposes we consider negligible because the amount of CO2 in the environment can be
considered almost zero. For the PC-REF sample, the amount absorbed was 1.6 kg CO2/t
(0.1592%) at curing of 7 days. The maximum capture capacity of the PC-REF sample was at
28 days, with a value of 12.37 kg/t CO2. The large difference in this sample between the
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curing for 7 and 28 days is noteworthy, with an increase of 700%, with this material serving
as a CO2 sink.

For all curing ages, the PC-R1 mixture had the highest absorption. This absorption
increased in turn with the age of curing, obtaining at 28 days an absorption of 52.52 kg/t,
the maximum value recorded among all the mixtures and duration of curing. For this
mixture, there is an increase of 30% when compared to the 7-day stage, where absorption
value was 40.48 kg/t. Compared to the mixture PC-REF, it obtained between 240% and
333% more absorption, depending on the curing stage.

The PC-R2 sample is the one that obtained the worst data, reaching 5.5 kg/t after
28 days of curing, lower than the value obtained by the other two mixtures, leading to the
conclusion that the ceramic material has worse CO2 capture properties than the concrete
waste due to the cement paste adhered to it.

Accelerated carbonation increased the CO2 sequestration capacity compared to the nor-
mal chamber by 123%, 525%, and 55% for the PC-REF, PC-R1 and PC-R2 mixtures, respectively.

It is therefore clear that curing in an ACC environment means a great increase in
CO2 absorption, obtaining values of 52.52 kg/t, which is an increase of 525% with respect
to curing in an NCC environment. If we add to this the use of RCA, we also obtain im-
provements of 333% with respect to the mixture composed of natural aggregates. These
results reveal that accelerated carbonation of cement-based products containing recy-
cled aggregates is a promising technology for CO2 capture and utilisation, making CO2
a potential industrial feedstock.

4. Conclusions

This study on the effect of accelerated carbonation on the physical—mechanical and
CO2 capture of a porous vibro-compacted concrete for use in precast products that incorpo-
rate two types of recycled aggregates from construction and demolition waste, yielded the
following conclusions:

• The substitution of recycled concrete aggregate (R1) presented a very significant CO2
sequestration advantage.

• Accelerated carbonation reduced the curing time (setting of the mixture in less curing
time), reduced water accessible porosity, and increased the dry bulk density compres-
sive strength mean values, especially during early stages of curing (1–14 days).

• In vibro-compacted concrete samples subjected to accelerated carbonation, a decrease or
disappearance of the portlandite phase and an increase in calcium carbonate was observed
using TGA/DTA and XRD techniques, with the consequent sequestration of CO2.

• The amount of CO2 sequestration at 28 days for the PC-REF (natural aggregates),
PC-R1 (recycled concrete aggregates) and PC-R2 (mixed recycled aggregates) mixtures
was approximately 12.36 kg/t, 52.52 kg/t and 5.5 kg/t, respectively, representing an in-
crease of 123%, 525%, and 55% over the curing under an atmospheric environment.

This study indicates that accelerated carbonation of porous vibro-compacted concrete
containing recycled concrete aggregates and mixed recycled aggregates is a promising
technology for CO2 capture and utilisation in precast products. The main advantages
for the precast concrete industry would be, among others, the significant improvement
in the mechanical performance of the cement-based materials, reduction in curing times,
reduction in the amount of cement to be used to achieve similar mechanical strength in
CCN curing conditions, and a lower carbon footprint per cubic metre of concrete. In
addition to this, the use of recycled aggregates from construction and demolition waste
would promote the new circular economy paradigm and the CO2 sink effect of precast
concrete elements, which could mitigate climate change.
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