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Abstract: The unique flash heating characteristics of intense pulsed ion beams (IPIB) offer potential
advantages to fabricate high-performance coatings with non-equilibrium structures. In this study,
titanium-chromium (Ti-Cr) alloy coatings are prepared through magnetron sputtering and successive
IPIB irradiation, and the feasibility of IPIB melt mixing (IPIBMM) for a film-substrate system is
verified via finite elements analysis. The experimental results reveal that the melting depth is
1.15 µm under IPIB irradiation, which is in close agreement with the calculation value (1.18 µm). The
film and substrate form a Ti-Cr alloy coating by IPIBMM. The coating has a continuous gradient
composition distribution, metallurgically bonding on the Ti substrate via IPIBMM. Increasing the
IPIB pulse number leads to more complete element mixing and the elimination of surface cracks and
craters. Additionally, the IPIB irradiation induces the formation of supersaturated solid solutions,
lattice transition, and preferred orientation change, contributing to an increase in hardness and a
decrease in elastic modulus with continuous irradiation. Notably, the coating treated with 20 pulses
demonstrates a remarkable hardness (4.8 GPa), more than twice that of pure Ti, and a lower elastic
modulus (100.3 GPa), 20% less than that of pure Ti. The analysis of the load-displacement curves and
H-E ratios indicates that the Ti-Cr alloy coated samples exhibit better plasticity and wear resistance
compared to pure Ti. Specifically, the coating formed after 20 pulses exhibits exceptional wear
resistance, as demonstrated by its H3/E2 value being 14 times higher than that of pure Ti. This
development provides an efficient and eco-friendly method for designing robust-adhesion coatings
with specific structures, which can be extended to various bi- or multi-element material systems.

Keywords: Ti-Cr; alloy coating; intense pulse ion beam melt mixing; compositionally gradient;
surface morphology; phase structure; mechanical properties

1. Introduction

Due to its advantageous properties, including excellent biocompatibility, superior
hydrogen storage capacity, high strength-to-weight ratio, and low cost, titanium (Ti) is
a highly sought-after material and has been widely used in biomedicine, aerospace, and
hydrogen storage [1–5]. Previous studies [6–8] have shown that alloying Ti with various
elements can enhance its strength, wear, and corrosion resistance. Notably, the addition of
Chromium (Cr) into Ti has been reported to promote the formation of metastable and Laves
phases, thereby improving the material’s service performance [9–14]. Fabricating Ti-Cr
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alloy coating, rather than manufacturing bulk Ti-Cr alloy, has emerged as a more efficient
and cost-effective method [10,15–19], which not only improves surface performance, but
also preserves the merits of the substrate material.

In recent decades, intense pulsed ion beam (IPIB) technology has been successfully
applied in material surface treatment for its flash heating effect [20–24]. IPIB is characterized
by short pulse duration (within 1 µs), short range (~µm scale), and high power density (up
to 1011 GW/m2) [25–27]. Upon interaction with the material surface, ions deposit energy
in a shallow layer, leading to a rapid surface heating rate of up to 1011 K/s. The surface
layer subsequently melts within tens to hundreds of nanoseconds and rapidly cools down
at a rate of 109 K/s [25,28]. Considering these characteristics, intense pulsed ion beam melt
mixing (IPIBMM) has merged as a promising technology for surface alloying. Specifically,
for a substrate pre-coated with a film, IPIB irradiation induces the surface temperature rise,
resulting in the melting of the film and a certain depth of the substrate. Through diffusion
and convection effects, the film and substrate can be mixed to form an alloy coating.

In comparison to conventional methods, such as physical vapor deposition [29,30],
electroplating [31], and thermal spraying [32,33], the alloy coating prepared by IPIBMM
offers the potential for metallurgical bonding with the substrate. The coating is challenging
to detach during application due to its stronger adhesion to the substrate. Moreover, the
mutual diffusion of the film and substrate creates an opportunity to form the composition
gradient coating with a continuous variation in thermal and mechanical properties. This
property is beneficial for eliminating the interlaminar stress caused by the discrepancy of
the material parameters. Additionally, non-equilibrium processes on the material surface
induced by the transient thermal shock of IPIB can change the microstructure of the material
surface layer [34–37], providing the possibility to optimize the coating performance. In
previous studies, it has been found that the film-substrate mixing can occur through
IPIB irradiation for single-layered Cu/Mo, Pb/Fe systems and multilayered Pb/Fe/Pb,
Al/Cu/Fe, Al/Pb/Fe systems [38]. However, the obvious differences in thermodynamic
properties between the film and the substrate may be unfavorable for the melt mixing
process of the systems [39]. The IPIBMM method has been used for the preparation of Al-Ti
alloy coating, and it has shown to improve corrosion resistance compared with the use of
untreated materials [40].

Previous studies have demonstrated that IPIBMM is a viable surface alloying ap-
proach for some material systems. However, the evolution of the microstructure during
irradiation proceeding and its effect on the mechanical properties of the coatings have
not been systematically investigated. Additionally, the Ti-Cr alloy coating preparation
by the IPIBMM method has not been explored. In this study, we calculated the material
surface thermal field under IPIB irradiation, which demonstrates the melting process of Cr
film-Ti substrate and verifies the feasibility of the IPIBMM method for this material system.
We then adopted a combined strategy of magnetron sputtering and IPIB irradiation to
prepare the Ti-Cr alloy coating in order to produce metastable and composition gradient
structures. We thoroughly researched the element distribution, surface morphology, and
phase composition of the coatings treated by different IPIB pulses to better comprehend
the microstructure evolution and formation mechanisms of the coatings, which is critical to
the effective utilization of the IPIBMM method. Finally, we analyzed the mechanical prop-
erties of the Ti-Cr alloy coating samples and explored the relationship between structural
changes and improvement in properties. Our work sheds new light on the fabrication of
high-performance Ti-based alloy coating and provides a valuable reference for designing
coatings for various material systems.

2. Materials and Methods

In this research, the surface alloy coating was prepared by magnetron sputtering
and subsequent IPIB irradiation. High-purity (99.995%) Ti sheets procured from Tril-
lion Metals Co., Ltd. (Beijng, China), were cut into small pieces with the dimension of
10 mm × 10 mm × 2.5 mm using the electron discharge machining method. All the ob-
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tained Ti substrates were polished by mechanical grinding with silicon carbide grinding
paper and then polished with a diamond suspension. After that, the Ti substrates were
ultrasonically cleaned in alcohol and high-purity deionized water prior to coating. The
Cr films were deposited onto four Ti substrates by magnetron sputtering. The sputtering
process was carried out in a working chamber that was first evacuated to a base pressure of
less than 6 × 10−4 Pa, and then argon gas was introduced in to maintain a total pressure of
0.49 Pa. The growth rate of the film was ~24 nm/min under the sputtering power of 45 W.
The thickness of the Cr films was determined to be ~400 nm by cross-section observation
using a scanning electron microscope, and the thickness was uniform for each sample. Sub-
sequently, the samples coated with Cr film underwent IPIB irradiated at room temperature
to form alloy layers. The preparation process of alloy layers using the IPIBMM method
is illustrated in Figure 1. The IPIB irradiation was carried out by TEMP-4M accelerator
with a magnetically self-insulated diode at Tomsk Polytechnic University. This apparatus
is known to generate an ion beam of 70% Cn+ and 30% H+, with a current density ranging
from tens to hundreds of A/cm2 [41–44]. In this work, an accelerating voltage of 190 kV
and a pulse duration of 100 ns were employed. To facilitate clarity in presentation, the
samples utilized in this study have been labeled as follows: the polished pure Ti sample
has been designated as the “original sample”, the pure Ti substrate coated with Cr film has
been referred to as the “unirradiated sample”, and the “irradiated samples” were prepared
by treating the unirradiated samples with IPIB at an energy density of 2 J/cm2 for 1, 5, and
20 pulses, respectively.
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Figure 1. Scheme of the preparation process of Ti-Cr alloy coating through IPIBMM.

The finite element method (FEM) software Comsol Multiphysics 6.0 was employed to
compute the temperature field distribution in the irradiated sample during IPIB irradiation.
The morphology of the surface and cross-section were analyzed by scanning electron
microscopy (SEM) using a ThermoFisher (Waltham, MA, USA) Helios G4 CX DualBeam
microscope in the secondary electron mode, where the electron accelerating voltage and
current were set to 10 kV and 300 pA, respectively. To examine the cross-section, the
samples were sliced electrically along the centerline. The resultant high temperature led
to the formation of an oxide layer on the cross-section. This oxide layer was eliminated
through the use of sandpapers with varying grain sizes. The polished cross-section was
immersed in an etched solution (2 wt% HF, 10 wt% HNO3, 8 wt% H2O) for 10 s to enhance
the SEM investigations. The element distribution analysis of the surface and cross-section
were conducted by energy dispersion X-ray spectroscopy (EDS) using a Bruker (Billerica,
MA, USA) X-ray detector at an accelerating voltage of 15 kV. The phase identification of
the surface alloyed layers was investigated by X-ray diffraction (XRD) using Bruker D8
ADVANCE equipped with a high-resolution goniometer, a sealed tube X-ray source, and a
scintillation detector. XRD utilized Cu-Kα radiation with a wavelength of 1.5406 Å; and
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a 0.05◦ scan step and a 1 s counting time were selected for analysis. Nanoindentation
tests was performed by means of a STEP500 device equipped with a triangular pyramid
diamond indenter, and a maximum load of 10 mN was selected for the tests. The error bars
in the results originated from the calculation according to five tests on each sample.

3. Results and Discussion
3.1. Simulation Results of Surface Layer Temperature Field

The temperature field distribution in the Ti substrate with the 400 nm Cr film induced
by IPIB irradiation with energy density of 2 J/cm2 was calculated by FEM. The heat transfer
process can be expressed by the Fourier thermal conduction equation:

ρ(T)C(T)
∂T(z, t)

∂t
= λ(T)

∂2T(z, t)
∂z2 + P, (1)

Here ρ, C, and λ are the density, specific heat, and thermal conductivity, respectively.
The source term P is defined as:

P = k·d(z)· f (t), (2)

where k is the energy density, d(z) is the depth-normalized function of ion energy loss calcu-
lated by SRIM, and f (t) is the time-normalized function of current density distribution ob-
tained experimentally using a Faraday cup. The initial condition is set to T(z,0) = 293.15 K,
and the latent heats of Ti and Cr are considered in the calculation.

The spatiotemporal evolutions of temperature induced by IPIB irradiation on a Ti
substrate with a 400 nm Cr film is shown in Figure 2. The simulation results indicated that
the surface temperature of the sample rapidly increased to 2886 K within ~150 ns upon the
impact of IPIB at 2 J/cm2, then decreased due to the heat transfer to the deeper regions.
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Figure 2. Spatiotemporal evolutions of temperature of the Ti substrate with 400 nm Cr film induced
by IPIB irradiation, with an energy density of 2 J/cm2.

Further analysis of the variations in temperature and its change rate with time at a
depth of 400 nm (i.e., the interface between film and substrate) was performed, and the
results are presented in Figure 3. The findings revealed that the highest heating rate and
cooling rate at this depth could reach the order of 1010 K/s and 109 K/s, respectively, which
creates a non-equilibrium condition for the emergence of a metastable structure in the
surface layer. Besides, the maximum temperature at the interface exceeded the melting
point of Ti and Cr, indicating the occurrence of a melting coexistence period of the film and
substrate. Figure 4 shows that the melting coexistence period of Ti and Cr lasted for 280 ns
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for 1 IPIB pulse. Moreover, the melting and solidification of Cr on the surface occurred
prior to those of Ti on the subsurface. The existence of melt on the (sub)surface began at
86 ns and lasted until 520 ns. The maximum melting depth was estimated to be 1.18 µm.
The presence of melt in the surface layer can facilitate effective homogenization of the
composition inside the melt, and the mass exchange between the film and substrate can be
more readily achieved, especially during the melting coexistence period.

Materials 2023, 16, x FOR PEER REVIEW 5 of 17 
 

 

creates a non-equilibrium condition for the emergence of a metastable structure in the 
surface layer. Besides, the maximum temperature at the interface exceeded the melting 
point of Ti and Cr, indicating the occurrence of a melting coexistence period of the film 
and substrate. Figure 4 shows that the melting coexistence period of Ti and Cr lasted for 
280 ns for 1 IPIB pulse. Moreover, the melting and solidification of Cr on the surface oc-
curred prior to those of Ti on the subsurface. The existence of melt on the (sub)surface 
began at 86 ns and lasted until 520 ns. The maximum melting depth was estimated to be 
1.18 µm. The presence of melt in the surface layer can facilitate effective homogenization 
of the composition inside the melt, and the mass exchange between the film and substrate 
can be more readily achieved, especially during the melting coexistence period. 

 
Figure 3. Variations in temperature and temperature change rate with time at a depth of 400 nm 
(interface between film and substrate). 

 
Figure 4. Evolutions of melting depth in the Ti substrate with 400 nm Cr film under IPIB irradiation. 

3.2. Elements Distribution in Depth 
Figure 5 presents the cross-section morphology and elements distribution of unirra-

diated and irradiated samples. The EDS data were obtained in the direction of the yellow 
arrow. The unirradiated sample displayed minimal mutual elements diffusion between 
the film and substrate during the film deposition (Figure 5a). As we used a substrate tem-
perature of 400 °C during magnetron sputtering to improve film-substrate bonding, 

Figure 3. Variations in temperature and temperature change rate with time at a depth of 400 nm
(interface between film and substrate).

Materials 2023, 16, x FOR PEER REVIEW 5 of 17 
 

 

creates a non-equilibrium condition for the emergence of a metastable structure in the 
surface layer. Besides, the maximum temperature at the interface exceeded the melting 
point of Ti and Cr, indicating the occurrence of a melting coexistence period of the film 
and substrate. Figure 4 shows that the melting coexistence period of Ti and Cr lasted for 
280 ns for 1 IPIB pulse. Moreover, the melting and solidification of Cr on the surface oc-
curred prior to those of Ti on the subsurface. The existence of melt on the (sub)surface 
began at 86 ns and lasted until 520 ns. The maximum melting depth was estimated to be 
1.18 µm. The presence of melt in the surface layer can facilitate effective homogenization 
of the composition inside the melt, and the mass exchange between the film and substrate 
can be more readily achieved, especially during the melting coexistence period. 

 
Figure 3. Variations in temperature and temperature change rate with time at a depth of 400 nm 
(interface between film and substrate). 

 
Figure 4. Evolutions of melting depth in the Ti substrate with 400 nm Cr film under IPIB irradiation. 

3.2. Elements Distribution in Depth 
Figure 5 presents the cross-section morphology and elements distribution of unirra-

diated and irradiated samples. The EDS data were obtained in the direction of the yellow 
arrow. The unirradiated sample displayed minimal mutual elements diffusion between 
the film and substrate during the film deposition (Figure 5a). As we used a substrate tem-
perature of 400 °C during magnetron sputtering to improve film-substrate bonding, 
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3.2. Elements Distribution in Depth

Figure 5 presents the cross-section morphology and elements distribution of unirradi-
ated and irradiated samples. The EDS data were obtained in the direction of the yellow
arrow. The unirradiated sample displayed minimal mutual elements diffusion between
the film and substrate during the film deposition (Figure 5a). As we used a substrate
temperature of 400 ◦C during magnetron sputtering to improve film-substrate bonding,
atomic diffusion was promoted between the film and substrate elements, resulting in the
observed Cr concentration in the substrate region. Under IPIB irradiation, surface melting
occurred, and the thickness of the melting layer was found to be ~1.15 µm (Figure 5b),
which was in close agreement with the calculation value (1.18 µm). This led to a blurred
interface between the film and the substrate due to surface layer remelting. Consequently,
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metallurgical bonding of the film and the substrate was achieved, evidently enhancing the
coating’s adhesion to the matrix.
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IPIB treatment, respectively.

The melt mixing of the film and substrate was activated under IPIB impact. In the
molten state, the diffusion coefficient is significantly greater than that of the solid state.
Furthermore, hydrodynamic instabilities resulting from thermal shock waves, as well as
thermocapillary convection, facilitated the mass transport process between the film and the
substrate [45,46]. This resulted in a decrease in the Cr concentration near surface region, as
it migrated to the deep layers after IPIB treatment (Figure 5b–d). Correspondingly, the Ti
concentration near the surface gradually increased and approached the concentration of
Cr after 20 pulses. It is evident that the composition of the alloy layer formed by IPIBMM
exhibited a continuous gradient distribution in depth.

Figure 5 illustrates the content balance depth, which refers to the depth at which the
concentration curves of Ti and Cr intersect. For the unirradiated sample, the content balance
depth was ~400 nm (Figure 5a). However, this depth increased to 685 nm and 930 nm after
1 and 5 pulses, respectively (Figure 5b,c), suggesting a continuous mass exchange between
the film and the substrate during IPIB irradiation. Notably, the content balance depth
dropped with 20 pulses of treatment (Figure 5d), which is likely due to surface ablation
induced by IPIB impact [47,48].

The cross-section of the Ti-Cr alloy coating formed by different IPIB pulses and the
corresponding element distribution of Cr and Ti are shown is Figure 6. The alloy layer
displayed uneven element distribution after 1 pulse treatment, with numerous Cr-rich
areas and Ti-rich areas present (Figure 6a–c). The surface showed a large fluctuation and
significant roughness (Figure 6a), which might be attributed to the ununiform composi-
tion distribution in the surface layer, intensifying the instability of fluid flow under the
thermal shock of IPIB. However, subsequent IPIB irradiation promoted the redistribution
of elements, resulting in a more uniform composition distribution and smoother surface
of the alloy coating after 20 pulses (Figure 6g–i). The thickness of the alloy coating was
~780 nm. All the above results demonstrated that increasing the number of IPIB pulses was
conducive to improving the uniformity of the mixing of film and substrate.
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Based on the EDS mapping of the cross-section presented in Figure 6, it was found
that the thickness of alloy coating obtained by 20 pulses was lower than that obtained by
1 or 5 pulses. This finding was consistent with the results obtained from the EDS line scan
in Figure 5d. These phenomena provided strong evidence of surface ablation induced by
IPIB. Previous studies by Yan et al. [39] confirmed the occurrence of ablation caused by
IPIB, even at surface temperatures below the material boiling point. As the number of
pulses increased, the element distribution became more uniform in the alloy coating, while
the driving force for element migration to the deep layer was weakened. Consequently,
further increases in the number of pulses led to the thinning of the alloy coating due to
surface ablation. It is indicated that the number of IPIB pulses cannot be increased without
limits, as it may cause complete depletion of the alloy layer.

3.3. Surface Morphology

Figure 7 exhibits the surface morphology of a 400 nm Cr film coated on Ti substrate
before and after IPIB irradiation with different pulse numbers. It is observed that plenty
of cracks and craters appeared on the surface after 1 pulse of IPIB treatment (Figure 7b).
However, the surface defects decreased as the number of pulses increased. Cracks and
craters were almost absent from the surface after 20 pulses (Figure 7d).

Upon irradiation, the surface displayed numerous craters, with their centers appear-
ing in the form of a hole or facet, and some surrounded by an annular wavy structure
(Figure 7b). Similar craters have been observed on other materials treated by IPIB [49,50].
The possible reasons for the crater formation have been previously discussed in the lit-
erature [51–53], including impurities, grain boundary thermal resistance, and vacancy
gathering. The annular wavy morphology around the craters is thought to be formed
by the recoil generated by a local eruption on the molten surface [54]. However, another
possible reason in this study is the ejection of the subsurface melt. FEM calculation results
indicated that the substrate melted first and crystallized later than the film at the interface.
The volume expansion of a piece of molten metal surrounded by crystallized metal resulted
in the ejection of the subsurface layer, which formed a crater on the surface. This effect
weakened as the number of the pulses increased and the surface layer became more ho-
mogenized. Furthermore, the edges of the craters with a large curvature tended to migrate
around due to the surface tension in the melting state [52]. As a result, the newly-formed
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craters were less frequent, and the sharp edges of previous craters became smoother after
5 pulses. The edges of the adjacent craters might interfere with each other during migration,
leading to the formation of a complex wavy surface (Figure 7c). As the irradiation process
continued, the surface tension redistributed the mass of the surface layer until a flat surface
was obtained. After 20 pulses, it was challenging to detect any craters on the irradiated
sample (Figure 7d).
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The formation of surface cracking observed in the present study is probably at-
tributable to the thermal expansion coefficient mismatch between Ti and Cr [55]. Under
IPIB irradiation, the melted region of the surface layer rapidly cooled and solidified, cre-
ating tensile stress at the interface duo due to the different thermal expansion properties
of the film and substrate. This stress caused cracks to generate at the interface and extend
to the surface [56,57]. As shown in Figure 7b, plenty of large-size cracks were observed
on the surface after 1 pulse irradiation. The cross-section morphology in Figure 7e clearly
illustrates the vertical crack. Figure 7g–i exhibits the element distribution around the crack.
Surface cracking exposed the substrate. This might provide the paths for Ti movement to
the surface, thereby accelerating the progression of surface mixing. As irradiation contin-
ued, a uniform Ti-Cr mixing layer was formed on the surface. The composition gradient
mixing layer replaced the two-layer system, significantly reducing the tensile stress caused
by the local differences in the physical properties. This means that the cracking behavior
was suppressed with further irradiation. Moreover, the surface melting induced by IPIB
irradiation may have “cured” the pre-existing surface cracks. As depicted in Figure 7c,
the large-size cracks disappeared after 5 pulses of irradiation, suggesting that they had
been “cured”. However, some small cracks were still observed in the local enlarged view
(Figure 7f), indicating the existence of localized uneven mixing areas on the surface after
5 pulses. Notably, there were almost no cracks on the surface after 20 pulses of irradiation
(Figure 7d) due to the homogenization of the composition in the surface layer.
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3.4. Phase Structure Analysis

The XRD patterns of the Cr/Ti system samples, before and after IPIB treatment, are
presented in Figure 8. The unirradiated sample exhibited diffraction peaks of α-Ti with a
hexagonal close-packed (hcp) structure and Cr with a body-centered cubic (bcc) structure,
corresponding to the substrate and film, respectively. After 1 pulse of IPIB irradiation, a
new diffraction peak appeared at a diffraction angle of ~41.5◦, which is probably attributed
to the formation of a β-Ti (Cr) supersaturated substitution solid solution. Similar findings
have also been reported in the literature [19].
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In the Ti-Cr binary phase diagram, the eutectoid reaction occurs when the Cr content
reaches ~12.5 at.%. However, IPIB irradiation enabled the attainment of much higher solid
solubility than this value because it induced an ultra-high undercooling on the surface. The
dissolution of Cr into the Ti lattice provided a stability effect for the metastable phase [58,59],
which promoted the transformation of α-Ti into β-Ti. Moreover, the addition of Cr reduced
the lattice parameters of β-Ti, due to the smaller atomic radius of Cr compared to Ti.
Consequently, the diffraction peak of solid solution β-Ti (Cr) shifted towards the large
angle side. Additionally, after 1 pulse of IPIB irradiation, the diffraction peak of Cr (110)
became weak due to the partial mixing of Cr into the Ti lattice, whereas the dissolution of
Ti into the Cr lattice also occurred. As a result, the diffraction peak of the solid solution Cr
(Ti) was separated from the Cr (110) diffraction peak, resulting in the asymmetric shape of
the Cr (110) diffraction peak. This phenomenon was observed more clearly from the local
enlarged view in Figure 9.

As presented in Figure 8, the XRD patterns of the samples revealed distinct changes
after multiple IPIB irradiation pulses. Specifically, a diffraction peak emerged at ~62◦ after
5 pulses, corresponding to the Cr (Ti) solid solution phase, which is probably attributed to
the dissolution of Ti into the Cr (200) lattice. As irradiation continued, the diffraction peak
of Cr (Ti) solid solution shifted left to 61.6◦ and became stronger. It is indicated that more
Ti atoms entered into the Cr lattice. In contrast, the intensity of the Cr (110) diffraction
peak gradually weakened with the increasing pulse number. This finding suggests that the
preferred orientation of Cr transformed from (110) to (200) under IPIB irradiation.
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The XRD pattern of the unirradiated sample revealed that the preferred orientation of
the Cr deposition layer was the close-packed plane (110). However, with a higher surface
energy, the secondary close-packed plane (200) had a higher growth rate than the plane
(110) during crystallization. Additionally, the ultra-high undercooling induced by IPIB
irradiation facilitated the retention of the Cr (200) crystal plane. Hence, the transformation
of the preferred orientation of Cr from (110) to (200) occurred during the IPIBMM process.

Figure 9 presents a magnified view of the XRD patterns of the irradiated samples,
focusing on the green region in Figure 8. The diffraction peaks of the supersaturated
solid solutions β-Ti (Cr) and Cr (Ti) can be clearly distinguished. These two diffraction
peaks showed large widths due to the concentration scattering phenomenon in the solid
solution. The inhomogeneity of the composition in space, particularly within a depth of
~1 µm, covered by the detection range of XRD, resulted in a continuous gradient elements
concentration. Therefore, the surface layer of the irradiated samples contained a series of
solid solutions β-Ti (Crx), with different Cr concentrations, and solid solutions Cr (Tix),
with different Ti concentrations.

Compared with the sample irradiated with 1 pulse, the mixing of Ti and Cr in the
surface layer of the sample irradiated with 5 pulses was more complete. The increased
number of Cr atoms dissolving in the β-Ti lattice led to a decrease in the lattice parameter
and a right shift of the β-Ti (Crx) diffraction peak. Meanwhile, the increased number of Ti
atoms in the Cr lattice induced a left shift of the Cr (Tix) diffraction peak. The diffraction
peaks of β-Ti (Crx) and Cr (Tix) gradually approached and merged into one peak after
20 pulses. It is demonstrated that IPIB irradiation promoted the mixing of surface elements,
and the elements in the alloy coating were sufficiently mixed after 20 pulses.

3.5. Mechanical Properties

The results of the nanoindentation tests on the pure Ti and Ti-Cr alloy coating samples
are presented in Figure 10. The pure Ti sample showed a hardness of 2.3 GPa. After
preparing the Ti-Cr alloy coatings on the pure Ti substrate using IPIBMM, the hardness
of the sample surface was found to be significantly improved. Moreover, it is discovered
that the hardness increased with an increase in the number of IPIB pulses. After 20 pulses,
the hardness of the Ti-Cr alloy coating sample reached 4.8 GPa, more than twice that
of pure Ti. This improvement in hardness was probably attributed to the solid solution
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hardening effect [18], which was further enhanced with an increase in solid solubility
caused by irradiation.
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with different pulses irradiations.

Interestingly, the elastic modulus of the Ti-Cr alloy coating sample treated with 1 IPIB
pulse was slightly larger than that of pure Ti. With an increase in the number of pulses,
however, the elastic modulus of the coating samples gradually decreased. After 20 pulses,
the elastic modulus reduced to 100.3 GPa, about 20% lower than that of pure Ti (125.5 GPa).
The elastic modulus is determined by the atomic bonding force, and this phenomenon
could be explained by several reasons. Firstly, after the pure Ti substrate with Cr film
underwent 1 pulse irradiation, the Cr atoms dissolved into the substrate. The addition
of Cr diminished the crystal plane spacing of the surface layer and improved the atomic
bonding force, resulting in an enhancement in the elastic modulus of the Ti-Cr coating
sample after 1 pulse. Secondly, the further irradiation induced the preferred orientation
and lattice transformation. The main arrangement plane of the Cr atoms changed from
the close-packed plane (110) to the secondary close-packed plane (200). The lattice of Ti
transformed from α-Ti (hcp) into β-Ti (bcc). Both of the changes resulted in a further atomic
distance, thereby weakening the bonding force between atoms. Another reason for the
decrease in the elastic modulus could be the decline in the content of Cr in the surface layer.
Cr, with a smaller atomic radius, can play a role of reducing the lattice constant, but its
content decreased due to ablation loss with an increase in the number of pulses.

Figure 11 exhibits the nanoindentation load-displacement curves of the surface layer
of the pure Ti and Ti-Cr alloy coating samples. According to the literature [60,61], the elastic
and plastic behavior of the surface layer can be analyzed from the load-displacement curves.
The total deformation work Wt and plastic deformation work Wp were denoted by the
area under the loading curve (AOPC) and the area enclosed by the loading and unloading
curves (AOPB), respectively. The difference between AOPC and AOPB, i.e., ABCP, represents
the elastic recovery capability of the surface layer. The plastic factor ηp, which can be used
to assess the plastic deformation resistance of the surface layer, was determined by the ratio
Wp/Wt. A lower value of ηp indicates a better resistance to plastic deformation.



Materials 2023, 16, 3028 12 of 16

Materials 2023, 16, x FOR PEER REVIEW 12 of 17 
 

 

Ti transformed from α-Ti (hcp) into β-Ti (bcc). Both of the changes resulted in a further 
atomic distance, thereby weakening the bonding force between atoms. Another reason for 
the decrease in the elastic modulus could be the decline in the content of Cr in the surface 
layer. Cr, with a smaller atomic radius, can play a role of reducing the lattice constant, but 
its content decreased due to ablation loss with an increase in the number of pulses. 

Figure 11 exhibits the nanoindentation load-displacement curves of the surface layer 
of the pure Ti and Ti-Cr alloy coating samples. According to the literature [60,61], the elas-
tic and plastic behavior of the surface layer can be analyzed from the load-displacement 
curves. The total deformation work Wt and plastic deformation work Wp were denoted by 
the area under the loading curve (AOPC) and the area enclosed by the loading and unload-
ing curves (AOPB), respectively. The difference between AOPC and AOPB, i.e., ABCP, represents 
the elastic recovery capability of the surface layer. The plastic factor ηp, which can be used 
to assess the plastic deformation resistance of the surface layer, was determined by the 
ratio Wp/Wt. A lower value of ηp indicates a better resistance to plastic deformation.  

 
Figure 11. Load-displacement curves of the pure Ti sample and the Ti-Cr alloy coating samples with 
different pulses of irradiation. 

Table 1 displays the plastic factor ηp and the ratios of hardness and the elastic modu-
lus of pure Ti and Ti-Cr alloy coating samples treated by different IPIB pulses. The pure 
Ti sample had a plastic factor ηp of 0.887, while the Ti-Cr alloy coatings showed a decrease 
in the value of ηp after the formation of the coatings on the Ti substrates. Further IPIB 
treatment on the irradiated samples caused a continuous decline in the value of ηp. After 
20 pulses, the ηp value dropped to 0.714, about 20% lower than that for pure Ti. Further-
more, the H3/E2 ratio can also be used to characterize the resistance against plastic defor-
mation [61,62]. The H3/E2 ratios of the irradiated samples were significantly higher than 
those of pure Ti, and increased with the larger number of IPIB pulses. This result indicates 
that the formation of Ti-Cr alloy coatings and the increase in IPIB irradiation pulses con-
tribute to enhancing the resistance to plastic deformation.  

  

Figure 11. Load-displacement curves of the pure Ti sample and the Ti-Cr alloy coating samples with
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Table 1 displays the plastic factor ηp and the ratios of hardness and the elastic modulus
of pure Ti and Ti-Cr alloy coating samples treated by different IPIB pulses. The pure Ti
sample had a plastic factor ηp of 0.887, while the Ti-Cr alloy coatings showed a decrease
in the value of ηp after the formation of the coatings on the Ti substrates. Further IPIB
treatment on the irradiated samples caused a continuous decline in the value of ηp. After
20 pulses, the ηp value dropped to 0.714, about 20% lower than that for pure Ti. Fur-
thermore, the H3/E2 ratio can also be used to characterize the resistance against plastic
deformation [61,62]. The H3/E2 ratios of the irradiated samples were significantly higher
than those of pure Ti, and increased with the larger number of IPIB pulses. This result
indicates that the formation of Ti-Cr alloy coatings and the increase in IPIB irradiation
pulses contribute to enhancing the resistance to plastic deformation.

Table 1. Nanoindentation results of pure Ti and Ti-Cr alloy coating samples with different pulses of IPIB.

Sample E (GPa) H (GPa) ηp H/E H3/E2

original, pure Ti 2.3 125.5 0.887 0.018 0.0007
irradiated, 1 pulse 3.8 135.9 0.845 0.028 0.0029
irradiated, 5 pulses 4.2 114.6 0.803 0.036 0.0055

irradiated, 20 pulses 4.8 100.3 0.714 0.048 0.0111

The H/E and H3/E2 ratios are widely recognized as parameters that are closely related
to the tribological properties of materials [63,64], as they carry information about resistance
to elastic strain to failure and resistance to plastic deformation, respectively. A hard surface
can resist abrasive wear, and a lower elastic modulus can facilitate elastic deformation to
absorb energy under contact stress [65]. Thus, materials with higher H/E and H3/E2 ratios
generally exhibit favorable wear resistance [66,67]. In this study, the Ti-Cr alloy coating
was formed after 1 pulse, which resulted in a change in the H/E ratio from 0.018 to 0.028
and the H3/E2 ratio from 0.0007 to 0.0029 (Table 1). Subsequent IPIB pulses improved
the hardness and reduced the elastic modulus, leading to a further increase in the H/E
and H3/E2 ratios. After 20 pulses, the Ti-Cr alloy coating sample showed H/E and H3/E2

ratios that were 2.7 and 15.9 times higher than those of pure Ti, respectively. It is suggested
that the formation of Ti-Cr alloy coating via IPIBMM can enhance the wear resistance of
the material compared to pure Ti, and the wear resistance of coatings can be improved by
further irradiation.
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4. Conclusions

In this work, we investigated the microstructure evolution and mechanical properties
of a metastable Ti-based gradient coating fabricated via IPIBMM. The main results are
summarized as follows:

(1) The designed fabrication of Ti-Cr alloy coatings on Ti substrate was successfully
achieved using the IPIBMM method. The melting depth observed in the experiment
was 1.15 µm, which is in close agreement with the calculated value.

(2) The increase in the IPIB pulse number leads to more homogenized element distri-
bution and the formation of compositional gradient layers, despite the reduction
in thickness of the alloy layer due to surface sputtering. The resulting gradient Ti-
Cr alloy coating is metallurgically bonded to the Ti substrate, with a thickness of
~770 nm.

(3) Microstructural analysis revealed that IPIB irradiation caused the formation of craters
and cracks on the surface. However, further irradiation eliminated these defects and
led to a smoother surface, primarily due to the homogenization of element distribution
and the formation of a compositional gradient layer.

(4) The IPIBMM process induced the generation of metastable structures in the Ti-Cr
alloy coatings. The addition of Cr facilitated the lattice transition in Ti from α-Ti to
β-Ti. IPIB irradiation resulted in the formation of the supersaturated solid solution
structures β-Ti (Cr) and Cr (Ti) and a change of the preferred orientation of Cr from
(110) to (200).

(5) Compared with pure Ti, Ti-Cr alloying coating samples fabricated via IPIBMM dis-
played higher hardness, plastic factor ηp, and H/E and H3/E2 ratios, which increased
significantly with further irradiation. This indicates that the surface alloying of Cr
by IPIBMM is an effective strategy to improve the hardness, plastic deformation
resistance, and wear resistance of pure Ti.

This works sheds light on IPIBMM as a reliable and efficient method for the preparation
of composition gradient alloy coatings with robust adhesion and desirable performance.
The approach is extendable to various material systems and provides a promising solution
for the development of composition gradient coatings in environments requiring high
adhesion or performance induced by metastable structures.
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