
Citation: Guel-Nájar, N.A.;

Rios-Hurtado, J.C.; Muzquiz-Ramos,

E.M.; Dávila-Pulido, G.I.;

González-Ibarra, A.A.; Pat-Espadas,

A.M. Magnetic Biochar Obtained by

Chemical Coprecipitation and

Pyrolysis of Corn Cob Residues:

Characterization and Methylene Blue

Adsorption. Materials 2023, 16, 3127.

https://doi.org/10.3390/ma16083127

Academic Editors: Wen-Tien Tsai and

Carlos Javier Duran-Valle

Received: 3 March 2023

Revised: 27 March 2023

Accepted: 10 April 2023

Published: 15 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Magnetic Biochar Obtained by Chemical Coprecipitation and
Pyrolysis of Corn Cob Residues: Characterization and
Methylene Blue Adsorption
Norma Araceli Guel-Nájar 1, Jorge Carlos Rios-Hurtado 1,* , Elia Martha Muzquiz-Ramos 2 ,
Gloria I. Dávila-Pulido 3 , Adrián A. González-Ibarra 3 and Aurora M. Pat-Espadas 4

1 Facultad de Metalurgia, Universidad Autónoma de Coahuila, Carretera 57 Km 5,
Monclova 25710, Coahuila, Mexico; normaguel@uadec.edu.mx

2 Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza S/N,
República, Saltillo 25280, Coahuila, Mexico

3 Escuela Superior de Ingeniería, Universidad Autónoma de Coahuila, Boulevard Adolfo López Mateos S/N,
Independencia, Nueva Rosita 26830, Coahuila, Mexico; gloriadavila@uadec.edu.mx (G.I.D.-P.);
gonzalez-adrian@uadec.edu.mx (A.A.G.-I.)

4 CONACyT, Estación Regional del Noroeste del Instituto de Geología de la UNAM, Luis D Colosio S/N
Esquina Madrid, Hermosillo 83200, Sonora, Mexico; apespadas@geologia.unam.mx

* Correspondence: jorgerios@uadec.edu.mx

Abstract: Biochar is a carbonaceous and porous material with limited adsorption capacity, which
increases by modifying its surface. Many of the biochars modified with magnetic nanoparticles
reported previously were obtained in two steps: first, the biomass was pyrolyzed, and then the
modification was performed. In this research, a biochar with Fe3O4 particles was obtained during the
pyrolysis process. Corn cob residues were used to obtain the biochar (i.e., BCM) and the magnetic
one (i.e., BCMFe). The BCMFe biochar was synthesized by a chemical coprecipitation technique
prior to the pyrolysis process. The biochars obtained were characterized to determine their physico-
chemical, surface, and structural properties. The characterization revealed a porous surface with a
1013.52 m2/g area for BCM and 903.67 m2/g for BCMFe. The pores were uniformly distributed, as
observed in SEM images. BCMFe showed Fe3O4 particles on the surface with a spherical shape and
a uniform distribution. According to FTIR analysis, the functional groups formed on the surface
were aliphatic and carbonyl functional groups. Ash content in the biochar was 4.0% in BCM and
8.0% in BCMFe; the difference corresponded to the presence of inorganic elements. The TGA showed
that BCM lost 93.8 wt% while BCMFe was more thermally stable due to the inorganic species on the
biochar surface, with a weight loss of 78.6%. Both biochars were tested as adsorbent materials for
methylene blue. BCM and BCMFe obtained a maximum adsorption capacity (qm) of 23.17 mg/g and
39.66 mg/g, respectively. The obtained biochars are promising materials for the efficient removal of
organic pollutants.

Keywords: biochar; corn cob; magnetic composite; coprecipitation; methylene blue

1. Introduction

Due to rapid population growth, accelerated urbanization, and industrialization, the
volume and diversity of agro-industrial wastes have increased. These wastes are considered
a significant source of pollution due to poor management and improper disposal [1,2]
(Awogbemi and Kallon, 2022; Karić et al., 2022). A strategy to reduce the disposed residues
is to prepare new materials for different applications. Biochar is a solid material obtained
from the thermochemical conversion of biomass in an oxygen-limited environment [3]. It
is a carbon-rich organic material that is prepared by heating biomass. Depending on the
feedstock used to obtain it, the properties of the biochar such as its high specific surface
area, microporosity, and ion exchange capacity can be improved [4,5]. Furthermore, corn
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residues are suitable to obtain biochar due to their lignocellulosic biomass, which favors its
formation [6,7].

The use of biochar as an adsorbent material has been widely studied; however, the
adsorption efficiency can be improved. Surface activation or modification with chemical
reagents, steam and gas, mineral oxides, organic compounds, clay minerals, and microor-
ganisms has been widely reported [8–10]. Composite biochar is prepared by impregnating
the surface with metal oxides to modify the surface properties and increase the adsorption
capacity [10,11].

One of the ideal methods of surface modification is with magnetite (i.e., Fe3O4). This
oxide is non-toxic, can improve the adsorption capacity towards various pollutants, and
provides strong magnetic properties. Ion exchange, complexation, electrostatic attraction,
and metal–π interaction are mechanisms that make adsorption techniques suitable. Due to
its magnetic properties, Fe3O4 can be used to recycle biochar, as iron metal oxides allow
adsorbent recovery [12–14]. This makes it important to obtain magnetic biochars for the
removal of water pollutants. Santhosh et al. synthesized a magnetic biochar from sewage
sludge and woodchips, for Cr (VI) removal [15]. A magnetic biochar in a single-step method
was obtained for the removal of organic pollutants by Chen et al. (2022) [16]. A filamentous
fungus, Trichoderma reesei, was used as a template for 3D biochar obtention.

Water pollution is one of the challenges facing society [17]. One of the main sources of
pollutants are organic dyes such as methylene blue (MB). This dye is widely used in the
textile, food, cosmetic, and pharmaceutical industries; it usually causes negative effects
on photosynthetic activity [17–19]. For this reason, it is important to remove dyes using
adsorbent materials, such as biochars.

To increase the MB adsorption capacity, a wide variety of precursors have been used
to obtain biochars with modified surfaces. Mu et al. (2022) obtained a magnetic biochar
by slow pyrolysis of tea residue powder with FeCl3 solution impregnation. The authors
studied MB adsorption as a dye model and described the adsorption process due to the
main interactions of pore filling, hydrogen bonding, π–π interactions, and electrostatic
attraction [20]. Güleç et al. (2022) prepared biochars from seaweed and rapeseed, obtaining
a qm of 117.6 and 70.9 mg/g, respectively [21]. Zeng et al. (2021) prepared a sludge-based
magnetic biochar by pyrolysis and studied MB adsorption [22]. Li et al. (2022) made a
biochar from moringa seed shells. In the study, Fe3O4 was added to activate the surface of
the biochar, and a high removal of MB was observed [23].

Therefore, in this work, biochars were obtained from corn cob residues by pyrolysis. A
pure biochar and a magnetite impregnated with magnetite by the coprecipitation technique
prior to the pyrolysis process were obtained. Both biochars were characterized to determine
their physicochemical, surface, and structural properties. MB adsorption was tested to
understand the behavior of biochars when modified with Fe3O4.

2. Materials and Methods
2.1. Reagents

To obtain biochar, corn cob waste from the municipality of Frontera, Coahuila, was
used as a precursor. The chemicals used are of reagent grade: hydrochloric acid (CTR
Scientific, Monterrey, MX), ferric chloride hexahydrate (FeCl3·6H2O), ferrous chloride
tetrahydrate (FeCl2·4H2O), and sodium hydroxide (Fermont, Monterrey, MX).

2.2. Experimental Procedures
2.2.1. Pretreatment of Samples

The corn cob waste was cut into small pieces of approximately 3 cm in length, then
washed with distilled water. A part of the cleaned waste was dried at 100 ◦C in an
ECOSHEL 9053A oven (LABOTECA, Monterrey, MX) for 24 h. The remaining corn cob
was passed through the chemical coprecipitation process.
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2.2.2. Chemical Coprecipitation of Magnetite in Corn Cob Waste

The coprecipitation method was based on the work of Rodriguez et al. (2019) [24].
A solution was prepared in a beaker with 50 mL of deionized water, FeCl3·6H2O and
FeCl2·4H2O at a 2:1 ratio according to Equation (1):

2Fe3+ + Fe2+ + 8OH− → Fe3O4 + 4H2O (1)

The solution was heated at 50 ◦C for 15 min. Corn cobs cleaned of waste were placed
in contact with 5 mL of Fe3+:Fe2+ ion solution. Then, 2 mL of concentrated NaOH was
added by dripping and subsequently dried at 100 ◦C for 24 h.

2.2.3. Obtaining Biochar from Corn Cob by Pyrolysis

The research of Lee et al. (2017) and Xie et al. (2021) was used to develop corn cob
pyrolysis [25,26]. Dried corn cob residues were placed in a CARBOLITE™ CTF horizontal
tube furnace (Fischer Scientific, Monterrey, MX) and heated to 500 ◦C for 1 h. The heating
rate and N2 flow rate were varied. The obtained sample was allowed to cool slowly at
room temperature. Biochar was labeled as BCM, and the modified biochar as BCMFe.

2.2.4. Characterization of Biochar

The biochar yield was determined according to the procedure reported by Qin et al.
(2020), as well as the ash content using ASTM D2866-94 (ASTM, n.d.) [27,28]. In addition,
SEM and EDS analysis were performed on a HITACHI model SU8230 cold cathode SEM
machine (Ciudad de México, MX) with backscattered electron and secondary electron de-
tectors; FTIR analysis with a PerkinElmer FTIR Spectrometer Frontier (Monterrey, Mexico)
in a range of 4000 to 600 cm−1 using 32 scans and 4 cm−1 resolution; XRD on a Bruker D8
ADVANCE model (Ciudad de México, MX) (CuKa: 1.54 Å, 40 mA and 40 kV); XRF analysis
on a Malvern Panalytical Epsilon 1 model (Monterrey, MX); and TGA on a TA Instruments
TGA 550 (Ciudad de México, MX), in a temperature range of 30 ◦C to 700 ◦C at a heating
rate of 10 ◦C/min, using air atmosphere; and N2 physisorption at 77 K was performed in a
BEL BELSORP-miniX surface analyzer (Ciudad de México, MX).

2.2.5. Methylene Blue Adsorption Efficiency and Kinetic Models

MB adsorption efficiency was determined for both biochars. In 15 mL conical tubes,
0.02 g of biochar and 10 mL of an MB solution at different concentrations (i.e., 1, 2, 4, 8,
10, and 25 ppm) were placed in contact. The pH was adjusted to 7 ± 0.2 in an Orion
StarA2110 potentiometer (Monterrey, MX). The initial concentration (Co) absorbance of
each of the solutions was measured in a Mettler Toledo UV-Vis instrument model UV5
(Ciudad de México, MX) (λ = 664 nm). Then, the tubes were placed in a LabTech LSI-3016A
incubator (El Crisol, Monterrey, México) at 25 ◦C and 150 rpm for 24 h. Once equilibrium
was reached, the remaining concentration (Ce) values were measured by UV-Vis. The
maximum adsorption capacity was calculated according to Equation (2) and fitted to the
Langmuir isotherm model according to Equation (3):

Qe =
(CO −Ce)(V)

m
(2)

qe =
qmaxkLCe

1 + kLCe
(3)

where:
qe = adsorption capacity at equilibrium, mg·g−1

Co = initial concentration of MB solution, mg·L−1

Ce = final concentration of MB solution, mg·L−1

V = solution volume, L
m = adsorbent mass, g
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qmax = maximum adsorption capacity, mg·g−1

kL = adsorption energy constant, L·mg−1

For kinetic experiments, 60 mL of a 10 ppm MB solution and 60 mg of the material
were placed in a beaker. Sampling was carried out during 0, 1, 3, 3, 5, 10, 20, 40, and
60 min. The concentration was measured by a UV/Vis spectrometer. The data obtained were
adjusted to the pseudo-second-order model using the following equation (Equation (4)):

t
qt

=
1

k2(qe)
2 +

1
qe

t (4)

where:
t = time, min
qt = adsorption capacity at time, mg·g−1

qe = adsorption capacity at equilibrium, mg·g−1

k2 = PSO constant (g·mg−1·g−1)

3. Results and Discussions
3.1. Biochar Yield and Ash Percentage

It is important to dry the corn cob samples prior to pyrolysis in order to calculate
the amount of biochar obtained. Besides, subjecting wet feedstock samples to pyrolysis
would consume energy, and carbonization would last longer [8]. In addition, a large
amount of moisture in the biomass leads to the production of liquid by-products [29]. The
pyrolysis experimental conditions of the BCM samples and the yield are shown in Table 1.
The N2 flow rate was tested, and for a 50 mL/min rate, the yield was 5.60%, and for a
35 L/min rate, the yield was 28.48%. Moreover, different heating ramps were tested. The
results showed that when a lower heating ramp was used (5 ◦C/min), the biochar yield
was 26.91%. However, a higher heating ramp (10 ◦C/min) produced a biochar yield of
28.48% and reduced the time needed to reach the pyrolysis temperature. In addition, raw
and cooked corn cob (180 ◦C, 1 h) conditions were tested, and no significant difference in
biochar yield was observed. Therefore, to obtain a higher biochar yield, an N2 flow rate
of 35 mL/min and a heating ramp of 10 ◦C/min were used, in which an average yield of
28.48 ± 0.098% was obtained.

Table 1. Experimental pyrolysis conditions and performance of BCM.

Sample
Condition

N2 Flow Rate
(mL/min)

Heating Rate
(◦C/min) Yield (%) Average

Yield (%)
Error
(%)

Raw 50 10 4.90
5.60 0.117Raw 50 10 6.20

Raw 50 10 5.70

Raw 35 10 25.30
28.48 0.098Raw 35 10 29.61

Raw 35 10 30.54

Cooked 35 5 29.24
26.91 0.081Cooked 35 5 26.59

Cooked 35 5 24.91

Cooked 35 10 22.27
22.45 0.218Cooked 35 10 27.43

Cooked 35 10 17.64

In Table 2, the ash contents of different samples are shown. It can be observed that
corn cob residues contain 0.4%, while BCM shows a significant increase with 4.0%, which
is lower compared to what was reported by Zhao et al. (2018); these authors determined
10.79% of ash content when heating at 300 ◦C and 23.27% at 500 ◦C [30].
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Table 2. Ash content of corn cob and BCM and BCMFe biochars.

Material Ash Content (%)

Corn cob 0.4 (±0.04)
BCM 4.0 (±0.01)

BCMFe 8.0 (±0.02)

The results shown in Table 2 are also different from those reported by Mohan et al.
(2014) and Xie et al. (2021), who used corn as biomass and the same carbonization tempera-
ture [26,31]. For BCMFe, an 8.0% ash content was observed, a higher amount compared to
BCM, which was attributed to the presence of inorganic particles, such as iron oxides, on
the surface of BCMFe, due to the melting point of iron being >1500 ◦C.

The biochar yield varied according to the type of biomass and the temperature used in
the pyrolysis process, according to Amalina et al. (2022) [32]. Table 3 shows a comparison
with biochars reported in the literature. For BCM, the results are similar to those reported
by Mohan et al. (2014) [31]. However, as reported by Suo et al. (2021), an increase in the
percentage can be attributed to a lower carbonization temperature [33].

Table 3. Comparison of yield and ash percentage for different biochars.

Biomass Temperature (◦C) Yield (%) Ash (%) Reference

Water hyacinth 350 34.25 10.42 [34]
Corn straw 400 31.60 NR [33]

Pigeon pea stalk 400 29.80 3.08 [35]
Corn stalk pellet 500 33.41 20.86 [26]

Corn stover 500 28.21 6.60 [31]
Sugarcane bagasse 550 21.15 1.16 [34]

Bamboo 600 27.00 4.65 [35]
Note: Not reported.

3.2. Inorganic Composition

In order to determine the ash composition, XRF analysis was performed. The results
are shown in Table 4, where it can be observed the presence of elements such as K, P, and
Si, which are in a higher proportion in the BCM biochar when compared with corn cobs.
The amount of K increases considerably by the pyrolysis process, being the main element
in BCM with a concentration greater than 11%, similar to that reported by Gómez-Vásquez
et al. (2022) [36]. The high amount of elements was attributed to the fertilizer used for plant
growth (Land and Water Division, FAO, 2002) since the main elemental composition is K,
P, and Si with concentrations greater than 0.6% [37]. Other elements such as Cl, Fe, and S
were also detected, albeit in lower concentrations. For BCMFe, an increase in Fe amount
(8.761%) was attributed to the formation of iron oxides by the coprecipitation method.

Table 4. Samples composition obtained by XRF.

Element
Corn Cob BCM BCMFe

Concentration
(%) Error (%) Concentration

(%) Error (%) Concentration
(%) Error (%)

K 1.548 0.003 11.269 0.140 9.718 0.098
P 0.138 0.011 0.662 0.075 0.912 0.005
Si 0.786 0.033 0.604 0.309 0.478 0.361
Cl 0.174 0.003 0.555 0.414 1.236 0.047
Fe 0.529 0.002 0.208 0.027 8.761 0.152

3.3. Morphological Analysis

SEM analysis was performed to characterize the surface morphologies of the samples.
Figure 1 shows the BCM surface, where a highly porous structure, a large surface area



Materials 2023, 16, 3127 6 of 16

(SBET: 1013.52 m2/g), and evenly distributed pores were observed. The pore size range was
determined as mesopores and macropores, as micropores are generally more difficult to
detect, according to the report by Quillope et al. (2021) [38].
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Figure 1. SEM images of the BCM structure, (a) 400 µm and (b) 100 µm.

The surface structure (SBET = 903.67 m2/g) of magnetic biochar (BCMFe) is shown in
Figure 2. Particles with an intense brightness were observed, indicating the presence of an
element with a higher atomic mass such as Fe [39]. Fe3O4 particles generally adopted a
spherical shape and formed agglomerates, which were distributed over the biochar surface,
according to the reports by Ouyang et al. (2017) and J. Yan et al. (2020) [40,41]. It can
be determined from the SEM analysis of Figure 2 using Image-Pro Plus software that the
average agglomerate diameter is 5.83 ± 2.23 µm. This is in accordance with the value
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reported by Navarathna et al. (2019), in which the agglomerated particle size was up
to 7 µm [42].
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The BCMFe surface elemental composition was obtained by EDS analysis. Four points
of the sample (see Figure 3) were analyzed to obtain the mass percentage of each element
(Table 5). Biochar BCM consists mainly of C (carbon) and O (oxygen). Other elements
were also detected, although in smaller proportions. The results were consistent with those
obtained by XRF analysis for Si, K, and Fe. No presence of Cl was observed in the sample,
so Fe ions were transformed into iron oxide. In addition, the Fe percentage increased
significantly due to the presence of Fe particles in the biochar.
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Table 5. Elemental composition of BCMFe.

Element
% by Mass

Point 1 Point 2 Point 3 Point 4

C 28.84 44.33 55.91 55.78
O 8.08 27.75 22.67 31.85
Fe 46.06 7.50 3.76 4.78
Si 14.58 15.53 12.17 6.78
K 2.44 4.89 5.49 1.80

Total 100 100 100 100

3.4. Structure of Modified Biochar

The crystalline structures of the modified biochar were characterized by X-ray diffrac-
tion. The XRD pattern of the BCMFe is presented in Figure 4, which confirms that the
precipitated iron ions are mainly magnetite (Fe3O4). A series of diffraction peaks corre-
sponding to Fe3O4 were detected at 2θ values of 30.02◦, 35.45◦, 43.08◦, 47.38◦, and 62.53◦,
with Miller indices of (220), (311), (400), (331), and (440), respectively. The observed signals
coincided with the diffraction patterns of Fe3O4 reported by Compeán-Jasso et al. (2008)
and Peña-Rodríguez et al. (2018), confirming the successful formation of magnetite on the
biochar surface [43,44].

In Figure 4, an intense signal at 29.29◦ due to silicon oxide (SiO2) with crystallographic
chart 96-900-0809 can be observed. Since SiO2 is a compound that is prominent in the
inorganic components of corn cob [36], or it may belong to a potassium mineral (K) with
crystallographic chart 96-901-1978, these elements can be found in biochar due to the inor-
ganic elements present in the biomass that was not carbonized. The signals for amorphous
graphite were also observed at signals between 20 and 30◦ and 40 and 50◦.

In order to identify if the material had the characteristic magnetic properties of mag-
netite, a simple test was carried out with the addition of a magnet to a suspension with
0.1 g of the magnetic biochar, and as can be seen in Figure 5, the material stuck to the
magnet due to the magnetic properties.
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3.5. Surface Functional Groups

An FTIR analysis was performed to observe surface functional groups on the obtained
biochars. The results are presented in Figure 6, where the low intensity of the signals, which
are attributed to the temperature at which the pyrolysis process was carried out, can be
observed. According to Manoharan et al. (2022), the number of functional groups decreases
at higher temperatures due to the release of CO2 [45].
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Both biochars showed similar bands, one observed at 1712 cm−1, corresponding
to the C=O stretching vibration of the carbonyl group [46], which is formed during the
carbonization process, and the double signals between 2800 and 3000 cm−1, corresponding
to -C–H aliphatic compounds stretching vibrations [35,47]. The band near 500 cm−1 could
be described as a stretching vibration of metallic oxides due to the presence of inorganic
compounds in BCM and BCMFe [48].

3.6. Thermal Behavior

Thermal analysis was carried out on both biochars (BCM and BCMFe). The thermo-
gravimetric (TG) and differential thermogravimetric (DTG) curves of Figure 7 show two
main weight loss processes for both biochars. In the first curve, BCM showed a 4% loss
at 89 ◦C, while BCMFe showed a 10% weight loss, due to water molecules evaporating
from the biochar surface. At higher temperatures, a greater reduction in weight loss was
observed. In BCM, a weight loss of 93.8% was observed at 500 ◦C, while a weight loss of
78.6% was observed in BCMFe at 650 ◦C. The loss was attributed to the decomposition of
lignocellulosic biomass and extracts such as proteins, fats, and sugars, among others [14,49],
results observed in FTIR analysis, in addition to the loss of functional groups such as
carboxyl and hydroxyl groups [50]. Compared to BCM biochar, BCMFe carbonized at a
higher temperature and showed higher thermal stability, which corresponded to a greater
amount of inorganic components [51].
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The difference between the amount of weight loss for BCMFe and BCM was 15.2% and
corresponds to the F3O4 present on the biochar surface according to XRD results. The DTG
curve of the impregnated biochar showed two signals between 400 and 650 ◦C, attributed
to the Fe3O4 oxidation to α-Fe2O3 and γ-Fe2O3.

3.7. Methylene Blue Adsorption Capacity

MB adsorption capacity was studied at pH 7 since the PZC of BCM was measured
as 7.06. The adsorption capacity was adjusted to the Langmuir model, as can be seen in
Figure 8. Non-linear regression was used to adjust the experimental data using Origin®

software. BCM biochar showed a maximum adsorption capacity (qm) of 23.17 mg/g and
BCMFe biochar of 39.66 mg/g, as shown in Table 6.

The qm of BCMFe biochar is similar to that reported by Zeng et al. (2021), with a qm
of 39.35 mg/g at a temperature of 35 ◦C, using a sewage sludge-based magnetic biochar
(Fe3O4) by pyrolysis for the removal of methylene blue in water [22]. Mubarak et al. (2015)
prepared a magnetic biochar derived from an empty fruit bunch treated with ferric chloride
(FeCl3) to remove methylene blue, obtaining a qm of 31.25 mg/g [52], while Ruthiraan et al.
(2017) obtained a qm of 46.30 mg/g in MB removal with a magnetic iron oxide biochar
(impregnated with Fe2O3 solution) obtained from mangosteen peel [53].

In addition to qm, Table 6 shows the kL, RL, and R2 parameters. The Langmuir
constant (kL) indicates the degree of interaction between the adsorbate and the surface.
When the adsorption energy constant (kL) was less than 1, it indicates that there was a
strong interaction between the adsorbate and the adsorbent. The Langmuir separation
factor (RL) showed values lower than 1 in both biochars, which indicated an appropriate
adsorption process. If RL > 1 is not suitable, while if 0 < RL < 1 is appropriate [54].
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Table 6. Langmuir model parameters.

Material qm (mg/g) kL (L/mg) RL R2 (%)

BCM 23.17 0.14 0.22–0.88 99.44%
BCMFe 39.66 0.08 0.33–0.92 99.61%

Further, the linear correlation coefficient (R2) was high, so the adsorption isotherms
fit well for the Langmuir model. This model indicates that the adsorbent surface was
completely flat and homogeneous and that each surface site can only hold one molecule
of the adsorbate, resulting in monolayer-type adsorption [55,56]. The metal–π interaction
is one of the mechanisms reported in the literature for organic compounds in modified
biochars with metallic oxides [57–60]. By this, an increase in the MB adsorption capacity
for BCMFe was observed, due to the presence of Fe3O4 particles on the surface. Several
reports have corroborated that MB adsorption by activated carbons from lignocellulosic
materials demonstrates a strong correlation with the Langmuir isotherm equation [61].

Furthermore, experimental data were adjusted to the PFO and PSO order kinetic
models; however, both biochars were better fitted to the PSO (R2 > 0.998) (Figure 9). The
PSO model describes the adsorption process in a surface monolayer. The results agreed
with those observed in adsorption isotherms.
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4. Conclusions

The results showed that the yield of BCM was 28.483%, higher than that of BCMFe
(i.e., 26.160%). Both biochars show a highly porous surface, a large surface area, and
uniformly distributed pores and they are mainly composed of C and O, in addition to Fe,
Si, and K. BCMFe biochar contains a higher amount of Fe compared to BCM due to its
impregnation with Fe ions, successfully achieving the addition of Fe3O4 particles, and XRD
analysis supports this result.

While the ash content of BCM was 4% lower than BCMFe (i.e., 8%), there were 4%
more inorganic compounds in BCMFe. Both biochars presented carbonyl and aliphatic
groups on the surface. The TGA revealed that BCM carbonizes at 500 ◦C with a weight
loss of 93.8%, while BCMFe carbonizes at 650 ◦C with a weight loss of 78.6%. The above
indicates that BCMFe showed higher thermal stability.

It was possible to obtain a material capable of removing the organic pollutant methy-
lene blue, with a maximum adsorption capacity of 23.17 mg/g and 39.66 mg/g for BCM and
BCMFe biochar, respectively. The modified biochar (BCMFe) showed a higher adsorption
capacity (i.e., 71.17%) than BCM.
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