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Abstract: This research addresses the current need for sustainable solutions in the construction and
furniture industries, with a focus on environmentally friendly particleboard. Particleboards were
made from a mixture of virgin wood chips and hemp shives, which were then mechanically recycled
and used to make new lightweight particleboards. Phenol–formaldehyde resin with 25% w/w phenol
replacement by soybean flour (PFS) was used as the binder for the lignocellulosic materials. Labora-
tory analyses determined the resin properties, and FTIR confirmed the structure of the experimental
PFS resin. The thermal properties of all the resins were evaluated using thermogravimetric analysis
(TGA). The panels were manufactured using industrial simulation and tested for mechanical and
physical properties in accordance with European standards. The FTIR study confirmed good adhe-
sion, and the TGA showed improved thermal stability for the recycled biomass panels compared
to virgin biomass panels. The study concludes that lightweight particleboards can be successfully
produced from recycled hemp shive-based panels, providing a sustainable alternative to traditional
materials in the construction industry.

Keywords: hemp shives; wood chips; recycling; particleboards; soy flour; circular economy;
thermal degradation

1. Introduction

For approximately 10,000 years, humanity has relied on wood, incorporating it into
virtually every facet of daily existence, a practice that continues to this very moment.
Nevertheless, with the escalating felling of trees, an increasing amount of carbon dioxide
remains trapped in the atmosphere, giving rise to adverse consequences for our planet,
including a heightened global temperature and increasingly acidic oceans. This prompts us
to inquire about potential alternatives to wood chips for manufacturing the same array of
products [1–3].

Industrial hemp shives are a promising candidate. They surpass wood chip products
in terms of being lighter, more robust, and cost-effective. An acre of hemp yields as much
cellulose fiber as four acres of trees. Furthermore, hemp matures to a usable fiber stage
in just 100 days, while trees require a significantly longer timeframe, spanning anywhere
from 50 to 100 years, to reach a comparable stage [4].

Hemp is growing in popularity as a building product. For years, it has been used to
make rope, insulation, composites [5,6], bioplastics [7–9], and other industrial materials.
In the area of wood chip-based panels, scientists continue to investigate its uses with
undiminished interest.
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Auriga et al. (2022) [10] studied seven variants of particleboards with a density of
650 kg/m3 with 10–25% hemp shive substitution in different layers. For their production,
a typical urea–formaldehyde resin was used as a binder. It was found that the hemp
shive-based panels had internal bond (IB) values similar to particleboards made entirely
of industrial wood chips and slightly higher modulus of rupture (MOR) and modulus of
elasticity (MOE) performance, while the ones with 25% hemp shives exhibited a reduction
in swelling values.

In a similar work, Rimkiene et al. (2023) [11] made particleboards by mixing fibrous
hemp shives and corn starch at the levels of 5, 10, 15, and 20%. Before use, corn starch
was mixed with sodium metasilicate. Additionally, expandable graphite ES 350 F5 was
used as a flame retardant. The Tubiquard 44 N non-ionic fluorocarbon resin in the form
of water dispersion was used as a hydrophobizer for the water- and oil-repellent finish.
During this research, the influence of the composition of the mixture, the processing of raw
materials, and technological parameters on the operational properties of the board were
evaluated. It was found that a starch content of 15% and water content of 10% produced
panels with the best properties. Additional processing of hemp shives can increase bending
strength by more than 40%. If the pressing is increased from 5 t/m2 to 15 t/m2, the density
of the boards increases by about 1.5 times, and the bending strength is more than 50%. The
additives used made it possible to reduce the water absorption of the boards up to 16 times
and obtain non-flammable boards.

Alao et al. (2020) [12] developed hemp shive (Cannabis sativa L.)-based particleboards
of low density (477–581 kg/m3) using as bonding materials typical urea–formaldehyde
resin, formaldehyde-free acrylic resin (Acrodur®), and bio-based soy resin (Soyad™).
Hemp shive boards based on soy resin showed the best results in tensile and bending
strengths, 0.43 and 13.9 MPa, respectively, while panels with UF resin had the best thickness
swelling performance.

Hemp shives were also used by Zvirgzds et al. (2022) [13] for the production of
lightweight particleboards (300 ± 30 kg/m3). The cold pressing method was used to
produce hemp shive boards with Kleiberit urea formaldehyde resin as a binder. Additional
components, such as color pigments and wood finishes, were added to test improved
features over raw board samples. The water absorption test confirmed that the chosen
type of binder decays swiftly in water, and hemp shives soak up a lot of water. Thickness
swelling was 20% lower for boards with a larger shive group and a further 35% lower with
additive–water base coating. The hemp shive-based panels had significantly lower bending
strength values than particleboard from wood chips.

Fehrmann et al. (2023) [14] studied the use of hemp shives in particleboards of
very low densities (213–309 kg/m3) and three types of adhesives, namely bio-epoxy
(EPX), phenol resorcinol formaldehyde (PRF), and emulsifiable methylene diphenyl di-
isocyanate (MDI). Before use, the hemp shives were milled and fractionated into fine (F),
medium (M), and coarse (C) particles. It was found that panels with MDI gave the best
overall performance.

In all of the above studies, the particleboards were made from virgin hemp shives
and wood chips and a variety of bio-based or petrochemical resins, which raises concerns
due to the chemicals involved. Additionally, the use of virgin biomass in a product such
as particleboard, which consumes large amounts of biomass, carries the risk of intensive
land use and a potential contribution to deforestation. Moreover, the production of virgin
biomass for particleboards requires resources such as water, fertilizer, and energy, and the
scale of these inputs can potentially contribute to environmental degradation and increase
the environmental footprint of the production process [15].

One way to reduce the use of virgin biomass resources while managing panel waste
is to reuse this waste in the production of particleboard as an alternative raw material to
virgin biomass. The recycling of particleboard with wood chips is a topic that has been
studied by various scientists. New recycled wood-based panels have been produced on a
laboratory scale, and their properties have been studied [16–19]. However, no literature
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references were found on the recycling of panels based on hemp shives, such as those
produced in the present study. In this way, this project is new and innovative.

The proposed recycled hemp shive-based panels contribute to the conservation of
natural resources, allow more land to be used for food production, help to manage waste
panels by effectively diverting them from landfills, and promote a more sustainable ap-
proach to their production. This work highlights the contribution of hemp shive-based
panels to the circular economy. Moreover, their production using bio-based resin provides
consumers with products that are healthier and more environmentally friendly than panels
made with petrochemical-based adhesives.

In our study, lightweight particleboards were produced by replacing virgin wood
chips or hemp shives with recycled biomass resulting from the mechanical destruction
of particleboards made from virgin wood/hemp materials. The boards were produced
according to the typical industrial practice, which includes the following steps (Figure 1):
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Figure 1. Steps of particleboard production [20].

In order for particleboards to be of guaranteed quality, they must meet certain specifi-
cations depending on their final use. In Europe, industrial standards are used to define the
specifications of commercial particleboard for various applications, as well as the lower
acceptable price limits and the way in which the evaluation tests are carried out (EN
312:2010). As far as the classification of particleboards in terms of their formaldehyde
content is concerned, this is based on the standard EN13986:2001.

For the manufacturing of these panels, we developed a protein-based phenol–
formaldehyde resin (PFS) to increase the bio-content of the final product. Typical phenol–
formaldehyde (PF) and urea-formaldehyde resins (UF) were used as reference.

Typical PF resins are produced in three steps [21–26]. First, formaldehyde is added to
phenol using an alkaline catalyst (often NaOH) (step one). The temperature is then raised
to boiling temperature and the hydroxymethylphenols polycondensate to form a mixture of
polymer chains with different molecular weights. This is the second step, and the product
at this stage is called “Resitol”. The third step is the final cross-linking and hardening of the
polymer, which takes place during the production of the wood chip-based panels under
high pressure and temperature.

In the case of urea–formaldehyde (UF) resins, their typical synthesis takes place in
two basic stages: (a) methylation, where addition reactions of formaldehyde (F) to urea (U)
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take place at neutral to alkaline pH, and (b) polycondensation, which takes place at slightly
acidic pH. At this stage, high molecular weight polymer chains are formed, linked together
by ether bonds and methylene bridges [27–29].

The chemical and thermal properties of all resins and panels were evaluated with
typical laboratory analysis, Fourier transform infrared spectroscopy (FTIR) and thermo-
gravimetric analysis (TGA).

No literature references were found for the recycling of hemp shive-based pan-
els and their reuse in the production of new particleboard. This work is, therefore,
considered innovative.

2. Material and Methods
2.1. Lignocellulosic Materials and Chemicals Used

In the present study, hemp shives were supplied by the Greek company KANNABIO
(Volos, Greece), while wood chips were supplied by the Greek particleboard factory AKRI-
TAS (Alexandroupolis, Greece). The hemp shives were 1.5–3 cm long and 0.2–0.5 cm wide;
their density was 90–91 kg/m3. The chips were 1.3–2.5 cm long and 0.2–0.5 cm wide, with
a density of 110–112 kg/m3.

For the synthesis of resins, the chemicals used were industrial-grade aqueous solutions
of phenol (44.2% w/w) and formaldehyde (47.6% w/w). Technical grade urea (100%),
formic acid (10% w/w), and sodium hydroxide (NaOH-50% w/w) were purchased from
Elton Group Chemicals (Attica, Greece), while defatted soy flour (Prolia FLR 200/90)
with a protein content of 50% w/w was given by the Cargill Company (Amsterdam,
The Netherlands).

2.2. Synthesis of Phenolic Type Resins

The typical process was followed for their synthesis, as described in the
literature [21–26]. Specifically, phenol, sodium hydroxide, and water were added to a
glass reactor equipped with a stirrer and a thermometer, and the mixture was cooled to
35–40 ◦C. Formol was gradually introduced while maintaining the temperature below
50 ◦C. The reaction mixture was stirred at 55–65 ◦C for 1.5 h, followed by raising the
temperature to a boil and subjecting the mixture to reflux for 1 h. The progress of polycon-
densation was assessed through viscosity changes, and once it reached the desired level,
the resin was subsequently cooled to room temperature. In the case of PFS resin, soy flour
was added together with phenol. The ratio of the resins’ raw materials is shown in Table 1.

Table 1. Composition of Resins of Phenolic type.

Name of the Resin Raw Materials
Ratio of Raw

Materials in the
Resin

Acronym of Resin

Phenol-
Formaldehyde

Phenol 26.0%

PF
Formaldehyde 45.5%

NaOH 14.8%

Water 13.6%

Phenol-
Formaldehyde-Soy

flour

Phenol 19.5%

PFS
Soy flour 6.5%

Formaldehyde 45.5%

NaOH 14.8%

Water 13.6%
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Tests were also carried out with higher percentages of phenol replacement, but the
resulting preparations were not homogeneous, and they were considered unsuccessful. For
this reason, resins with up to 25% w/w phenol replacement were used.

2.3. Synthesis of Urea–Formaldehyde Resins

The formation of urea-formaldehyde (UF) resins through the reaction of urea and
formaldehyde is essentially a two-step process, typically involving an initial alkaline
methylolation followed by a subsequent acidic condensation [27–29]. The synthesis of UF
resins in this study followed the typical route. The needed urea was split into two parts.
Initially, Urea-I was reacted with formaldehyde at an alkaline pH (7–8)—using sodium
hydroxide as a buffer—at temperatures between 90 and 95 ◦C for 2 h (methylolation step).
Acid was then added to lower the pH to 5.0–5.3 to allow the polymerization phase to begin.
Frequent viscosity measurements were taken with a Brookfield viscometer, and when the
target viscosity was reached, the pH was increased to stop the polymers from increasing in
size. The second amount of urea (Urea–II) was then added, and the resin was allowed to
react for a further 24 h at a temperature of 25–30 ◦C before use. The ratio of the resin’s raw
materials is shown in Table 2.

Table 2. Composition of UF resin.

Name of the Resin Raw Materials Ratio of Materials in
the Resin Acronym of Resin

Urea-Formaldehyde

Formaldehyde 40.3%

UF
Urea-I 13.8%

Urea-II 13.8%

Water 32.1%

2.4. Determination of Resin Properties

Quality control of all resins was carried out by determining their physico-chemical
properties using standard laboratory analytical methods. Typical properties include deter-
mination of dry matter (solids), pH, viscosity, free formaldehyde, buffer capacity (only for
UF resin), water tolerance, gel time, alkali content (only for PF type resins), and specific
gravity. In particular:

Dry matter was measured according to the guidelines of the ASTM D4426-01 (2006)
standard. The solid content was calculated as a percentage, determined by the final mass-
to-initial mass ratio.

pH was determined by direct measurements at 25 ◦C using a CRISON pHmeter
(Crison, Barcelona, Spain) device.

Viscosity was measured at 25 ◦C by using a Brookfield viscometer (DVEELVTJ0 Digital
(AMETEK Brookfield, Middleboro, MA, USA) and it was expressed in cP.

Free formaldehyde content was measured according to the standard ISO 11402:2004.
Buffer capacity was measured by titration with 0.1 N H2SO4.

The tolerance to water was determined by the amount of water that can be added to a
solution of 5 g of resin until the solution becomes cloudy.

The gel time of the resins was assessed at 100 ◦C. A test tube containing 5 g of
the prepared resin was placed in boiling water, and consistent stirring was maintained
throughout the test. The gel time for the sample was determined as the elapsed time until
further stirring was no longer possible.

Alkali content was determined by dissolving the resin in distilled water and titrating
it to pH 3.5 with 0.1 NH4CI using a pH meter.

Specific gravity was measured at 20 ◦C using a hydrometer.
The thermal degradation of the resins was assessed with thermogravimetric analysis

(TGA) using a Labsys Evo 1100 instrument (Setaram Instrumentation, Lyon, France). The



Materials 2024, 17, 139 6 of 19

uncured resins were heated from room temperature to 600 ◦C with a constant flow of air
and nitrogen gas set at 50 mL/min at a heating rate of 20 ◦C/min.

FTIR spectra of the samples were acquired using a Cary 670 spectroscope manufac-
tured by Agilent Technologies (Palo Alto, CA, USA), equipped with a diamond attenuated
total reflectance (ATR) accessory (GladiATR, Pike Technologies, Madison, WI, USA). In-
frared absorption spectra were collected in the range of 4000 to 450 cm−1, with a resolution
of 4 cm−1 and 32 co-added scans. A baseline correction was applied to the obtained spectra,
and they were further normalized for analysis. The analysis of the resins was performed in
their liquid form before curing.

2.5. Production of Particleboards

Particleboard is composed of lignocellulosic elements bonded together with an ad-
hesive under heat and pressure. For the evaluation of hemp shive biomass (virgin and
recycled), particleboards were produced using the newly developed PFS resin as an experi-
mental binder and typical UF and PF resins as reference binders.

Hemp shives and wood chips were first oven-dried to a moisture content of 3–6%.
After drying, the material was sent to the gluing machine to be mixed with the glue mixture
consisting of the liquid resins and water. Ammonium chloride was also used as a hardener
for the UF resin, while no hardener was used for the PF and PFS resins. The ratio of
the glue mixture components in each case was resin/water = 12/1 for PF and PFS resins
and resin/water/hardener = 3/1/0.2 for UF resin. Inside the gluing machine, the glue
mixture was sprayed in the form of very small droplets. The adhesive level was 9–11% (dry
adhesive to dry biomass). The adhesive-impregnated biomass pieces were mechanically
laid out to form a board (the aim is to produce an even mat). The mat was then cold
pressed, followed by hot pressing (15–35 kg/cm2 for particle boards with a density of
0.4–0.8 g /cm3) at temperatures of 150–200 ◦C. The pressing time is proportional to the
thickness of the particleboard and is approximately 0.3–0.4 min per millimeter of finished
product thickness. The panels were then trimmed and smoothed to obtain a smooth and
flat surface and, finally, cut to the appropriate dimensions to obtain the necessary samples
for the evaluation of their properties.

Lightweight particleboards were produced with a density of 500 kg/m3, both with
virgin wood chips and hemp shives, which were used as reference boards, and with recycled
board chips by mixing them with wood chips and hemp shives in different proportions. In
all cases, the particleboards were produced according to the above-mentioned procedure
and production parameters. In total, 5 types of panels were prepared, as shown in Table 3.

Table 3. Panel types prepared and studied.

Virgin Biomass Recycled
Biomass

Ratio of
Virgin/Recycled

Biomass

Resin Used for
the New Panels
with Recycled

Material

Abbreviation

Wood chips - 100/0 PF, PFS, UF
wood-UF,
wood-PF,

wood-PFS25

Hemp shives - 100/0 PF, PFS, UF
hemp-UF,
hemp-PF,

hemp-PFS25
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Table 3. Cont.

Virgin Biomass Recycled
Biomass

Ratio of
Virgin/Recycled

Biomass

Resin Used for
the New Panels
with Recycled

Material

Abbreviation

Wood chips

Panels made
from virgin
wood
chips/hemp
shives at the
ratios of:
0/100 and 100/0
bonded with PF
and UF resins.

70/30 PFS

R(100H-
PF)/wood

R(100H-
UF)/wood

R(100W-
PF)/wood

R(100W-
UF)/wood

Wood chips

Panels made
from virgin
wood
chips/hemp
shives at the
ratios of:
25/75, 50/50,
75/25, bonded
with UF resin

70/30 PFS

R(25H/75W-
UF)/wood

R(50H/50W-
UF)/wood

R(75H/25W-
UF)/wood

Hemp shives

Panels made
from virgin
wood
chips/hemp
shives at the
ratio of 25/75
bonded with
PFS resin

0/100, 75/25,
50/50 and 25/75 PFS

R(25H/75W-
PFS)

R(25H/75W-
PFS)/hemp

75/25
R(25H/75W-
PFS)/hemp

50/50
R(25H/75W-
PFS)/hemp

25/75

2.6. Characterisation of Particleboards

The properties of all the panels produced in this study were measured according to
the European standards listed in Tables 4 and 5, and the results classify the panels into
some of the categories listed in these tables.

Although it is not possible to make an absolute identification of the above categories
of industrial production of wood chip-based panels and petrochemical adhesives with the
laboratory panels produced in this work, the above information gives us a “guide” to the
target values of the particleboard properties of the project.

Thermogravimetric analysis (TGA) was also used to study the thermal degradation
of the particleboards. A small piece of each board weighing 4 ± 0.5 mg was heated from
room temperature to 900 ◦C under a nitrogen atmosphere at the rate of 20 ◦C/min. An
empty alumina crucible was used as a reference. Fourier transform infrared spectroscopy
(FTIR) was also employed.



Materials 2024, 17, 139 8 of 19

Table 4. Technical categories and specifications of particleboards according to their use (EN 312:2010).

Properties
Internal

Bond (IB)
N/mm2

Bending
Strength-
(MOR)
N/mm2

Modulus of
Elasticity

(MOE)
N/mm2

Thickness
Swelling
(TS) %

Test Method EN319 EN310 EN310 EN317

Category of
Panel Performance Requirements Use

P1 0.24 10 - -

General-
purpose
boards for
use in dry
conditions

P2 0.35 11 1600 -

Boards for
interior
fitments
(including
furniture) for
use in dry
conditions

P3 0.45 14 1950 14

Non-load-
bearing
boards for
use in humid
conditions

P4 0.35 15 2300 15

Load-bearing
boards for
use in dry
conditions

P5 0.45 16 2400 10

Load-bearing
boards for
use in humid
conditions

P6 0.50 18 3000 15

Heavy-duty
load-bearing
boards for
use in dry
conditions

P7 0.70 20 3100 10

Heavy-duty
load-bearing
boards for
use in humid
conditions

Table 5. Classification of particleboards in terms of formaldehyde content according to the European
standard (EN13986:2001).

Method for Formaldehyde
Determination Formaldehyde Content Formaldehyde Class

Perforator method
EN120/EN-ISO 12460-05:2015

≤8 mg/100 g oven dry board E1

>8 mg/100 g to ≤30 mg/100 g
oven dry board E2
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3. Results–Discussion
3.1. General Properties of Resins

The properties of the experimental and typical resins that were synthesized and used
in this work for particleboard preparation are shown in Table 6.

Table 6. Properties of reference and experimental resins with various phenol replacement levels.

Resin UF PF PFS

Solids, % 65.31 39.87 44.50

pH at 25 ◦C, [ ] 8.15 12.60 11.63

Viscosity, cP 250 343 515

Specific Gravity, [ ] 1.283 1.197 1.27

Water Tolerance, ml/ml 1/3.5 >1/9.0 >1/9.0

Gel Time, m - 22 40

Gel Time, s 57 - -

Free Formaldehyde, % 0.06 0.12 0.25

Alkali Content, % - 8.52 7.65

Buffer Capacity, mL 11 - -

As can be seen, the properties of the reference resins UF and PF are within the accepted
limits of the industry and close to the properties reported in other scientific works [30–32].
The experimental PFS resin has properties close to the typical PF resin and is, therefore,
acceptable for use. However, it should be noted that although it has a higher viscosity, it
has a slower gel time and a higher free formaldehyde content. Typically, the higher the
viscosity of a polymer, the higher the degree of branching, and, therefore, fewer sites are
available for further cross-linking when measuring gel time and less free formaldehyde is
available in the polymer. In this case, the higher viscosity is probably not due to a denser
branching of the polymer chains but because the soy itself is a polymer, and this contributes
to the overall viscosity of the polymer [33–37].

3.2. Fourier Transform Infrared Spectroscopy of the Resins and the Particleboards

FTIR analysis was employed to evaluate the chemical structure of the new PFS resin.
For comparison reasons, the spectra of PF resin and soy flour are depicted in Figure 2.
PFS and PF resins were in liquid form, while soy flour was a powder. From the soy flour
spectrum, a broad, sharp peak at 3279 cm−1 can be distinguished, which is due to the free
and bound N–H and O–H groups [38]. The peaks at 1634, 1549, and 1240 cm−1 are due
to the C=O stretching vibration of the amide I bond, the N–N bending vibration of the
amide II bond, and the C–N stretching and N–H bending vibration of the amide III bond,
respectively [38,39].

Regarding the spectrum of phenol–formaldehyde, a broad peak at 3343 cm−1, which
is due to the stretching vibrations of the -OH groups in phenol, can be seen. The absorption
peaks at 1630 cm−1 and at 1446 cm−1 are characteristic of formaldehyde and are due to
the stretching vibrations of the C=C bonds. The peak at 1271 cm−1 is due to stretching
vibrations of the C–O–C ether linkages. A weak peak located at 1150 cm−1 is attributed to
stretching vibrations of the C–C bonds of phenol [40].
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Concerning the phenol/formaldehyde/soy flour composite resin, no deviations from
the PF spectrum are observed. The main peaks corresponding to soy are in the same area as
those of phenol–formaldehyde and, due to its smaller percentage, cannot be distinguished
in the spectrum.

The analysis of the chemical structure of the particleboards was also carried out by
means of infrared spectroscopy. First, the spectrum of a piece of wood chip without the
presence of resins was taken for comparison, while the spectra of particleboards with the
presence of resins were then presented. As shown in Figure 3, the particle board spectra are
similar to that of pure wood, as the percentage of resin is quite small compared to wood
chips/hemp shives and is characteristic of lignocellulosic compounds. The peaks between
2500 and 4000 cm−1 are due to the stretching vibrations of the O–H hydroxyl bonds of
cellulose and the stretching vibrations of the C–H bonds of cellulose and hemicellulose. The
peak at about 1050 cm−1 is due to the stretching vibration of C–O bonds of hemicellulose
and cellulose [41–43]. Comparing the spectra of the boards with that of pure wood, a peak
between 1500 and 1750 cm−1 can be distinguished; this is attributed to the existence of
resins and specifically due to amides II. A decrease in the intensity of the peak at 1050 cm−1

is also observed on the particleboards. This is probably affected by the amide groups of the
resins, suggesting a modification in the hemicellulose and cellulose bonding environment,
leading to changes in the intensity of specific vibrational modes associated with C–O bonds.
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Figure 3. FTIR spectra of wood as a reference and the particleboard wood chips–PFS, hemp
shives–PFS, and the recycled R (50H/50W_UF)/wood chips 70/30.
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3.3. Thermogravimetric Analysis of the Resins and the Particleboards

A thermogravimetric analysis (TGA) of the resins was also performed. Figure 4
shows the thermogram of soy flour, PF, and PFS resins. Concerning soy flour, it is clearly
distinguishable from both the mass loss and the dTG curve as a function of temperature that
degradation occurs in two stages. In the first stage, there is a mass loss of approximately
8% up to 168 ◦C, attributed to water evaporation and the degradation of the quaternary
structure of the protein, with the maximum decomposition rate occurring at 100 ◦C. Beyond
100 ◦C, the protein denatures its subunits and promotes the formation of protein aggregates
through electrostatic, hydrophobic, and disulfide bond exchange mechanisms [44]. The
second stage is attributed to the degradation of the peptide bonds in the soy protein
backbone. Simultaneously, various gases such as CO, CO2, NH3, and H2S are produced [42].
This stage ranges from 168 ◦C to 800 ◦C, with the maximum degradation rate at 327 ◦C,
resulting in a mass loss of about 70%. Finally, approximately 22% of residual carbon mass
can be distinguished.

Materials 2024, 17, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 3. FTIR spectra of wood as a reference and the particleboard wood chips–PFS, hemp shives–
PFS, and the recycled R (50H/50W_UF)/wood chips 70/30. 

3.3. Thermogravimetric Analysis of the Resins and the Particleboards 
Α thermogravimetric analysis (TGA) of the resins was also performed. Figure 4 

shows the thermogram of soy flour, PF, and PFS resins. Concerning soy flour, it is clearly 
distinguishable from both the mass loss and the dTG curve as a function of temperature 
that degradation occurs in two stages. In the first stage, there is a mass loss of approxi-
mately 8% up to 168 °C, attributed to water evaporation and the degradation of the qua-
ternary structure of the protein, with the maximum decomposition rate occurring at 100 
°C. Beyond 100 °C, the protein denatures its subunits and promotes the formation of pro-
tein aggregates through electrostatic, hydrophobic, and disulfide bond exchange mecha-
nisms [44]. The second stage is attributed to the degradation of the peptide bonds in the 
soy protein backbone. Simultaneously, various gases such as CO, CO2, NH3, and H2S are 
produced [42]. This stage ranges from 168 °C to 800 °C, with the maximum degradation 
rate at 327 °C, resulting in a mass loss of about 70%. Finally, approximately 22% of residual 
carbon mass can be distinguished. 

 
Figure 4. TGA thermogram of mass loss and dTG versus temperature curves of soy, PF, and PFS. 

Moving to the thermogram of PF, as shown, the resin’s degradation occurs in two 
stages. In the first stage, which extends up to 337 °C, water evaporation up to 100 °C and 

 

 100% pure wood

 

 Wood-PFS

Ab
so

rb
an

ce
 (A

rb
. U

ni
ts

)

 Hemp-PFS

4000 3500 3000 2500 2000 1500 1000 500

 

Wavenumber (cm-1)

 R (50H/50W_UF)/wood 70/30 

 
 

 
  

100 200 300 400 500 600 700 800
20

30

40

50

60

70

80

90

100

M
as

s 
(%

)

Temperature (°C)

 Soy
 PF
 PFS

Figure 4. TGA thermogram of mass loss and dTG versus temperature curves of soy, PF, and PFS.

Moving to the thermogram of PF, as shown, the resin’s degradation occurs in two
stages. In the first stage, which extends up to 337 ◦C, water evaporation up to 100 ◦C and the
decomposition of formaldehyde that remained unbounded in the resin take place [45,46].
The maximum degradation rate is found at 137 ◦C, with 67% of the mass degraded. The
second stage extends up to 800 ◦C, resulting in a mass loss of about 10% and a maximum
degradation rate at 500 ◦C, likely due to the cleavage of methylene bonds and the main
ring structure being destroyed [45]. Finally, there is a remaining mass of approximately
33% that has not been degraded.

Regarding the thermogram of PFS, it can be observed that the composite resin exhibits
a similar shape to that of pure PF. In the derivative of the mass loss diagram, there is an
evident enlargement of the peak around 410 ◦C, and the second decomposition stage starts
at lower temperatures, around 290 ◦C. In comparison to the pure resin, PFS shows a slightly
higher percentage of remaining mass (35%), with the maximum degradation rate occurring
at approximately 113 ◦C. Moreover, it can be observed that the main degradation stages
take place at slightly lower temperatures than PF. This could be attributed to the interaction
between the complex system of soy and the phenol–formaldehyde.

The thermal performance of panels was also studied with thermogravimetric analysis
(TGA). Initially, thermogravimetric analysis was carried out on the reference samples with
100% wood chips and hemp shives using the three different thermosetting resins: UF, PF,
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and PFS (Figure 5). As can be seen in the mass loss versus temperature thermogram, the
shape of the curves is influenced by the fact that both hemp shives and wood chips are
based on lignocellulosic compounds [7]. As shown in Figure 5a, two main degradation
steps are evident, with the first extending up to about 180 ◦C, primarily due to the removal
of moisture, and the second extending up to 750 ◦C, with a maximum degradation rate
occurring at 367 ◦C for wood–PF and wood–UF and at 354 ◦C for wood–PFS. In the case of
the hemp shive boards, the first degradation step occurs until approximately 175 ◦C, while
the second persists until 610 ◦C. The maximum degradation rate for hemp shives–UF is
at 350 ◦C, for hemp shives–PF at 345 ◦C, and for hemp shives–PFS at 338 ◦C. During the
second stage, the degradation of wood and hemp, specifically hemicellulose, followed by
cellulose and lignin, takes place [7]. Simultaneously, the resins decompose. Additionally,
a percentage of residual mass ranging between 19% and 30% is observed, resulting from
the formation of biochar from the wood and hemp, as well as from a quantity of resin
that has not fully degraded, as confirmed by the resin thermograms. When comparing
the particleboards with different resins, better thermal stability is observed in wood chip
boards prepared with PF. In the case of hemp shive boards, those with PF and PFS exhibit
slightly better thermal stability compared with that of UF, which is attributed to the stronger
cross-linkages and inherent chemical structures of PF and PFS resins.
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Figure 5. TGA thermogram of mass loss versus temperature curves of the wood chip (a) and hemp
shive (b) particle boards prepared with PF, PFS, and UF.

Next, the particleboards containing partly recycled materials were examined. A
common behavior was observed, similar to that in the initial boards. The excess mass falls
within the range of 26% to 30%. The first stage of degradation occurs between 45 ◦C and
176 ◦C, while the second stage extends to approximately 650 ◦C. The maximum degradation
rate occurs during the second stage and is found to be between 335 ◦C and 357 ◦C.

For a more comprehensive study of the recycled particleboards, a comparison of
their thermal stability was conducted, with the initial particleboards consisting of 100%
wood chips and 100% hemp shives, using the PFS resin, as studied in Figure 5. The
thermal stability was assessed based on a 2% mass loss and is presented in Figure 6b. The
black square points refer to the temperature difference between the wood–PFS (reference,
T2% = 81.7 ◦C) and the other particle boards, while in the red circles, the hemp–PFS board
is used as a reference temperature (T2% = 81.5 ◦C). It is first observed that both the hemp
shive and wood chip particleboards exhibit similar values, as the mass loss in the two
non-recycled boards is approximately the same; thus, the points are almost the same.
Furthermore, the thermal stability of all the recycled particleboards is higher than that of
the original ones, with the sample denoted as R (75H/25W_UF)/wood 70/30 being the
most thermally stable. The increase in thermal stability can be attributed to the higher
resin content in the recycled particleboards. The degradation of the cured resins initiates at
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approximately 200 ◦C, rendering the boards more thermally stable when compared to pure
hemp shives or wood chips. During the recycling process, the resin may undergo further
curing or cross-linking, which enhances its heat resistance and overall stability. Recycling
also results in a reduction in moisture content within the particleboards. Lower moisture
levels lead to improved thermal stability, as moisture can compromise the structural
integrity of the boards and reduce their resistance to heat.
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Figure 6. TGA thermogram of the recycled particleboards (a) and the comparison diagram of the
thermal stability of the particleboards (b).

3.4. Mechanical Behavior of Particleboards

All resins synthesized had appropriate properties and were used for the formulations
of particleboards. The test results (averages) for prepared particleboards are shown in
Figures 4–7, and their discussion follows.
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The performance of panels made from virgin biomass and reference resins is illustrated
in Figure 7. The results show that hemp shive-based panels perform better in terms of
mechanical properties (IB, MOR, MOE) regardless of the resin used. However, these panels
perform slightly worse in terms of thickness swelling. This finding is consistent with the
results of other studies [10] and is to be expected, as the cellulose that gives strength to
composite materials such as particle board is found in higher concentrations in the hemp
feedstock (72%) than in wood (42%) [47]. It is also known that hemp can rapidly absorb
large amounts of water (up to 3 times its own weight) during material preparation [48,49].

Comparing the different resins on the same biomass, in the case of wood chips, the
panel made with PF resin has a much higher water tolerance than the panels made with UF
and PFS resins. This observation does not apply to hemp shive-based panels. Regarding
the formaldehyde content of the panels, the hemp shive-based panels with PF or PFS resins
have the lowest content, while the UF resin has extremely high formaldehyde content.
This is because the chemical bond between phenol and formaldehyde is stronger than that
between urea and formaldehyde. The results are consistent with other studies [50].

Figure 8 shows the properties of panels in which wood chips have been partially
replaced by material obtained from the mechanical recycling of particleboards made with a
mixture of wood chips and hemp shives in different proportions and the reference resins
UF and PF. In this case, the end products were made with the PFS resin.
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Figure 8 shows that the virgin wood chip panels have the best mechanical properties,
whether they are made with PF or PFS resin. However, they have quite high formaldehyde
content values and similar thickness swelling (24 h TS) behavior to the other panels, with
the exception of the panel made with PF resin, which has significantly lower 24 h TS values
than the other panels. This can be explained by the fact that the recycled material contains
the resin from the first panel production, which has already penetrated and cured into the
cells of the lignocellulosic biomass. These areas cannot form new bonds with the PFS resin
during new panel production. As a result, the new board will have lower performance in
all properties. These results are in line with the findings of other studies [18].
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Among the panels produced with different levels of wood chip replacement by recy-
cled material, the best overall results are observed when the recycled panels are made with
100% hemp shives and PF resin and when the biomass is 50/50 hemp shives/wood chips
and a typical UF resin was used to produce the original panel. This can be explained by the
fact that, as mentioned above, the recycled material does not have as many sites available
for chemical reactions with the new resin in its second use cycle as the virgin biomass.

Regarding the panels produced by partially replacing virgin hemp shives with recycled
panels (made with virgin hemp shives/wood chips in a 25/75 ratio and PFS resin), it can be
seen in Figure 9 that the higher the virgin hemp shive content in the final panel, the better
the mechanical properties (IB, MOR, MOE). No significant differences are observed in their
thickness swelling behavior, while the formaldehyde content decreases as the level of virgin
biomass in the panel increases. The results are consistent and expected because the recycled
material used already contains a quantity of resin that contributes to the formaldehyde
content of the final product while preventing good bonding of the materials with the new
resin, which affects its mechanical properties.
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Figure 9. Performance of hemp shive-based panels with recycled material from panels made with
PFS resin.

In Figure 10, the above results with those of a panel made from 100% virgin hemp
shives and PFS resin (Figure 7) are presented together for comparison. We can see that the
same trend is followed and that the higher the content of virgin material, the higher the
mechanical properties and the lower the formaldehyde content, while there is no significant
effect on the thickness swelling (24 h TS).
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4. Conclusions

The potential use of hemp shives in the production of particleboard is emphasized by
the results of this study.

In particular, our research shows that not only can virgin hemp shives successfully
replace wood chips in the production of lightweight particleboard, but that hemp shive-
based panels can also be effectively recycled and reused in the production of new panels
using up to 100% recycled material. However, the mechanical and physical properties
of panels made from recycled material were slightly inferior to those made from virgin
biomass. The study of the particleboards with FTIR confirmed the existence of resins
and showed that recycling does not affect their chemical structure. In the case of particle
boards with recycled material, there was a noticeable increase in their thermal stability.
This indicates their enhanced resistance to thermal degradation, further enhancing their
suitability for various applications.

Our research also investigated the use of soy flour in the synthesis of phenol–
formaldehyde (PFS) type resins. The successful synthesis of the new soy-modified PF
resin was confirmed by typical laboratory analysis and FTIR analysis, providing insight
into its chemical structure. The adhesive performance of the resin was evaluated through
its use in the production of lightweight wood chip- and hemp shive-based particle boards,
and it was found that it can be successfully used as a binder for such boards made from
either virgin or recycled biomass. Additionally, thermogravimetric analysis (TGA) revealed
that the PFS resin exhibits similar thermal behavior to PF.

Recycling hemp shive panels helps diminish the demand for virgin materials, lowering
the overall environmental impact associated with resource extraction and processing.
Additionally, biobased resins, derived from renewable sources, contribute to a reduced
carbon footprint compared to traditional petroleum-based alternatives.

This work highlights the potential for sustainability and resource efficiency in the
particleboard industry.
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43. Kubovský, I.; Kačíková, D.; Kačík, F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification.
Polymers 2020, 12, 485. [CrossRef] [PubMed]

44. Nanda, P.K.; Nayak, P.L.; Rao, K.K. Thermal Degradation Analysis of Biodegradable Plastics from Urea-Modified Soy Protein
Isolate. Polym. Plast. Technol. Eng. 2007, 46, 207–211. [CrossRef]

45. Papadopoulou, K.E. Chrissafis, Thermal study of phenol–formaldehyde resin modified with cashew nut shell liquid. Thermochim.
Acta 2011, 512, 105–109. [CrossRef]

46. Jahan, T.; Lekhak, B.; Verma, A.K.; Dubey, A.; Bhattacharya, T.K. Preparation of phenol-formaldehyde resin modified with
phenol-rich pine needle pyrolysis oil and assessment of bonding strength. Int. Wood Prod. J. 2022, 13, 148–155. [CrossRef]

47. Ziner, R. Industrial Hemp Fiber Is Better Than Wood in Every Way. Available online: https://hemptoday.net/industrial-hemp-
fiber-is-better-than-wood-in-every-way/ (accessed on 10 November 2023).

https://doi.org/10.3390/ma15238487
https://www.ncbi.nlm.nih.gov/pubmed/36499983
https://doi.org/10.1016/j.buildenv.2005.08.028
https://doi.org/10.3390/app9183878
https://doi.org/10.3176/proc.2010.3.05
https://doi.org/10.1002/app.1993.070491212
https://doi.org/10.1016/B978-0-12-821632-3.00013-0
https://doi.org/10.1007/978-3-642-04714-5
https://doi.org/10.1007/s10973-004-6844-4
https://doi.org/10.1016/j.eurpolymj.2009.10.003
https://doi.org/10.1515/hf-2016-0056
https://doi.org/10.1007/s10973-007-8731-2
https://doi.org/10.1016/j.tca.2018.03.005
https://doi.org/10.1021/ie00027a030
https://doi.org/10.1002/app.1990.070410118
https://doi.org/10.1021/ie070297a
https://doi.org/10.1016/B978-044451140-9/50023-8
https://doi.org/10.1016/C2011-0-09694-1
https://doi.org/10.1007/s00107-017-1190-y
https://doi.org/10.3390/foods9020123
https://doi.org/10.32604/jrm.2021.016786
https://doi.org/10.1007/s12010-019-02965-8
https://www.ncbi.nlm.nih.gov/pubmed/30783948
https://doi.org/10.3390/app10124345
https://doi.org/10.3390/polym12020485
https://www.ncbi.nlm.nih.gov/pubmed/32098208
https://doi.org/10.1080/03602550601152713
https://doi.org/10.1016/j.tca.2010.09.008
https://doi.org/10.1080/20426445.2022.2061254
https://hemptoday.net/industrial-hemp-fiber-is-better-than-wood-in-every-way/
https://hemptoday.net/industrial-hemp-fiber-is-better-than-wood-in-every-way/


Materials 2024, 17, 139 19 of 19

48. Fourmentin, M.; Faure, P.; Pelupessy, P.; Sarou-Kanian, V.; Peter, U.; Lesueur, D.; Rodts, S.; Daviller, D.; Coussot, P. NMR and
MRI observation of water absorption/uptake in hemp shives used 2 for hemp concrete. Constr. Build. Mater. 2016, 124, 405–413.
[CrossRef]

49. Smoca, A. Water Absorption Properties of Hemp Fibres Reinforced PLA bio-Composites, Engineering for Rural Development. In
Proceedings of the 18th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 22–24 May 2019.
[CrossRef]

50. Mamza, P.A.; Ezeh, E.C.; Gimba, E.C.; Arthur, D.E. Comparative Study of Phenol Formaldehyde and Urea Formaldehyde
Particleboards from Wood Waste for Sustainable Environment. Int. J. Sci. Technol. Res. 2014, 3, 53–61. Available online:
https://www.researchgate.net/publication/351527898 (accessed on 10 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.conbuildmat.2016.07.100
https://doi.org/10.22616/ERDev2019.18.N522
https://www.researchgate.net/publication/351527898

	Introduction 
	Material and Methods 
	Lignocellulosic Materials and Chemicals Used 
	Synthesis of Phenolic Type Resins 
	Synthesis of Urea–Formaldehyde Resins 
	Determination of Resin Properties 
	Production of Particleboards 
	Characterisation of Particleboards 

	Results–Discussion 
	General Properties of Resins 
	Fourier Transform Infrared Spectroscopy of the Resins and the Particleboards 
	Thermogravimetric Analysis of the Resins and the Particleboards 
	Mechanical Behavior of Particleboards 

	Conclusions 
	References

