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Abstract: To improve the gas ionization ratio, the Mo-V-Cu-N coatings were deposited by pulsed
dc magnetron sputtering with assistance from an anode layer ion source, and the influence of the
V/Mo atomic ratio was explored with regard to the microstructure and mechanical properties of the
coatings. The findings of this study indicated that the MoVCuN coatings exhibited a solid solution
phase of FCC B1-MoVN with a prominent (220) preferred orientation, and the deposition rate was
found to decrease from 4.7 to 1.8 nm/min when the V/Mo atomic ratio increased. The average
surface roughness of the MoVCuN coatings gradually decreased, and the lowest surface roughness of
6.9 nm was achieved at a V/Mo atomic ratio of 0.31. Due to the enhanced ion bombardment effect, the
coatings changed from a coarse columnar to a dense columnar crystal structure, and promoted grain
refinement at higher V/Mo atomic ratios, contributing to a gradual improvement in the compressive
residual stress, hardness and adhesion strength of the coatings.

Keywords: microstructure; mechanical properties; ion source assisted

1. Introduction

As a promising self-lubricating coating, Mo-Cu-N coatings have received extensive
research in recent years [1–4]. Because of the formation of lubricating oxides of MoO3
and CuMoO4 (MoO3 + CuO→CuMoO4), Mo-Cu-N coatings demonstrated exceptional
tribological properties, including a low coefficient of friction and high resistance to wear,
particularly at room temperature [5–7]. However, the wear rate of the Mo-N coatings
was comparatively high at 500 ◦C as a result of severe oxidation at high temperatures;
this restricted the application of self-lubricating coatings at high temperatures [8,9]. A
multi-component structure was formed by incorporating V into Mo-N-based coatings in
order to further enhance the tribological properties. Due to the solution strengthening,
this addition not only increased the hardness, but also enhanced the wear resistance and
high-temperature oxidation resistance. Wang et al. [10] reported that the MoN-V (22 at.%)
coating demonstrated the highest hardness and the best wear resistance, as well as the
lowest friction coefficient at 700 ◦C, which was mainly associated with the formation of
lubricious glaze layers of V2O5 and MoO3. Similarly, the addition of V into the Mo-Cu-
N coatings also improved the coating hardness and wear resistance [11,12]. Due to the
synergistic lubrication effect of MoO3, CuMoO4, and V2O5, an excellent wear performance
was achieved at room temperature. With increasing temperature, the wear resistance of the
coatings was effectively enhanced with higher V contents.
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Utilizing magnetron sputtering (MS), a typical physical vapor deposition (PVD) tech-
nique, transition metal nitrides with smooth surface were effectively deposited. However,
the deposition rate is constrained by the low gas ionization ratio [13–15]. In order to
improve the gas ionization ratio, an auxiliary ion source, including an anode layer ion
source (ALIS) [16–18], end-Hall ion source [19,20], and Kaufman ion source [21,22], was
proposed. The ion source utilized the orthogonal electromagnetic fields to increase the
collision frequency between the electrons and gas atoms or molecules in the vacuum cham-
ber, thereby increasing the gas ionization rate. With an increase in the power of the ion
source, both the sp3 carbon content and deposition rate were increased for the BN [23] and
α-CNX [24] coatings deposited by ALIS-assisted radio-frequency magnetron sputtering. By
varying the ion source discharge current, the hardness and adhesion were also enhanced
for the TiN [25] coatings prepared by ALIS-assisted magnetron sputtering. ALIS-assisted
high-power impulse magnetron sputtering (HIPIMS) was also employed to deposit the
TiNX coatings at various substrate bias voltages in an effort to enhance the gas ionization
ratio [26]. Thus, with the assistance of ALIS, the comprehensive properties of the hard
coatings can be further improved, mainly focusing on the deposition of binary coatings,
such as BN, CNX, and TiN coatings.

In previous studies, the MoVCuN coatings were deposited by HIPIMS, which pri-
marily emphasized the effect of deposition parameters, including the nitrogen partial
pressure [27], and the charge voltage [28]. However, few studies report on the multi-
component coatings deposited by pulsed dc magnetron sputtering (PDCMS) with ALIS
assistance. In this study, to improve the gas ionization ratio, the MoVCuN coatings were
deposited by ALIS-assisted PDCMS, and the influence of the V/Mo atomic ratio on the
microstructure evolution, surface roughness, residual stress, and mechanical properties of
the coatings were systematically investigated.

2. Experimental Details
2.1. Coating Deposition

The MoVCuN coatings were prepared on polished WC-Co cemented carbides and
316 L stainless steels by ion-source-assisted pulsed dc magnetron sputtering. the coatings
deposited on the cemented carbide substrates were used for microstructure characterization
and mechanical properties testing, while the coatings deposited on the stainless steel
substrates were used for residual stress testing. The schematic figure of the Mo-V-Cu
(99.9% purity, 69 mm × 443 mm) and Cr (99.99% purity, Ø100 × 20 mm) target positions
is shown in Figure 1, and the vertical distance of the sample varied from 40 to 220 mm.
All the substrates were dried prior to their installation on the substrate carrier following a
20 min ultrasonic cleaning procedure utilizing acetone and alcohol. Then, the chamber was
pumped up to 4.0 × 10−3 Pa prior to deposition, with substrate temperature maintained at
200 ◦C. The substrates were subjected to Ar+ bombardment for 15 min at a 40% duty cycle
and −1000 V bias voltage in order to eliminate the surface contaminants. To improve the
adhesion strength between the coating and substrate, arc ion plating (AIP) with a Cr target
was used to deposit a thin CrN sublayer for 5 min, operating at a target current of 100 A and
a substrate bias voltage of −150 V. Then, this was followed by the deposition of MoVCuN
coatings using pulsed dc magnetron sputtering with ALIS assistance for 500 min, operating
at 1.5 kW target power and a duty cycle of 75%, and an ion source power of 0.6 kW. A
mixed gas of N2 (10 sccm) and Ar (35 sccm) was introduced, the total gas pressure was
controlled at 0.5 Pa by adjusting throttle valve, and the substrate holder was rotated at
3 rpm during deposition.
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Figure 1. Schematic figure of the deposition system and sample position. The vertical positions of 
samples S1, S2, S3, and S4 correspond to 220 mm, 160 mm, 100 mm, and 40 mm, respectively. The 
center position of the Cr target corresponds to 120 mm. 
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Germany) with Cu Kα radiation and a scanning angle ranging from 30° to 90° at a step 
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(OM) was then employed to examine the scratch images, and at least three scratches were 
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Figure 1. Schematic figure of the deposition system and sample position. The vertical positions of
samples S1, S2, S3, and S4 correspond to 220 mm, 160 mm, 100 mm, and 40 mm, respectively. The
center position of the Cr target corresponds to 120 mm.

2.2. Coating Characterization

Scanning electron microscopy (SEM, Nano430, Amsterdam, The Netherlands) with
EDS was utilized to characterize the morphologies and chemical composition of the coatings.
The coating thickness was directly measured through the cross-section images observed by
SEM; then, the deposition rate could be calculated. The characterization of crystal structure
was performed using X-ray diffraction (XRD, Bruker D8 advance, Karlsruhe, Germany)
with Cu Kα radiation and a scanning angle ranging from 30◦ to 90◦ at a step size of 0.02◦.
The preferable orientation was determined using the texture coefficient formula [29]:

T(hkl) =
I(hkl)/I0(hkl)

1
n

n
∑

n=1
I(hkl)/I0(hkl)

(1)

where I0(hkl) and I(hkl) refer to the relative standard intensity of the MoN powder and
intensity of the measured (hkl) peak, respectively, and n refers to the reflection number.
The determination of surface roughness was carried out by atomic force microscope (AFM,
Bruker dimension Icon, Karlsruhe, Germany), operating in a contact mode with a 5 × 5 µm2

scan area. The characterization of the chemical structure was performed using X-ray
photoelectron spectroscopy (XPS, Escalab 250Xi, Waltham, MA, USA) with Al Kα X-ray
source. The residual stress was measured using a film stress tester (FST-1000, Supro
Instruments, Shenzhen, China), in accordance with the substrate curvature method based
on Stoney’s equation [30]:

σs =
Es

6(1 − υs)

h2
s

hc

(
1
R
− 1

R0

)
(2)

where Es and υs refer to the Elastic modulus and Poisson’s ratio of the substrate, respectively.
hs and hc denote the thickness of the substrate and coating, respectively. R0 and R represent
the curvature radius of the substrate before and after deposition, respectively. The hardness
and elastic modulus were assessed using a nanoindentation tester (NHT2, CSM, Peseux,
Switzerland), and a minimum of five indentations were made per sample. The adhesion
strength was assessed by a scratch tester (RST, CSM, Peseux, Switzerland) operating at
a maximal load of 100 N and a scratch length of 3 mm. Optical microscopy (OM) was
then employed to examine the scratch images, and at least three scratches were made for
each sample.
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3. Results and Discussion
3.1. Microstructure

Table 1 presents a list of the chemical composition of MoVCuN coatings. Due to the
special design of the relative position between the target and sample (in Figure 1), coatings
with varying compositions can be obtained. With the decrease in the sample distance
from 220 to 40 mm, the Mo content gradually decreased from 54.8 to 39.5 at.%, and the
Cu content slightly decreased from 0.6 at.% to 0.3 at.%. Correspondingly, the contents
of V and N gradually increased from 4.4 at.% and 40.2 at.% to 15.9 at.% and 44.3 at.%,
respectively. The calculated N/(Mo + V) atomic ratio gradually increased from 0.68 to
0.80, implying that all the coatings were substoichiometric, and the V/Mo atomic ratio
gradually increased from 0.08 to 0.40. With an increase in the V/Mo atomic ratio, the
coating thickness gradually decreased, along with a gradual decrease in the deposition rate
from 4.7 to 1.8 nm/min, as shown in Figure 2. Such a decrease in the deposition rate can
be related to the different sputtering yields of metal targets. Among the Mo-V-Cu targets,
the Cu and Mo metal targets with higher sputtering yields were preferentially sputtered
during the deposition process, and the V metal target had the lowest sputtering yield [31].

Table 1. Chemical composition of MoVCuN coatings according to EDS analysis; error ± 0.2 at.%.

Sample
Chemical Composition (at.%)

N/(Mo + V) Ratio V/Mo Ratio Thickness (µm)
Mo V Cu N

S1 54.8 4.4 0.6 40.2 0.68 0.08 2.3
S2 50.5 8.0 0.4 41.1 0.70 0.16 2.0
S3 44.1 13.7 0.4 41.8 0.72 0.31 1.6
S4 39.5 15.9 0.3 44.3 0.80 0.40 0.9
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Figure 2. Deposition rate of MoVCuN coatings at various V/Mo atomic ratios.

Figure 3 shows the surface morphologies of the MoVCuN coatings at various V/Mo
atomic ratios. In Figure 3a, the coating has a rough surface and is covered with many small
bulging peaks. In addition, some large microparticles can be observed in the inset high-
magnification image. Generally, the advantage of magnetron sputtering is that the coating
surface is very smooth, without any microparticles [10,27]. These microparticles were
mainly introduced through the deposition of CrN interlayer using arc ion plating (AIP) [7].
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During the deposition process, the arc spots generated by arc discharge evaporated the
local area of Cr target with a high temperature, and some large metal droplets flew towards
the substrate surface before forming some large microparticles, showing a typical growth
defect of AIP. However, when the V/Mo atomic ratio increased above 0.16, the coating
surfaces became much smoother and denser. Furthermore, due to the combined effects of
etching and ion bombardment, obvious shallow pits and small microparticles developed
on the coating surfaces. During ion-source-assisted deposition, the ionization rate of
sputtered atoms was increased, and the ions accelerated to bombard the coating surface
under the substrate bias voltage. When the V/Mo atomic ratio increased, a greater number
of accelerated V ions were directed towards the coating surface under substrate bias voltage,
thereby enhancing the ion bombardment effect. Prior to coating deposition, the polished
cemented carbide substrate showed a low surface roughness of 2.7 nm [12]. However, the
surface roughness of the coatings increased sharply. In Figure 4a, a much rougher surface
can be observed, which is consistent with the findings obtained by SEM. As the V/Mo
atomic ratio increased from 0.08 to 0.31, the surface roughness gradually decreased from
25.6 ± 1.3 nm to 6.9 ± 0.4 nm, and then reached 7.8 ± 0.7 nm at a high V/Mo atomic ratio
of 0.40. The variation in the surface roughness was mainly related to the enhanced ion
bombardment at higher V/Mo atomic ratios. With the increase in the V/Mo atomic ratio,
the thickness of MoVCuN coatings gradually decreased, which also led to a decrease in the
surface roughness. In addition, due to the variation in sample position, the thickness of the
CrN sublayer first increased and then decreased. As discussed above, the microparticles
were mainly introduced by the CrN sublayer; thus, the increase in CrN layer thickness
would increase the surface roughness.
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Figure 5 displays the cross-sectional morphologies of MoVCuN coatings at various
V/Mo atomic ratios. It can be seen that two layers formed in the cross-sections, including
the thin interlayer of CrN and the top layer of MoVCuN. Because of the special design of
the two target positions (in Figure 1), the thickness of the CrN layer initially increased from
0.07 to 0.22 µm, and then decreased to 0.12 µm, whereas the thickness of the MoVCuN
layer gradually decreased from 2.34 to 0.88 µm. At the interlayer interface, all the coatings
exhibited good adhesion without any cracks. In Figure 5a, the MoVCuN coating showed
a coarse columnar crystal structure. The growth in these coarse columnar crystals ran
through the entire thickness of the coating and formed a typical V-shaped columnar
crystals structure, contributing to the rough surface morphology depicted in Figure 3a. A
similar columnar structure was also demonstrated for the Mo-V-N coatings [10]. With an
increase in the V/Mo atomic ratio, the columnar structure became much denser, and the
continuous growth of the columnar crystal was gradually interrupted. Compared to the
Mo target, the V target has a lower sputtering yield and deposition rate. However, for
the magnetron sputtering, due to the limited ionization ratio (10~20%), the sputtered V
atoms have a higher metal ionization ratio per unit deposition time. Thus, the increased
V/Mo atomic ratios resulted in higher metal ionization ratios of Mo and V atoms. These
ions were accelerated to bombard the coating surface under substrate bias voltage, thereby
intensifying the ion bombardment effect. Strong ion bombardment increased the mobility of
surface adatom during deposition, resulting in the formation of a dense and fine columnar
crystal morphology [12,32].

Figure 6 shows the XRD pattern and texture coefficient of the MoVCuN coatings at
various V/Mo atomic ratios. As shown in Figure 6a, three broad diffraction peaks in the
coatings appeared at about 37.1◦, 43.2◦, and 61.5◦, corresponding to the (111), (200), and
(220) planes of the face-center-cubic (FCC) phase, respectively. Due to the similar diffraction
peak positions, the diffraction peaks of the thin layer of Cr-N would be covered by that
of the top layer of Mo-V-Cu-N. In addition, some sharp diffraction peaks were observed,
corresponding to the diffraction peaks in the WC-Co cemented carbide substrate. The
major phase of Mo-N was observed in the XRD patterns as a result of the relatively high Mo
content (39.5~54.8 at.%) in the coatings. As a result of their comparable atomic radius, V
atoms showed a tendency to partially substitute for Mo atoms in the Mo-N lattice, thereby
facilitating the formation of a solid solution phase of Mo-V-N [7]. A similar solid solution
phase of FCC Mo-V-N was also found in the Mo-V-N [10] and V1-xMoxN coatings [33].
However, the absence of a diffraction peak associated with the Cu phase in XRD patterns
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necessitates additional XPS analysis, as the Cu atoms were present in relatively low contents
(0.3~0.6 at.%). Related research has indicated that, in the Mo-Cu-N [2] and Mo-V-Cu-N [28]
coatings, Cu atoms predominantly existed in an amorphous state when the Cu content
was below 11 at.%. In Table 2, the lattice parameters of the coatings were calculated
from the (111), (200), and (220) planes in the XRD patterns by using Gaussian fitting [34].
With an increase in the V/Mo atomic ratio, the lattice parameter varied in a small range
of from 4.215 to 4.204 Å, corresponding to the FCC B1-MoN phase, a metastable phase
characterized by a lattice parameter ranging from 4.20 to 4.27 Å [35]. Thus, the MoVCuN
coatings showed a single solid solution phase consisting of FCC B1-MoVN. In previous
study [12], due to the low N contents (23.9~42.5 at.%), the γ-Mo2(V)N phase with lattice
parameters of 4.162~4.197 Å formed in the MoVCuN coatings. Furthermore, the grain
sizes of the (111), (200), and (220) peaks in the B1-MoVN phase were estimated by Scherrer
formula [36], as listed in Table 2. As the V/Mo atomic ratio increased, the average grain size
gradually decreased from 7.0 to 5.1 nm, indicating that grain refinement occurred, which
could be related to the enhanced ion bombardment effect [37]. In addition, as the thickness
increased, the crystallinity of the coating increased. Thus, a decrease in the thickness of
MoVCuN coatings also contributed to a decrease in the grain size. In Figure 6b, based on
the (111), (200), and (220) peaks, the evaluation of the preferred orientation was conducted
by the texture coefficient T(hkl) using Equation (1). The (220) plane demonstrated the highest
texture coefficient, ranging from 1.51 to 2.33. This indicated that all the coatings exhibited
a prominent (220) preferred orientation. According to the growth kinetic model [38], the
(220) plane with the most open channeling directions has a higher probability of survival
than the (111) and (200) planes due to the anisotropy of the collision effect. A similar
(220) preferred orientation was also observed for the AlTiVCuN coatings deposited by
ALIS-assisted magnetron sputtering [39] and HIPIMS [40].
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Table 2. Lattice parameters and grain sizes of Mo-V-Cu-N coatings.

Plane
Lattice Parameter a0 (Å) Grain Size (nm)

0.08 0.16 0.31 0.40 0.08 0.16 0.31 0.40

(111) 4.199 4.197 4.197 4.186 8.2 6.7 6.7 6.1
(200) 4.185 4.194 4.192 4.199 5.4 5.1 5.1 5.1
(220) 4.261 4.243 4.238 4.227 7.4 4.8 5.4 4.2
Mean 4.215 4.211 4.209 4.204 7.0 5.5 5.7 5.1
Stdev 0.040 0.027 0.025 0.021 1.4 1.0 0.9 1.0

Figure 7 illustrates the fitted XPS spectra of the MoVCuN coatings at various V/Mo atomic
ratios. The deconvolution of the asymmetric Mo 3d peak into four peaks, as shown in Figure 7a,
can correspond to the major peaks in MoVN (Mo 3d5/2: 228.7 eV, Mo 3d3/2: 231.9 eV), along
with the minor peaks in MoO2 (Mo 3d5/2: 229.5 eV, Mo 3d3/2: 232.7 eV) [41]. The minor oxide
peaks can be caused by the slight oxidation of the coating surface. In Figure 7b, the fitted
spectra of V2p3/2 comprised three sub-peaks: a major peak of MoVN at 514.4 eV, and two
oxide peaks of V2O3 and V2O5 at 515.3 eV and 516.9 eV, respectively. In Figure 7c, only one
peak was identified, at about 932.7 eV, in the spectra of Cu 2p3/2, which could belong to the
metallic Cu [2]. This provided evidence that the Cu atoms in the coatings existed as metallic
species rather than existing in nitride form. Similarly, the N 1s spectra only showed a single
peak, possibly the MoVN peak, at 397.4 eV binding energy. Consistent with the XRD data
mentioned earlier, this demonstrated the formation of a Mo-V-N solid solution phase. With
an increase in the V/Mo atomic ratio, the peak areas of both Mo 3d and Cu 2p3/2 spectra
decreased, while the peak areas of V 2p3/2 and N 1s spectra significantly increased, which
was consistent with the variation in the chemical composition of the coatings, as listed in
Table 3. Due to the surface adsorption of pollutants and trace oxides, a large amount of O
and C elements were also detected.

Table 3. Chemical composition of MoVCuN coatings according to XPS analysis.

Sample V/Mo Ratio
Chemical Composition (at.%)

Mo V Cu N O C

S2 0.16 37.4 3.6 1.2 15.5 30.2 12.1
S4 0.40 28.2 5.7 0.5 22.6 30.5 12.5
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3.2. Mechanical Properties

Generally, the residual stress of the coatings or films includes thermal stress and
intrinsic stress. Thermal stress is usually caused by the discrepancy in thermal expansion
between the substrate and coating. As for the nitride coatings, due to their lower coefficient
of thermal expansion, compressive thermal stress occurs. As for the sputter-deposited
coatings, the intrinsic stress is usually caused by the deposition conditions [42], such as
working temperature, gas pressure, and substrate bias voltage. Figure 8 presents the
residual stress of the coatings at various V/Mo atomic ratios. The negative value of the
residual stress calculated for the coatings suggests the formation of compressive residual
stress in the coatings. With an increase in the V/Mo atomic ratio, the compressive residual
stress gradually increases from 2.9 GPa to 4.1 GPa, which can be explained by several
different factors. First, at higher V/Mo atomic ratios, the ion bombardment effect is
enhanced, increasing the defect concentration of the coatings, leading to an increase in
compressive residual stress [43]. Second, the increase in compressive residual stress may
be associated with a slight decrease in the content of Cu, as a result of the ductile Cu
phase presented in the coatings. Similar findings were found for the Mo-Cu-N [3] and
Al-Ti-V-Cu-N [40] coatings: the relaxation of compressive residual stress occurs at higher
Cu contents. Finally, the increase in residual stress may also be associated with the decrease
in the coating thickness in Figure 5. For thinner coatings (≤4 µm), the residual stress was
found to decrease with the increase in coating thickness [44].

Figure 9 displays the elastic modulus and hardness of the coatings at various V/Mo
atomic ratios. To reduce the effect of the cemented carbide substrate and CrN sublayer,
the maximum indentation depth was maintained at less than 10~15% of the thickness of
MoVCuN coatings. At a low V/Mo atomic ratio of 0.08, the MoVCuN coating demonstrated
a low hardness of 17.2 GPa and a low elastic modulus of 320.3 GPa, which can be attributed
to the formation of a coarse columnar crystal structure within the coating. With an increase
in the V/Mo atomic ratio, the hardness and elastic modulus gradually increased from to
31.1 and 455.9 GPa, respectively. This could be explained by many factors, including the
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microstructure evolution, and variations in Cu content, residual stress and grain size. First,
the increase in hardness can be ascribed to the microstructure densification. With increasing
V/Mo atomic ratio, the coatings transformed from a coarse into a dense columnar structure
due to the enhanced ion bombardment effect. Furthermore, the enhanced hardness was also
associated with the solution-strengthening effect of the B1-MoVN phase. Similar results
have been reported for the Mo-V-N [10] and Mo-V-Cu-N [12] coatings with increases in
the V content. Second, as a soft metal, the slight decrease in Cu content (0.6~0.3 at.%)
was also correlated with enhanced hardness. It was also discovered that the hardness of
TiAlN/Cu coatings progressively decreased when the Cu content increased, ranging from
0 to 1.4 at.% [45]. Third, the increase in compressive residual stress also contributed to an
improvement in hardness. By restraining the grain sliding and grain rotation, the high
compressive residual stress could help to resist plastic deformation in the coatings and
increase the coating hardness. Finally, the increased hardness was also related to a decrease
in the grain size. Based on the Hall–Petch effect, the hardness of BN coatings was effectively
improved by decreasing the grain size [46,47]. With an increase in the V/Mo atomic ratio,
the H3/E*2 ratio gradually increased from 0.04 to 0.13, implying that the ability to resist
crack initiation and the propagation of the coatings was improved.
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Figure 10 presents scratch images of the coatings at various V/Mo atomic ratios.
Generally, the adhesive failure mode LC2, characterized by adhesive chipping at the track
edges, was employed to assess the adhesion strength between the substrate and coating.
At a low V/Mo atomic ratio of 0.08, the adhesive chipping occurred at the initial stage of
the scratch test, and numerous adhesive fragments were dispersed along the track edge,
indicating a low adhesion strength, which could be caused by the low H3/E*2 ratio of 0.04.
Similar results were also found for the MoVCuN [12] and AlTiVCuN [48] coatings with
low H3/E*2 ratios. However, when the V/Mo atomic ratio increased to above 0.16, smooth
scratch morphologies can be observed in the initial stages, and adhesive chipping started
in the middle or later stages, implying a significant improvement in the adhesion strength
of the coatings. In Figure 11, with increasing the V/Mo atomic ratio, a gradual increase in
the adhesion strength was observed from 14.4 to 78.7 N, which was mainly attributed to an
increase in the H3/E*2 ratio. The increase in adhesion strength was also associated with
the presence of Cu content in the coatings. The addition of Cu adversely influenced the
coating/substrate bond, resulting in a lower adhesion strength and lower energy for the
Cu-containing coatings [3]. Moreover, the increase in adhesion strength was also related
to an increase in the thickness of the CrN sublayer used to improve the adhesion strength
between the coating and substrate.
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4. Conclusions

In this study, the MoVCuN coatings were deposited using pulsed dc magnetron
sputtering with ALIS assistance, and the relationship between the microstructure evolution,
mechanical properties, surface roughness, and the residual stress was investigated. The
primary findings can be summarized as follows:

(1) As the V/Mo atomic ratio increased, the deposition rate sharply decreased from 4.7 to
1.8 nm/min, the average surface roughness of the coatings gradually decreased.

(2) The MoVCuN coatings exhibited a solid solution phase of FCC B1-MoVN with a
strong (220) preferred orientation. As the V/Mo atomic ratio increased, the coatings
transformed from a coarse to a dense columnar crystal structure, and promoted grain
refinement.

(3) With an increase in the V/Mo atomic ratio, the ion bombardment effect was enhanced,
contributing to a gradual increase in the compressive residual stress, hardness, and
adhesion strength of the coatings.
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