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Abstract: Batteries are essential in modern society as they can power a wide range of devices, from
small household appliances to large-scale energy storage systems. Safety concerns with traditional
lithium-ion batteries prompted the emergence of new battery technologies, among them solid-state
batteries (SSBs), offering enhanced safety, energy density, and lifespan. This paper reviews current
state-of-the-art SSB electrolyte and electrode materials, as well as global SSB market trends and key
industry players. Solid-state electrolytes used in SSBs include inorganic solid electrolytes, organic
solid polymer electrolytes, and solid composite electrolytes. Inorganic options like lithium aluminum
titanium phosphate excel in ionic conductivity and thermal stability but exhibit mechanical fragility.
Organic alternatives such as polyethylene oxide and polyvinylidene fluoride offer flexibility but
possess lower ionic conductivity. Solid composite electrolytes combine the advantages of inorganic
and organic materials, enhancing mechanical strength and ionic conductivity. While significant
advances have been made for composite electrolytes, challenges remain for synthesis intricacies and
material stability. Nuanced selection of these electrolytes is crucial for advancing resilient and high-
performance SSBs. Furthermore, while global SSB production capacity is currently below 2 GWh, it
is projected to grow with a >118% compound annual growth rate by 2035, when the potential SSB
market size will likely exceed 42 billion euros.

Keywords: solid-state batteries; solid-state electrolytes; lithium-ion batteries; market outlook;
production economics

1. Introduction

Batteries are becoming increasingly essential in modern society to power many devices,
including smartphones, laptops, electric cars, and renewable energy grids. As the demand
for portable electronics and electric vehicles (EVs) continues to rise, the need for high-
performing, long-lasting, and safe batteries is becoming more pressing. Advances in battery
technology can significantly impact how we live and work, from enabling sustainable
energy to reducing our reliance on fossil fuels. When John B. Goodenough and his team
published the famous paper “A new cathode material for batteries of high energy density”
in 1980 [1], they could not have foreseen the far-reaching consequences of their work. Since
then, lithium-ion batteries (LIBs) have established themselves as the leading technology
in the global battery market due to their superior energy density, extended cycle life, and
low self-discharge rates. They are employed in various applications, such as smartphones,
laptops, electric vehicles, and renewable energy storage systems [2]. Furthermore, they
have experienced a significant decline in cost, with Bloomberg NEF’s 2021 battery price
survey reporting an 89% reduction in prices since 2010 and an increase in installed capacity
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values (with a global installed capacity of over 800 GWh as of 2020), which highlights the
rapid progress of battery technology in recent years [3,4].

Unfortunately, LIBs suffer from safety concerns related to their potential for thermal
runaway and fire, especially when overcharged or exposed to high temperatures, as well
as relatively long charging times [5]. Therefore, intensified research in battery technologies
is inevitable. Among upcoming and highly promising battery technologies is the so-called
solid-state battery (SSB), a novel battery technology that is vital in shaping the future of
energy and sustainability. By using solid electrolytes instead of liquid ones, SSBs differ
significantly from LIBs due to their enhanced safety, higher energy density, and longer
lifespan [6–10]. These unique attributes make SSBs appealing for applications with specific
requirements.

One such area is the transportation industry, encompassing EVs and aerospace. EVs, a
prominent sector, stand to benefit significantly from SSBs, driving substantial investment
and research in this direction. Although LIBs currently dominate electric battery vehicles,
SSBs offer distinct advantages, notably fast charging and improved safety. Solid electrolytes
eliminate the risk of electrolyte leakage or vaporization and mitigate the potential for
flammable organic solvents. They also prevent side reactions between electrodes and
electrolytes that could lead to dendrite formation. Moreover, the higher energy density of
SSBs can extend the range of electric vehicles, enhancing their viability for long-distance
travel. Major companies like Toyota, Honda, Nissan, Ford, BMW, and Volkswagen have
actively pursued SSB development for electric vehicles.

SSBs have already found utility in aerospace applications due to their lighter weight,
compactness, and higher energy density. These attributes make them suitable for energy
storage in spacecraft. The safety features of SSBs make them particularly appealing for
this application, in contrast to conventional LIBs, which are lighter and more compact
but often have lower safety levels. Solid electrolytes enable SSBs to withstand extreme
temperatures in space environments. Certain SSBs, such as lithium-air batteries, can
function at temperatures as low as −73 ◦C [11], while others, like lithium-oxygen batteries,
can operate at temperatures up to 120 ◦C [12]. In addition to the transport sector, there
is a growing demand for batteries offering the advantages provided by SSBs in various
industries, such as medical devices and consumer electronics. These sectors find SSBs to be
compelling choices for their specific needs. The multiple applications discussed underscore
the potential of SSBs and their significance for the future.

This review provides an overview of SSB technology, primarily focusing on the status
of electrolyte and electrode material research and market perspectives. First, the currently
most relevant materials employed are presented. Subsequently, the global battery mar-
ket, specifically focusing on emerging SSB technologies, is introduced. The current and
projected SSB market size, its economics, as well as an overview of the key players and
collaborators are shown.

2. Solid-State Electrolyte Materials

SSBs are an emerging technology that has the potential to revolutionize the energy
storage industry. Unlike traditional LIBs, which use a liquid electrolyte to transport ions
between the cathode and anode, SSBs use a solid-state electrolyte (SSE) to perform the same
transport function. As shown in Figure 1, SSEs used in rechargeable batteries can be divided
into three categories based on chemical composition: inorganic solid ceramic electrolytes,
organic solid polymer electrolytes, and solid composite electrolytes, a combination of the
first two material classes [7,13,14].

Inorganic solid electrolytes (ISEs) are typically made from lithium ceramics such
as lithium aluminum titanium phosphate (LATP). They offer high ion conductivity and
thermal stability but can be brittle and difficult to manufacture [7].
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Organic solid polymer electrolytes (OSPEs) are made from polymers such as polyethy-
lene oxide (PEO) or polyvinylidene fluoride (PVDF). They offer good mechanical flexibility
and processability, but lower ion conductivity than inorganic solid ceramic electrolytes [8].

Composite solid electrolytes (CSEs) combine inorganic ceramic materials with organic
polymers to achieve high ion conductivity and good mechanical properties. They can
be designed to have specific properties by varying the composition and structure of the
materials.

There are critical factors for the success of SSEs in SSBs. In essence, optimal SSEs
should exhibit characteristics such as extremely low electronic conductivity (<10−10 S cm−1)
coupled with high Li+ conductivity (>10−3 S cm−1) [16]. Furthermore, they should demon-
strate favorable chemical compatibility with electrodes, a broad electrochemical stability
range, and exceptional thermal stability [17]. Researchers are working on various strate-
gies to improve Li+ conductivity, such as optimizing the microstructure of the materials,
incorporating dopants, and using hybrid materials [11,12,17,18].

2.1. Inorganic Solid Electrolytes

Inorganic solid electrolytes (ISEs) are a class of ceramic materials that exhibit high
ionic conductivity for lithium (Li), sodium (Na), or other alkali metal ions and can, there-
fore, provide a stable and efficient transport medium for ion flow between the anode
and cathode in a battery [14]. While the use of ISEs is still relatively new and requires
further research and development, it holds great potential to advance the field of energy
storage and pave the way for safer, more efficient, and environmentally friendly batteries.
Based on anion chemistry, ISEs are divided into three classes: oxide-based, sulfide-based,
and halide-based [19]. Figure 2 illustrates further sub-divisions within these divisions,
indicating additional material classes that will be discussed in this review. Each class of
materials has unique advantages and limitations that make them suitable for different
battery applications.
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2.1.1. Oxide-Based ISEs

Ceramic oxide SSEs are divided into three classes: garnet-type, perovskite-type, and
NASICON-type, a sodium superionic conductor [14]. These materials typically display
exceptional thermal stability, substantial bulk Li+ conductivity (ranging from 10−3 to
10−5 S cm−1 at 25 ◦C), and impressive Young’s moduli (>150 GPa) [14]. However, in-
corporating them into SSBs proves challenging due to their inherent mechanical rigidity.
Furthermore, their notable bulk electronic conductivity (10−8 to 10−7 S cm−1) might inad-
vertently promote the formation of Li dendrites at the interface between Li and the solid
electrolyte, as well as the growth and penetration of dendrites along grain boundaries [20].

Since 1981, when Weppner et al. discovered that Li5La3M2O12 (M = Ta or Nb) show-
cased an ionic conductivity of 10−6 S cm−1 at room temperature [21], there has been
extensive exploration into garnet solid electrolytes. Some of the most explored materials of
garnet-type SSEs are LATP and lithium lanthanum zirconate (LLZO).

LLZO is a ceramic material with a garnet crystal structure composed of Li, lanthanum
(La), zirconium (Zr), and oxygen atoms. Its chemical formula is Li6.4La3Zr1.4Ta0.6O12.
LLZO has a cubic garnet structure consisting of a network of ZrO6 octahedra and Li/La
ions. The ZrO6 octahedra are arranged in a three-dimensional framework, with Li/La
ions occupying interstitial sites between the octahedra [9]. Li+ can move through the
interstitial sites to conduct current. LLZO is considered a promising SSE material due to
several sophisticated inherent characteristics: its notable Li-ion conductivity reaching up to
10−3 S cm−1 at room temperature (RT) [22,23], comparably low electronic conductivity of
approximately 10−8 S cm−1 (RT) [24], an expansive electrochemical stability window (>6 V
vs. Li+/Li as observed in experiments) [25], as well as remarkable thermal and chemical
stability in the presence of metallic Li. Due to these favorable attributes encompassing
ionic conductivity, energy density, chemical stability, electrochemical stability, air stability,
thermal stability, and safety, LLZO garnet-based electrolytes are widely regarded as one
of the most promising and indispensable options [14,26]. However, LLZO suffers from
manufacturing concerns, notably the cost of the required sintering techniques and the
reproducibility of the LLZO microstructure during the sintering process [27].

LATP is a solid electrolyte material commonly used in SSBs due to its high ionic
conductivity, chemical stability, and low reactivity with Li metal anodes [28]. LATP is a
ceramic material with a garnet crystal structure composed of Li, aluminum (Al), titanium
(Ti), phosphorus (P), and oxygen atoms. Its chemical formula is Li1+xAlxTi2-x(PO4)3, where
x is typically between 0.2 and 0.5. LATP has a complex crystal structure consisting of
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alternating layers of Li/Ti tetrahedra and Al/PO4 octahedra. The Li/Ti tetrahedra are
connected by shared vertices to form a three-dimensional framework, while the Al/PO4
octahedra fill in the spaces between the tetrahedra [28]. This structure creates channels
through which Li ions can move. LATP can be synthesized through a variety of methods,
including solid-state reactions, sol-gel processes, and hydrothermal methods. In one
common approach, lithium carbonate, aluminum oxide (Al2O3), titanium oxide (TiO2), and
ammonium dihydrogen phosphate are mixed in stoichiometric proportions and heated
at high temperatures (typically 900–1200 ◦C) in a reducing atmosphere to form the LATP
ceramic [29]. Some advantages of LATP include a relatively high ionic conductivity, a wide
electrochemical stability window, good mechanical stability, compatibility with Li metal
anodes, low reactivity with cathode materials, and a wide temperature range. Additionally,
LATP has a low tendency to form dendrites, which can improve the safety and cycle life of
the battery. However, LATP is relatively expensive and has a lower ionic conductivity than
LLZO [29,30].

While both materials have high ionic conductivity and good stability, there are some
advantages of LLZO over LATP. LLZO is more chemically stable than LATP, particularly in
the presence of moisture and air [26]. This stability can reduce the risk of degradation and
improve the overall performance and reliability of the battery [9,10]. LLZO also offers lower
reactivity with Li metal anodes compared to LATP, which can reduce the risk of dendrite
formation [26]. Additionally, LLZO has higher mechanical strength than LATP, which can
improve the durability and reliability of the battery. This mechanical strength is due to the
crystal structure of LLZO, which is more robust than that of LATP. LLZO has better thermal
stability than LATP, which means it can operate over a wider temperature range without
degrading or breaking down. Finally, LLZO can be processed at a lower temperature than
LATP, reducing the cost and complexity of manufacturing the electrolyte [9,10]. Despite
these numerous advantages, LLZO is relatively expensive to produce and can have some
processing difficulties due to its complex crystal structure [27].

The perovskite SSE commonly displays a chemical composition represented as ABO3,
which falls within the cubic crystal system. Perovskite structures are typically characterized
by notable Li+ conductivities ranging from 10−3 to 10−4 S cm−1 at RT [31,32], as well as
a diminished electronic conductivity (~10−8–10−9 S cm−1) [32,33]. Lithium lanthanum
titanium oxide (LLTO, La2/3−xLi3xTiO3) is an oxide-based ISE of perovskite-type and is the
fastest Li+ conducting electrolyte of this type. It comprises Li, La with La-rich and La-poor
domains, and vacancies within A sites, as well as Ti ions occupying B sites arranged in octa-
hedral coordination with oxygen. LLTO can be synthesized through various methods, with
solid-state reactions and sol-gel processes being the most common approaches. The specific
synthesis method chosen can influence the properties of the resulting LLTO material [15].
LLTO boasts numerous advantages, including its substantial ionic transference numbers
ranging from 0.5 to 0.9, remarkable chemical and thermal stability even in ambient air
conditions, and its eco-friendliness due to the absence of toxic gas emissions during de-
composition reactions [34]. Moreover, LLTO ISEs exhibit a broad electrochemical window
spanning 8 V vs. Li/Li+ [31], enhancing their compatibility with high-voltage cathode
materials and Li metal anodes [14]. Furthermore, LLTO showcases exceptional thermal
stability across a wide temperature range (4–1600 K), expanding its potential applications
even under extreme operational conditions [35]. However, several challenges hinder the
seamless integration of LLTO ISEs into batteries. The presence of significant grain boundary
resistance results in a total ionic conductivity that falls below 10−5 S cm−1 at room temper-
ature [31,36]. Additionally, direct contact between LLTO and Li metal triggers chemical
instability, as Li+ intercalation into LLTO at voltages under approximately 1.8 V causes a
reduction of Ti4+ ions and escalated electronic conductivity [37]. The inherent brittleness
of LLTO poses difficulties during the fabrication and assembly of battery components.
Furthermore, the dynamic volume changes within batteries during operation can lead to
delamination between ceramic oxide electrode and electrolyte layers, thereby curtailing the
overall battery lifespan [31].
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In 1976, through the high-temperature solid-state reaction approach, Goodenough
et al. [38] created the solid electrolyte Na3Zr2PSi2O12 of the NASICON-type. Subsequently,
the NASICON framework saw the derivation of a Li-ion SSE, LiA2(BO4)3, where the
original Na+ ions were substituted with Li+ ions, with possible elements including A = Ti,
Zr, Ge, or V, and B = P, Si, or Mo. Its Li counterpart, LiZr2−xTix(PO4)3, was synthesized by
Subramanian in 1986 [38]. LISICON (lithium superionic conductor) represents a group of
SSE materials crucial for advanced energy storage systems. LISICON materials comprise
elements like Li, oxygen, and often silicon (Si), sulfur (S), or P, and offer remarkable
Li+ conductivity, vital for efficient ion movement within batteries. LISICON is a Li+

conductor with the general formula Li2+2xZn1−xGeO4 [39]. The synthesis of LISICON
involves solid-state reactions at elevated temperatures, yielding a crystalline structure that
delivers numerous benefits. LISICON’s advantages encompass high Li-ion conductivity
even at room and elevated temperatures, ensuring efficient battery function. Moreover,
these SSEs enhance battery safety by mitigating leakage, thermal runaway, and dendrite
formation that can lead to short circuits. By enabling higher energy density, LISICON
paves the way for batteries with extended charge-holding capacities. Its chemical and
electrochemical stability contributes to battery longevity, and its adaptability to diverse
temperature ranges makes it versatile for various applications.

However, LISICON does pose challenges. While oxide-derived LISICON materials
exhibit notable Li+ conductivity, particularly under elevated temperatures, their conduc-
tivity values at RT are notably lower compared to sulfide-based LISICONs, as well as
other oxide systems characterized by structures like NASICON, perovskite, and garnet [40].
Its intricate synthesis demands precise control of reaction parameters, possibly limiting
large-scale production. Achieving the optimal balance of chemical composition and crystal
structure for desired properties presents material-related difficulties. Additionally, the
cost of manufacturing LISICON materials can be a concern, potentially influencing overall
battery costs. Ensuring compatibility between LISICON electrolytes and electrode materi-
als is crucial for ideal battery performance and longevity. While LISICON materials hold
immense potential, their commercial use remains relatively limited due to ongoing research
and development efforts and the need to address these challenges [40].

2.1.2. Sulfide-Based ISEs

Sulfide solid electrolytes are a subclass of ISEs obtained by substituting oxygen atoms
with S atoms in inorganic oxide solid electrolytes [41]. Sulfide electrolytes have garnered
significant interest due to their exceptional Li+ conductivities exceeding 10−4 S cm−1, which
can exceed that of organic liquid electrolytes [42–45]. Their favorable mechanical softness
also facilitates excellent interactions with electrode materials [46]. Sulfide solid electrolytes
can be divided into glass sulfide, glass–ceramic sulfide, and crystalline sulfide [14].

Lithium thiophosphate (LPS), with the chemical formula Li2S-P2S5, is a notable glass-
sulfide-based ISE of the argyrodite structure with properties that make it a promising
candidate for SSB applications. Synthesized typically through solid-state reactions, LPS is
produced by carefully mixing lithium sulfide (Li2S) and phosphorus pentasulfide (P2S5) in
specific ratios, followed by heating to promote chemical reactions and crystal growth [47].

LPS offers several distinct advantages as a solid electrolyte material. Its high ionic
conductivity (up to 10−2 S cm−1 at RT), particularly for Li+, allows for efficient ion transport
within the solid electrolyte, enabling rapid charging and discharging in batteries [47].
Additionally, LPS is stable against Li metal, which is essential for mitigating safety risks
associated with dendrite formation. Its compatibility with various cathode and anode
materials enhances its versatility in accommodating different battery chemistries [48].

However, challenges also exist. The synthesis process requires careful control to
achieve desired material properties, and the associated costs can impact the overall eco-
nomics of the battery. Ensuring a stable interface between LPS and electrode materials
remains a concern for long-term battery performance [49]. Mechanical properties, including
brittleness, can pose manufacturing and operational challenges. Of utmost significance is
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that LPS is sensitive to both moisture and oxygen, introducing complexity to its processing
when conducted under typical ambient air conditions [47].

One frequently employed glass-ceramic electrolyte is the (100 − x)Li2S-xP2S5 system,
known for its superior ionic conductivity when contrasted with glass sulfide counterparts.
In this system, the composition can vary by adjusting the value of x. It allows for a range of
compositions where the ratio of Li2S to P2S5 can be controlled to fine-tune the properties of
the glass-ceramic electrolyte.

Within the realm of crystalline-sulfide ISEs, two classes of materials are defined based
on their structure: thio-LISICON (Li10MP2S12, M = Ge, Si, Sn) [50] and the argyrodite [14].
Within the thio-LISICON structure, two typical materials are often studied: LGPS and
Li9.54Si1.74P1.44S11.7Cl0.3 [51].

LGPS is a highly promising solid electrolyte material renowned for its exceptional
ionic conductivity, particularly at RT. LGPS reaches 1.2 × 10−2 S cm−1, higher than most
organic liquid electrolytes [52]. Synthesized through solid-state reactions, LGPS is produced
by meticulously blending precursor materials such as Li2S, germanium sulfide (GeS2),
and P2S5 in precise proportions, followed by elevated-temperature heating to encourage
chemical reactions and crystal growth [53,54]. The resultant LGPS material is ground into a
powder for further processing [14].

The advantages of LGPS are manifold. Its high ionic conductivity facilitates rapid ion
transport within the solid electrolyte, enabling efficient battery charging and discharging.
Importantly, LGPS remains stable in the presence of Li metal, establishing a reliable interface
and reducing the formation of potentially hazardous dendrites, thereby enhancing overall
battery safety [55]. Its broad electrochemical stability window allows operation at higher
voltage ranges, contributing to higher energy density batteries. LGPS’s compatibility with
various cathode and anode materials adds to its versatility, catering to diverse battery
chemistries. Moreover, SSBs that incorporate LGPS as the electrolyte exhibit enhanced
safety by eliminating flammable liquid electrolytes, mitigating the risks of fire and explosion
under extreme conditions.

However, LGPS does present certain challenges. Its synthesis entails energy-intensive
high-temperature processes, necessitating careful control to achieve desired material prop-
erties. The associated costs, both in terms of synthesis and materials, could impact the
overall affordability of batteries. While LGPS itself is stable against Li metal, achieving a
consistently stable interface between the solid electrolyte and electrode materials remains
a hurdle [56–58]. Interface reactions could influence long-term battery performance and
cycling stability [59]. Moreover, LGPS and similar solid electrolyte materials can be brittle
with inferior mechanical properties, potentially resulting in issues like cracking or delami-
nation during battery fabrication and operation [60]. Additionally, the hygroscopic nature
of LGPS requires meticulous handling and storage practices to prevent moisture absorption,
which could compromise its performance.

Li9.54Si1.74P1.44S11.7Cl0.3, a solid electrolyte material, offers promising advantages and
faces notable disadvantages in the context of LIBs. On the positive side, it exhibits high
Li+ conductivity (2.5 × 10−2 S cm−1), enabling faster charging and discharging, poten-
tially reducing charging times [61,62]. Solid electrolytes like this one are known for their
enhanced safety compared to liquid counterparts, as they are less prone to leakage and
thermal runaway. They also operate effectively across a wide temperature range and can
be compatible with high-capacity anode materials, which may lead to batteries with higher
energy density and longevity, while reducing the formation of Li dendrites [63].

However, the commercial availability of Li9.54Si1.74P1.44S11.7Cl0.3 and similar solid
electrolyte materials remains limited, hindering immediate widespread adoption. Manufac-
turing challenges, including complexity and cost, must be addressed to scale up production
for broader use [64]. Some solid electrolytes may also exhibit mechanical stability issues
and interface compatibility concerns with other battery components [50,65]. Finally, the
cost of production for these materials may be higher than traditional liquid electrolytes,
impacting the overall cost of LIBs. Despite these challenges, ongoing research and de-
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velopment efforts aim to maximize the advantages while mitigating the disadvantages,
potentially revolutionizing the future of battery technology.

2.1.3. Halide-Based ISEs

While oxide and sulfide-based electrolytes are typically the most studied, there is still
investigation into halide-based ISEs. The latter are a subset of solid electrolyte materi-
als that incorporate halide ions (e.g., fluoride, chloride, bromide, and iodide) as part of
their composition. Compared to oxide and sulfide-based ISEs, halide ISEs exhibit a more
well-rounded set of properties across different factors, encompassing ionic conductivity,
electrochemical stability window, and moisture resistance. These materials have gained
attention for their potential use in SSBs due to their high ionic conductivity and compatibil-
ity with various battery chemistries [13]. However, halide-based solid electrolytes can also
present challenges related to stability and materials processing, specifically due to their
sensitivity to moisture [66].

Halide-based SSEs offer a diverse landscape, classifiable into three distinct categories,
each exhibiting unique characteristics and potential applications. The first class encom-
passes Li3MX6 halide electrolytes, where M represents group 3 elements such as scandium
(Sc), yttrium (Y), and various lanthanides. The second class involves Li3MX6 halide elec-
trolytes incorporating group 13 elements such as Al, gallium (Ga), and indium (In). Finally,
the third class consists of Li2MX4 or Li6MX8 halide electrolytes that involve divalent metal
elements, including Ti, zirconium (Zr), hafnium (Hf), vanadium (V), chromium (Cr), man-
ganese (Mn), iron (Fe), zinc (Zn), and magnesium (Mg) [67]. Some of the most extensively
studied halide electrolytes are Li3YCl6, Li3ScCl6, and Li3YBr6 [68]. While halide SSEs
continue to be explored, oxide and sulfide materials currently dominate the field of SSE
research.

2.2. Organic Solid Polymer Electrolytes (OSPEs)

Polymer electrolytes have emerged as a promising alternative to traditional ISEs in
SSBs due to their unique properties and potential advantages. Unlike inorganic electrolytes,
polymer electrolytes are made of organic polymers that can be designed to have high ionic
conductivity, good thermal stability, and mechanical flexibility. Additionally, polymer
electrolytes can reduce the interface resistance between the electrodes and the electrolyte,
improving battery performance. Furthermore, polymer electrolytes can be processed using
cost-effective and scalable methods, making them attractive for large-scale manufacturing.
Despite these promising characteristics, polymer electrolytes face challenges related to low
ionic conductivity, chemical stability, and mechanical strength [69,70]. Therefore, ongoing
research is focused on developing new polymer materials and optimizing the properties
of existing ones to overcome these limitations and unlock the full potential of polymer
electrolytes in SSBs.

PVDF is a type of polymer material that is sometimes used as an electrolyte in SSBs,
particularly in combination with Li salts such as lithium bis(trifluoromethanesulfonyl)imide
(LiTFSI) [69,71]. PVDF is a polymer composed of carbon, hydrogen, fluorine, and some-
times other elements such as oxygen or chlorine. Its repeating unit is CH2CF2, and the
polymer chain can be linear or branched depending on the specific polymerization process
used. PVDF can be synthesized through a process known as polymerization, in which
monomers such as vinylidene fluoride are reacted in the presence of a catalyst and/or ini-
tiator to form a polymer chain [72]. The resulting PVDF polymer can be further processed
into various forms, such as films, fibers, or powders.

To use PVDF as an electrolyte in SSBs, the polymer is typically combined with a Li salt
such as LiTFSI. The PVDF/LiTFSI mixture can be dissolved in a solvent such as acetonitrile
or propylene carbonate to form a gel or polymer electrolyte. The resulting electrolyte can be
cast into films or other shapes and incorporated into the battery design [72]. PVDF-based
electrolytes have some advantages over other types of solid electrolytes. They can have
relatively high ionic conductivity and good mechanical properties, which can improve the
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overall performance and stability of the battery [8]. However, PVDF-based electrolytes can
also have drawbacks, such as limited electrochemical stability and potential reactivity with
Li metal anodes [70]. As a result, PVDF-based electrolytes may be more suitable for specific
battery designs or applications rather than being a universal solution.

PEO is a polymer material commonly used as an electrolyte in SSBs, particularly in
combination with Li salts such as LiTFSI. PEO is a polymer composed of carbon, hydro-
gen, and oxygen. Its repeating unit is CH2CH2O, and the polymer chain can be linear
or branched depending on the specific polymerization process used [70]. PEO-based
electrolytes have some advantages over other types of solid electrolytes. They can have
relatively high ionic conductivity and good mechanical properties, which can enhance
the overall efficiency and durability of the battery. PEO-based electrolytes also have good
compatibility with Li metal anodes, which can reduce the risk of dendrite formation and
improve the overall safety of the battery [71]. In addition, PEO-based electrolytes can
be relatively low-cost and easy to manufacture compared to other solid electrolytes [73].
However, PEO-based electrolytes can also have some drawbacks. They can have limited
electrochemical stability and be prone to degradation over time, particularly in the presence
of moisture or other contaminants. In addition, PEO-based electrolytes can be relatively
sensitive to temperature and may require careful control of the operating conditions to
maintain their performance [71,73].

Poly(acrylonitrile) (PAN) is a polymer that has been investigated as a potential elec-
trolyte material for SSBs. PAN-based polymer electrolytes have been shown to have high
ionic conductivity and good mechanical properties, which make them attractive for use
in SSBs [73]. The composition of PAN-based polymer electrolytes typically involves mix-
ing PAN with a Li salt and a plasticizer, which helps improve the polymer electrolyte’s
ionic conductivity. The Li salt dissociates in the polymer matrix to form free Li+, which is
responsible for the charge transport within the electrolyte.

PAN-based polymer electrolytes can be manufactured using cost-effective and scalable
methods, such as solution casting or electrospinning. Solution casting involves dissolving
PAN, the Li salt, and the plasticizer in a solvent and casting the resulting solution into
a thin film. Electrospinning consists of using an electric field to spin a polymer solution
into nanofibers, which can be used to form a three-dimensional network that enhances
the mechanical strength and ionic conductivity of the electrolyte [74]. One advantage of
PAN-based polymer electrolytes is their high ionic conductivity, which can be attributed
to the dissociation of the Li salt and the plasticizer’s ability to increase the mobility of the
Li+. PAN-based polymer electrolytes also have good mechanical properties, such as high
elasticity and tensile strength, which make them resistant to deformation and cracking
during battery operation.

Overall, PAN-based polymer electrolytes show promise as a potential electrolyte mate-
rial for SSBs. Ongoing research is focused on optimizing the composition and processing of
PAN-based polymer electrolytes to improve their ionic conductivity, mechanical properties,
and stability over the battery’s lifetime. The ionic conductivities of some notable ISEs and
OSPEs are shown in Table 1.

2.3. Composite Solid Electrolytes (CSEs)

While some studies have concentrated on either inorganic solid ceramic electrolytes or
organic solid polymer electrolytes, there is a rising trend of research attention towards CSEs.
These electrolytes merge the strengths of both inorganic and organic solid electrolytes while
eliminating their drawbacks. In CSEs, inorganic ceramic electrolytes function primarily as
fillers to improve mechanical strength and ionic conductivity [74]. Some examples of these
fillers and the overall advantages of CSEs are shown in Figure 3.

The purpose of adding inorganic fillers into the polymer matrix is to improve mechan-
ical strength, increase ionic conductivity, and improve stability. Recent research includes
the investigation of various morphologies such as 0D nanoparticles, 1D nanowires, 2D
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nanosheets, and 3D frameworks. Depending on the Li ion conductivity, the inorganic fillers
can be classified into two categories: passive and active.

Table 1. Ionic conductivity of typical inorganic and organic electrolytes.

Material Ionic Conductivity */S cm−1 at RT Source

LATP 10−3 [75]
LLZO 10−6–10−3 [51]
LTTO 10−3 [32]

LISICON 10−6–10−4 [51]
LPS 10−2 [47]

LGPS 10−2 [52]
PVDF 10−8–10−6 [68]
PEO 10−8–10−6 [68]
PAN 10−8–10−6 [68]

* The actual values of ionic conductivity can vary depending on various factors, such as the composition,
processing conditions, and measurement methods [15].
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Passive inorganic fillers are commonly used in polymer composite SSEs to improve
their mechanical and thermal properties. These fillers do not participate in the ionic con-
duction process but rather act as a supporting material to enhance the overall performance
of the composite electrolyte. Inert fillers are mainly oxide ceramics with a spherical particle
shape, like Al2O3, silica (SiO2), and TiO2 [74,76].

One common passive filler used in polymer composite SSEs is SiO2, known for its ex-
cellent mechanical properties and thermal stability. Adding SiO2 nanoparticles to polymer
electrolytes has been shown to improve their mechanical strength, modulus, and thermal
stability while maintaining their high ionic conductivity. In terms of electrochemical proper-
ties, studies have shown that adding SiO2 nanoparticles can improve the ionic conductivity
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of polymer electrolytes. This is thought to be due to the increase in the number of ion-
conducting pathways within the composite electrolyte, as well as the improved interfacial
contact between the polymer matrix and the SiO2 nanoparticles.

A recent study found that by adding SiO2 nanotubes to PEO/LiTFSI, the ionic con-
ductivity increased from 6.13 × 10−8 S cm−1 to 4.35 × 10−4 S cm−1 at 30 ◦C [77]. They
proposed that the interaction between the SiO2 nanotubes and the composite contributed
to the efficient transport of Li+. Additionally, the assembled cell showed good cycle life.
Other passive fillers that have been investigated include Al2O3, magnesium oxide (MgO),
and titanium dioxide (TiO2). These fillers have been shown to improve the mechanical
and thermal properties of the polymer electrolytes while maintaining their high ionic
conductivity [78].

Incorporating passive inorganic fillers into polymer composite SSEs can provide sev-
eral benefits, such as improved mechanical strength, better thermal stability, and increased
resistance to deformation and cracking. These benefits can make the composite electrolytes
more durable and longer lasting in demanding applications, such as high-performance
LIBs or supercapacitors.

Active fillers contain Li ions in their composition and are used in polymer composite
SSEs to enhance their ionic conductivity by providing a continuous pathway for ion
transport. These fillers are typically ceramic materials with high ionic conductivity and can
act as an active component in the composite electrolyte.

One of the most common active inorganic fillers used in polymer composite SSEs is Li-
ion conducting ceramics, such as LLZO, LATP, and lithium phosphorus oxynitride (LiPON).
These materials have high ionic conductivity and can provide a continuous pathway for ion
transport in the composite electrolyte, resulting in higher overall ionic conductivity. Recent
research has shown that incorporating LLZO into polymer electrolytes can significantly
improve their ionic conductivity. For example, one study found that a composite electrolyte
containing 30 wt.% LLZO achieved an ionic conductivity of 2.2 × 10−4 S cm−1 at room
temperature, much higher than that of the pure polymer electrolyte. Researchers have
also investigated the effect of different types of LLZO particles on the performance of
composite electrolytes and found that smaller LLZO particles with a higher surface area
led to higher ionic conductivity [79]. Recent studies have found that LATP can improve the
ionic conductivity of polymer electrolytes, as well as their thermal stability and mechanical
strength. For example, one study found that a composite electrolyte containing a porous
LATP framework was able to serve as a physical barrier to suppress the growth of Li
dendrites and showed an ionic conductivity of 7.47 × 10−4 S cm−1 at 60 ◦C, which is higher
than that of PEO (1.0 × 10−4 S cm−1) at RT [80].

NASICON is an active inorganic filler material with great potential for improving the
ionic conductivity of polymer composite SSEs. Recent research has focused on optimizing
the use of NASICON as an active filler material. One study found that incorporating
NASICON into a polymer electrolyte significantly improved its ionic conductivity and me-
chanical properties. The researchers found that the optimal NASICON content was 20 wt.%,
which resulted in a polymer electrolyte with a high ionic conductivity of 1.44 × 10−3 S cm−1

and good mechanical strength. Another study investigated the effect of sodium doping on
the ionic conductivity of NASICON-based SSEs. The researchers found that increasing the
amount of sodium doping led to an increase in the ionic conductivity of the material. They
also found that the addition of NASICON improved the thermal stability of the polymer
electrolyte, making it more suitable for high-temperature applications [81].

Other active fillers that have been investigated include sulfides, oxides, and nitrides,
such as Li2S, lithium nitride (Li3N), and lithium magnesium oxide (LiMg0.05O). These
materials have also been shown to improve the ionic conductivity of the polymer electrolyte
and enhance its overall performance. Compared with passive fillers, active fillers have a
stronger enhancement effect on the ionic conductivity of SPEs. This is mainly due to the
intrinsic high bulk ionic conductivity of active ceramics [76]. Examples of some CSEs, along
with their ionic conductivity, are shown in Table 2.
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Table 2. Ionic conductivity of typical inorganic filler-based composite solid electrolytes.

Compound Ionic Conductivity/S cm−1 at T/◦C Source

SiO2/PPC/LiTFSI 8.5 × 10−4/60 ◦C [82]
SiO2 NTs/PEO/LiTFSI 4.35 × 10−4/30 ◦C [77]

SiO2 NFs/PEO-LiTFSI-SN 1.3 × 10−4/30 ◦C [83]
LLZO/PEO/LiTFSI/PEGDME 4.7 × 10−4/60 ◦C [84]

LLZO NWs/PEO/LiTFSI 2.39 × 10−4/RT [85]
Li/LATP-3D/LiFePO4 7.47 × 10−4/60 ◦C [80]
LLZAO-PEO/LiClO4 2.25 × 10−5/30 ◦C [79]

LLTO/PEO 3.31 × 10−4/RT [86]
LLTO/PAN-PVDF 1.43 × 10−3/RT [87]

3. Electrode Materials for SSBs
3.1. Anode

The anode is the battery’s negative electrode and is responsible for releasing electrons
during the discharge process. In SSBs, the anode is typically made of a Li-containing
material, such as Li metal, lithium titanium oxide (Li4Ti5O12), or lithium silicon (LiSi).
These materials are chosen because they have high energy densities and good stability but
can also be prone to degradation over time [88]. Substituting the traditional graphite anode
with Li metal presents a promising avenue. Indeed, according to Jie Xiao [89], this could
amplify the energy density of batteries by a factor of approximately 1.5. This transition,
however, sets in motion a series of chemical alterations within the liquid electrolyte upon
encountering Li metal and is, therefore, only possible with a solid electrolyte. Indeed, these
transformations give rise to the creation of hazardous organic salts, which subsequently
precipitate and evolve into the infamous structures known as Li dendrites. These dendritic
formations can grow and extend, ultimately piercing through the separator that keeps the
battery’s components isolated. This breach in the separator leads to short circuits within
the battery, thereby introducing a significant safety concern [89].

Nonetheless, the utilization of solid electrolytes brings forth a set of distinctive advan-
tages. These SSEs possess characteristics that render them non-volatile and non-flammable,
making the battery safer. Moreover, they exhibit an extended range of electrochemical
stability, allowing for more efficient battery operation. Critically, they offer the capability
to effectively inhibit the progress of Li dendrites. Indeed, Pilgun et al. [90] showed that
by preventing these dendrites from penetrating the separator, the solid electrolytes play a
pivotal role in enhancing the overall safety of the battery.

Thus, SSEs allow the employment of metallic Li as a negative electrode. Currently,
most SSBs opt for a Li metal anode due to its promising theoretical capacity, lightweight
nature, and low electrochemical potential. However, Li has drawbacks like high reactivity,
susceptibility to oxidation, and limited availability compared to potential substitutes.
Moreover, there have been instances of Li dendrite formation, even when using certain
SSEs, which poses safety concerns for the battery. Consequently, researchers are actively
exploring alternative anode materials such as Si, S, metallic alloys, tin (Sn), Ti, and carbon-
based substances [91]. This subsection will delve into these diverse options, but first,
attention is given to lithium-based anodes.

Li metal is commonly used as an anode in SSBs due to its high theoretical capacity,
lightweight nature, and low electrode potential. However, it also has drawbacks related
to its high reactivity, susceptibility to oxidation, and dendrite formation, posing safety
concerns. Researchers have improved the electrochemical performance of these systems by
using graphite coatings, facilitating three-dimensional Li-ion transport on the graphite’s
surface and enhancing mechanical properties [92].

Another option is lithium titanate (LTO, Li4Ti5O12) anodes. They are known for their
safety and cycle life and, although not offering the high energy density of Li metal, they are
stable and dependable. Garnet-structured SSEs are gaining attention, but their lithiophobic
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nature creates interface resistance. A composite anode material comprising Li metal and
LTO has been proposed to address this challenge [93].

Silicon stands out as a highly promising anode material for batteries due to its excep-
tional theoretical capacity, cost-effectiveness, and stability in air. It has garnered significant
attention for use in EVs and SSBs, addressing concerns related to energy storage and
driving range limitations in the EV industry [94]. However, Si faces inherent challenges,
notably substantial volume expansion and pulverization during charge and discharge
cycles. Researchers are actively exploring innovative solutions to mitigate these issues,
aiming to enhance the performance and longevity of Si-based battery systems [94]. In
the context of SSBs, integrating Si-based negative electrodes is a key focus to align with
advanced electrolyte technologies and establish stable battery operation [94]. Nevertheless,
the relatively low ionic conductivity of solid electrolytes and the substantial resistance
encountered at the electrode-electrolyte interface present challenges that affect overall
battery performance. The appeal of Si as an anode material in ASSBs stems from its ready
availability, non-toxic nature, and remarkable theoretical capacity, making it a competitive
candidate in the pursuit of next-generation battery technology [95]. However, it is essential
to acknowledge certain limitations associated with Si-based anodes, including concerns
related to mechanical integrity, limited electrical conductivity, and cycling lifespan [96,97].
These challenges underscore the ongoing efforts in material modification and engineering
to harness Si’s full potential while addressing its drawbacks in advanced battery systems.

Lithium silicides (Li-Si alloys) and sulfur are other potential anode materials. They
offer higher energy density but face challenges such as low electrical conductivity. To
enhance the energy storage capability, researchers have explored heteroatom doping,
including S, P, nitrogen, oxygen, and boron doping. Among these, S doping has garnered
significant attention. S atoms have a larger covalent radius, which expands the interlayer
spacing of carbon materials, thereby increasing the number of active sites available for
sodium storage [98].

Certain SSBs are exploring metallic alloys like lithium-aluminum (Li-Al) and lithium-
tin (Li-Sn), striking a balance between capacity and stability [99]. In a study by Zhang
et al., a polymer electrolyte reinforced with polyacrylonitrile (PAN) fibers and a protective
Li-Sn alloy layer on the Li anode has significantly extended the cycle lifespan of room-
temperature SSBs. The Li-Sn alloy layer acted as a passivation layer, preventing unwanted
reactions between metallic Li and the solid polymer electrolyte (SPE), and enhancing
compatibility and stability [100]. Alloy anodes in SSBs offer mechanical advantages over
other materials, avoiding issues like short-circuiting and stabilizing the solid-electrolyte
interphase, thus advancing the development of efficient and reliable SSBs [101].

Finally, silver-carbon composite interlayers have shown potential for enabling Li-free
cycling in SSBs. During battery charge, Li intercalates into graphite and reacts with Ag to
form Li-Ag alloys. Discharge proceeds through Li-deficient Li-Ag phases. Higher charging
rates delay Li-Ag phase formation, resulting in more Li metal deposition [102].

3.2. Cathode

The cathode is the positive electrode of the battery, responsible for accepting electrons
during the discharge process. In SSBs, the cathode is typically made of a Li-containing
material, such as lithium cobalt oxide (LiCoO2), lithium iron phosphate (LiFePO4), or
lithium nickel manganese cobalt oxide (LiNiMnCoO2). These materials are chosen because
they have high energy densities, good stability, and relatively low cost [88], but can only be
properly used in non-reactive electrolytes. Indeed, some high-energy cathode materials,
such as those based on nickel or manganese, can be sensitive to the electrolyte’s chemistry.
SSEs can provide a more stable interface with these cathode materials, reducing unwanted
side reactions and enhancing the overall efficiency and cycle life of the battery [103]. More-
over, cathodes that interact directly with air or oxygen, such as lithium-air (Li-O2) or
sodium-oxygen (Na-O2) batteries, can benefit from SSEs that prevent the infiltration of
moisture and contaminants from the air [104,105]. It extends the lifespan of the cathode by
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inhibiting dendrite growth and unwanted reactions. The wider electrochemical stability
window allows higher voltage operation, potentially boosting energy density. Additionally,
the SSE prevents cathode-electrolyte reactions, preserving cathode capacity. Its stability en-
hances safety for thermally sensitive cathodes, and its interface with the cathode improves
overall electrochemical performance. Overall, SSEs provide flexibility in cathode selection,
minimize self-discharge, and positively impact the cathode’s stability and performance
over time [14].

However, the primary determinant of battery energy density remains the selection of
cathode materials. This choice significantly impacts the potential energy storage within the
battery. To achieve heightened energy density, it becomes crucial to diminish the resistance
at the interface connecting the electrolyte and the electrode [106].

Unlike traditional LIBs, SSBs function in a distinct manner where the movement of Li+

occurs through the solid portions, encompassing both bulk and solid-to-solid interfaces.
Consequently, optimizing the connections between SSEs and cathode materials becomes
essential to establish efficient pathways for Li+ transport within the electrode [107]. The
decision regarding the cathode material is thus heavily influenced by the chosen electrolyte.
Their compositions must often be closely aligned to prevent additional complications at
the interface.

For ISEs, cathode materials rich in nickel (Ni) have recently been used in LIBs due to
their ability to hold high reversible capacities exceeding 200 mA g−1. Unfortunately, the
applicability of these cathode materials in SSBs is limited due to their relatively low density,
which can lead to particle cracking and loss of Li-ion transport pathways. This, in turn,
results in notable performance degradation during the cycling of SSBs [108]. To address this
issue, researchers have explored various structural adjustments to enhance the mechanical
strength and density of cathode materials, aiming to make them compatible with SSBs.
In this context, cathode materials with a single-crystalline structure show promise due
to their cohesive form, absence of defects in their microstructure, and excellent particle
hardness [106].

Research findings indicate that the interfacial resistance at the solid-solid junctions
between the lithium phosphorus sulfur chloride (LPSCl) solid electrolyte and cathode
materials can be effectively lowered by modifying the structure of Ni-rich cathode materials
to adopt a single-crystalline form [106]. An effective technique to mitigate interfacial
impedance involves applying a coating of Li ionic conductors onto oxide cathodes. This
method has shown improvements in initial charge-discharge capacity and rate performance.
For instance, LiNbO3-coated Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode has exhibited
noteworthy electrochemical enhancements in SSBs operating at 35 ◦C and 60 ◦C [109].
However, challenges remain regarding cycle performance enhancement for oxide cathodes,
primarily due to issues like incomplete coating with thin inactive buffer layers or decreased
electronic conductivity and specific capacity with thicker inactive buffer layers. To address
this, constructing a core-shell architecture for Ni-rich oxide cathode materials proves
effective, where the Ni-rich core contributes to high capacity, and the Ni-low shell ensures
stable interactions with sulfide electrolytes, allowing for complete coating [108,109].

Zhang et al. [110] demonstrated that a solid-state lithium metal battery using a ceramic-
based composite solid electrolyte and a LiNi0.5Co0.2Mn0.3O2 (NCM523)-based composite
cathode yielded superior performance. Yu et al. [111] proposed hexaazatriphenylene
(HATN)-based organic materials as suitable cathodes for quasi-solid-state lithium-organic
batteries. Combining these organic cathodes with a gel polymer electrolyte modified with
a succinonitrile plasticizer resulted in improved electrochemical performance.

Moreover, addressing resistance at the electrolyte-electrode interface is crucial to
elevate energy density. Unlike conventional LIBs, SSBs function uniquely, necessitating
optimized connections between solid electrolytes and cathodes for efficient Li ion transport.
The choice of cathode material is intricately tied to the electrolyte, requiring compositional
alignment to prevent complications. While ISEs have succeeded with nickel-rich cathodes in
LIBs, their potential in SSBs is hindered by density-related challenges, prompting innovative
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solutions such as single-crystalline structures. Research shows that modifying cathode
structures can reduce interfacial resistance, and strategies like Li ionic conductor coatings
on oxide cathodes can significantly enhance performance. Organic-based cathodes, as
exemplified by HATN, are especially promising when combined with advanced electrolyte
modifications.

4. Additive Manufacturing of SSBs

SSBs are safer and better than LIBs and can be produced at a commercial scale by
additive manufacturing, also known as 3-dimensional (3D) printing. Researchers and
engineers have been exploring the integration of 3D printing techniques to fabricate SSBs,
aiming to enhance their efficiency, energy density, and overall performance. The use of 3D
printing in the fabrication of SSBs offers advantages such as intricate design possibilities,
improved manufacturing precision, and the ability to create complex internal structures
that enhance battery performance [112]. Researchers have investigated various 3D printing
technologies, including selective laser sintering, stereolithography (SLA), and roll-to-roll
printing, to create intricate solid electrolyte structures and optimize the overall battery
architecture [113].

For electrode materials, conventional thin film fabrication methods, including sol-gel
techniques, electron beam evaporation, and chemical vapor deposition, are complex and
expensive, often leading to undesired side reactions that reduce the efficiency of LIBs. Inkjet
printing, as reported by Zhao et al., offers a simpler approach, demonstrating improved
electrochemical efficiency for SnO2 and LiCoO2 thin film electrodes [114]. Substituting
conventional carbon black with surface-modified carbon in the ink further enhances elec-
trochemical properties. Utilizing the direct ink writing (DIW) technique, planners and a
3D-patterned LiMn2O4 cathode were constructed, incorporating carbon black, PVDF, and
N-methyl-2-pyrrolidone [115]. The resultant cell exhibited superior specific capacity and
rate capability when compared to conventional flat electrodes.

Printing techniques are also being employed for the fabrication of SSEs. Delannoy
et al. investigated LIB construction incorporating porous electrodes, where the SSE was
fabricated using inkjet printing with a silica-based chemical solution as ink. The inkjet-
printed electrolyte exhibited comparable electrochemical performance to the physically
vapor-deposited counterpart [116]. In parallel, diverse 3D-printable LATP-based inks
were developed through the DIW technique, enabling the creation of arbitrary shapes
(L, T, and +) and achieving higher conductivities (up to 4.24 × 10−4 S cm−1). These inks
were employed in the construction of ceramic SSEs. LATP-based electrolytes were directly
printed on LiFePO4 cathodes, demonstrating a high discharge capacity of 150 mA h g−1 at
0.5 ◦C [117]. In a noteworthy contribution to overcoming the obstacle of poor interfacial
contact within SSBs, a recent study reports the use of SPEs fabricated through SLA 3D
printing for SSBs. The SLA-printed OSPE demonstrates an impressive ionic conductivity
of 3.7 × 10−4 S cm−1 at 25 ◦C, as well as reduced interfacial impedance, outperforming
structures utilizing conventional structure-free OSPE [118].

The integration of 3D printing can potentially streamline the manufacturing process
of SSBs, reducing production costs and making these advanced energy storage devices
more commercially viable [112]. As research and development in this field continue, it is
anticipated that further breakthroughs will be made, pushing the boundaries of both 3D
printing and SSB technology.

5. Solid-State Battery Market
5.1. Market Overview

The World Economic Forum (WEF) forecasts the global battery market to grow from
a capacity of ≈330 GWh in 2018 to ≈2.6 TWh in 2030, representing a 14-fold increase.
Figure 4 shows that the bulk share of the demand originates from the electric vehicle (EV)
mobility sector, with an expected compound annual growth rate (CAGR) of 26% [119].
Initial calculations for the year 2021 indicated a capacity of around 400 GWh. According to
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the Fraunhofer Institute ISI, the market has seen recent annual growth between 30% and
over 40%, even faster than previously predicted by the WEF [120].
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The global battery market is currently dominated by lead-acid (PbA) and LIBs. Overall,
the global demand for LIBs was 250–280 GWh in 2020, with a market revenue of over 35 bil-
lion euros in cells sold, while current state-of-the-art cell costs are around 90 €/kWh [122].
Material costs typically make up the largest portion. Cathode costs, in particular, account
for roughly half of these material costs. Costs associated with cell assembly are approxi-
mately at the 17 €/kWh benchmark. The main technology drivers include applications for
EVs, portable consumer electronics, and future energy storage systems. Market drivers,
such as regulations for emission control, the increasing renewable energy sources (RES)
generation, and the necessary storage capacities, are also significant. Consequently, SSBs
will directly compete with LIBs in the future. This market analysis will, therefore, system-
atically examine SSB market progress in relation to historical and future LIB technology
advances. This is due to their technological proximity and the fact that many available data
sources naturally highlight this relationship.

According to the Fraunhofer Institute ISI, global demand for LIBs could reach more
than 3 TWh per year by 2030, with most reports and market forecasts predicting a global
demand of 1–4 TWh for the year 2030 (maximum scenarios assume a demand of up to
6 TWh). This capacity would be equivalent to market revenues of 125–225 billion euros
(assuming a price drop of 70–80%) [120]. Production line investments of 130 billion euros
will be required globally until 2030. Next to this, new markets (individual passenger
aviation and others) could reach a relevant market share by 2030, which will further
increase demand. In the long term, beyond 2030, a global battery demand of more than
10 TWh per year is predicted [120].

Consumer concerns regarding EVs (short driving ranges and long charging times)
stand out as the main market driver for battery improvement. This may be the reason why
SSBs are on the roadmap of many battery producers and original equipment manufacturers
(OEM), as the key performance indicators (KPI) of SSBs indicate great suitability for electric
mobility [123]. EV-makers decide on mass commercialization of SSB and will be the decisive
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element for the organization of the supply chain, as they impose the requirements and
make strategic decisions that affect the entire market [119].

5.2. SSB Market Size

The entire SSB market is generally an emerging type of market. The current utilization
of SSB is limited to low-volume EVs and some smaller portable devices (sensors or medical
applications). It almost exclusively consists of polymer-based SSBs, and in some cases, SSB
microbatteries with oxide thin film electrolytes (e.g., solid batteries for medical devices
manufactured for more than 15 years by companies like Ilika [124]). Apart from some
exceptions, few of these SSB products have been on the market, such as an ultra-thin
ceramic SSB from STMicroelectronics since 2014 [125]. The thin film battery technology
employed for the small-scale applications differs significantly from the large-scale battery
cells that are required for EV installations, both in terms of material and cell design, as well
as manufacturing, so economic comparisons and conclusions from these cannot be applied
to the general SSB future market.

As a mostly emerging technology, it must be emphasized in advance that SSB market
size projections are subject to strong uncertainties given the small amount of freely available
economic data. SSB’s global production capacity is estimated to be below 2 GWh, almost
exclusively based on polymer SSBs [120]. This global capacity is equivalent to less than
0.5% of LIBs’ capacities. Based on the hypothesis that the main technological barriers will
be solved, the prospected demand for SSB in EVs will rise from 200 MWh in 2022 to 2 GWh
in 2025 [119], which is equivalent to a CAGR of 118%. It is important to approach this
situation with caution when examining other sources, as most roadmaps or producers’
statements aim to start industrial-scale production of SSBs around 2025, as the earliest
starting year of manufacturing [126].

This capacity is anticipated to increase significantly, especially with the emergence of
oxide and sulfide electrolyte-based SSBs in the market between 2025 and 2030. The total
capacity of the SSB market is estimated to be 15–40 GWh in 2030 and 55–120 GWh in 2035,
which is still relatively small compared to the total LIB market of 1–6 TWh around 2030
and 2–8 TWh by 2035 [120]. With SSB shares expected to rise from the current 0.5% to just
above 1% by 2035, it must be emphasized that LIBs are set to dominate the global battery
market for the foreseeable future. It is necessary to highlight the substantial deviations
among different data sources. While the Fraunhofer Institute ISI puts forward a rather
conservative growth expectation of SSBs in the range of 5–120 GWh by 2035, Bloomberg
New Energy Finance (Bloomberg NEF) forecasts more than 300 GWh, while only taking
the U.S. and Europe into account (Figure 5).
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Regarding the revenue size projections of SSBs (as part of the global LIB market), it is
still difficult to make projections for the future; however, they are significantly smaller than
respective LIB sales. IdTechEx Research forecasts the SSE industry to reach a market size of
over 25 billion euros by 2029 [128], and Lux Research expects the SSBs market to grow to
42 billion euros by 2035 [129]. While it is difficult to project the market valuation accurately,
the growth forecasts and market dynamics can partly be validated by the intense patent
activities relating to SSB research. In a highly dynamic and competitive environment, the
patent landscape is still quantitatively dominated by Japanese companies from all over
the value chain, with Japanese entities owning the great majority of enforceable Japanese
patents [130]. Toyota, the world’s largest automotive manufacturer, holds over 1300 patents
alone [131]. However, Chinese patent filing has accelerated explosively in recent years. The
evolution of SSB patent filings is shown in Figure 6.
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It can be assumed that the intense IP competition will lead to fast-tracked innovations
and leapfrogging technological barriers. The close relationship between the capacity
development forecasts and the number of patents filed reinforces the assumption that
the market forecasts are realistic, with many R&D departments of leading battery and
automotive manufacturers investing heavily in SSB research.

5.3. Economics of SSBs

Analogous to market predictions, expectations of the cost structure of SSBs also
fluctuate. According to Allied Market Research, current SSB prices are estimated to range
from 400 to 800 €/kWh by 2026 [132]. While most technologies are expected to enter markets
at still high prices, exceptions exist. The Silicon Valley-based SSB start-up “Ampcera”
announced a 75 €/kWh SSB in 2021, with energy densities higher than 450 kWh/kg [133].
Generally, optimistic price values must be taken with caution. However, the drastic price
drops for LIB technologies might indicate that a similar progression is possible for SSBs.
In 2010, the average price for EV LIB technology was above 1200 €/kWh and has now
fallen to prices as low as 90 €/kWh, while it is expected to fall below 45 €/kWh, a price
drop equivalent to more than 96% [120,122]. SSBs can profit significantly from the price
reductions for LIBs, as some components and production steps are closely related, especially
for cathode manufacturing. Initially, SSBs will enter the market with decisively higher
prices, originating from implementing new, initially more expensive materials with smaller
or newly established value chains and different production methods [120].

Figure 7 shows a cost progression forecast of SSB applications in EVs from Bloomberg
NEF [127,134]. It is apparent that economic SSB progression is heavily dependent on
economies of scale. This adds another factor of uncertainty to price forecasts since some
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components might be able to be taken over from conventional LIB technology. Still, mass
production of SSBs is so far untested. Very little attention focuses on the challenges
of processing air-sensitive glass/ceramic materials at giga-scale capacities with realistic
geometries (thicknesses). Material cost, material performance, selection, and processing
speed will all likely impact the ultimate application for SSBs [135]. However, according to
Bloomberg NEF, economies of scale could lead to price parity between LIBs and SSBs as
early as 2030, potentially inducing mass adoption of SSBs. Bloomberg NEF’s forecasted
final SSB prices, approximately 35 €/kWh, may seem unrealistic from today’s perspective.
Other authors, such as Hsieh et al., establish price targets for LIB packs using learning
curves. These curves are influenced by cost parameters for the cathode production level
and learning rates at the pack level [136]. Results are forecasts of 93 €/kWh at the lower
end and 140 €/kWh at the higher end of the resulting cost range for 2030. Both values are
higher than the cost curves presented in Figure 7 derived from Davidson et al. [134].
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The final price of batteries is essentially based on their cost composition and the cost
shares of specific processes along the value chain of SSB. As will be seen later, most projects
are still in an (early) R&D phase. Indications about cost shares are, therefore, highly specu-
lative. Accessible economic data is, in many cases, based on corporate statement releases,
which are often unrepresentative, especially when considering the strong competition
regarding SSB technologies. While an increase in energy density is a clear driver for the
adoption of SSB in many markets, the commercial success of SSB will significantly depend
on their material, processing, and production costs, which are often relatable to historic LIB
economic parameters [120]. Generally, conventional battery manufacturing involves three
primary processes: electrode production, cell production, and cell conditioning.

All these processes will be altered for SSBs and are highly dependent on the material
properties of the solid electrolyte. The final product costs are mainly influenced by the
cost of active and passive materials as well as cell manufacturing. Cell production and
conditioning costs are mainly influenced by the choice of the SSE.

The total cost of cathode active materials will be comparable to liquid LIBs, since
material costs are higher (e.g., 25 € kg−1 for LiNbO3), but coating layers are much thinner.
In ASSBs, the cost of separators is around 1.5 € m−2. SSEs are expected to cost 5–10 € kg−1

if organic solvents are used. Inorganic SSE prices cannot be transferred as easily to SSB
applications. Here, research institutions have used the methodology of considering metal
values in SEs. Germanium-based Ses have proven to be unfeasible from an economic
point of view. Ti, La, and zirconium-based oxide Ses are relatively cheap, ranging from
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6 to 13 € kg−1. The metal cost approximation helps to estimate future costs by applying
cost factors to them, ranging between 20 and 50% (depending on the electrode purity
level required). The future costs of sulfide-based SSB technologies compared to oxide-
based technologies cannot yet be forecasted well, since no supply chain of these materials
currently exists. It can be seen from such forms of analysis that the metal value of the SE
alone (3–6 € kWh−1) is already higher than the cost of the entire electrolyte in liquid LIB
technologies (3–8 € kWh−1). To make SSBs cost competitive, it is therefore mandatory to
bring SE’s final material costs as close to the final metal values as possible [120].

Furthermore, to achieve giga-capacities and SSB EV market penetrations, the electrode
coating costs are essential since these are higher than conventional LIB in all process forms
(but comparable). Hatzell and Zeng demonstrated that electrode manufacturing costs are
always dependent on the coating speed, with higher coating speeds shifting the cost ratios
heavily towards higher capital expenditures (CAPEX) costs (see Figure 8) [135]. Some costs
can be saved in SSB cell manufacturing compared to liquid LIBs by reducing the number of
process steps or times (for example, the reduction in formation and aging times).
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Figure 8. Cost breakdown of the battery manufacturing process based on electrode coating
speed [135].

On the other hand, there will most likely be new manufacturing steps for SSB for
which innovative state-of-the-art manufacturing equipment must be developed. Especially
during the ramp-up phase of SSB commercialization, this means higher investments in
production infrastructure per GWh capacity since no standardized turnkey solutions exist
today. However, in an up-scaled production as well, any additional processing steps can
result in higher scrap rates as well as higher energy and material costs. High-temperature
sintering steps for oxide SE materials are particularly critical [120].

As stated before, investments in the range of billions can be expected to build up
production capacities globally. LIB production costs must be undercut to make SSB pro-
duction economically feasible and justify large-scale investments in emerging technologies
during times of high global inflation rates, as seen in Figure 7. Since new SSB factories
will be CAPEX-intensive, production must run for time horizons of at least double-digit
years to offset higher-than-before interest rates. Manufacturing synergies with existing LIB
production could turn out to be crucial for lowering the final cost. In the future, SSBs will
likely adopt manufacturing approaches from both the solid oxide fuel cell and conventional
battery manufacturing community [120,135].

5.4. Key SSB Players and Collaborations

The global SSB market is strongly dominated by R&D activities. Key players can
generally be divided regarding their respective SSB technology type (e.g., polymer-/oxide-
/sulfide-based). An overview of the key market players is presented in Figure 9. More
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in-depth descriptions of the most important companies and their current ambitions are
provided in Tables 3–5.
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Table 3. Overview of the most active polymer-based SSB market players in R&D institutions and
battery industries.

Player Description OEM
Collaboration

Year of
Market Entry Source

Bollore
(BlueSolutions)

Bollore developed a passenger car with an SSB (BlueCar) in
2011. In addition, buses equipped with SSBs were launched in
2020 together with Mercedes. The Bollore-owned company
“BlueSolutions” has been selling LMP technology
(all-solid-state Li-metal polymer) since 2011. It is now selling
its SSBs to Daimler for the eCitaro-bus.

Mercedes-Benz 2020 [119,120]

WeLion
New Energy
Technology

Car manufacturer NIO, together with WeLion New Energy
Technology, launched a polymer battery with a Li metal anode
and an NMC cathode in 2022. It also announced the start of
construction of a production plant that will initially produce
20 GWh of hybrid SSBs with liquid electrolyte, as well as
ASSB. An expansion to 100 GWh is targeted.

NIO 2022 [119,120]

Factorial
Energy

Factorial Energy presented a cell with a solid separator, liquid
electrolyte, and a Li metal anode that achieved 40 Ah capacity
in 2021. The OEM Hyundai-Kia, Mercedes-Benz, and Stellantis
have already invested in Factorial Energy. Mercedes-Benz and
Factorial Energy scheduled a small series to enter the market
for automotive applications by the end of 2026.

Hyundai-Kia,
Mercedes-Benz,

Stellantis
2026 [119,120]
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Table 3. Cont.

Player Description OEM
Collaboration

Year of
Market Entry Source

Solid Energy
Systems

Solid Energy Systems plans to develop a prototype car
together with GM and Hyundai by 2023 and reach market
maturity by 2030. SES relies on a hybrid cell concept with an
LCO or an NCA cathode active material and a Li metal anode.

GM, Hyundai 2030 [119,120]

Hydro-Quebec

Hydro Quebec plans to start production between 2025 and
2027, initially launching polymer electrolytes with a Li metal
anode and an LFP cathode. Later, the LFP cathode will be
replaced with NMC, and the polymer electrolyte will be
replaced by a composite electrolyte with ceramic components.

Mercedes-Benz 2025–2027 [119,120]

Ionic Materials

Furthermore, the company Ionic Materials is developing a
polymer battery with Renault-Nissan-Mitsubishi. Ionic
Materials is known to only use a Li metal anode. A123
Systems LLC will invest in the project.

Renault,
Nissan,

Mitsubishi
- [119,120]

Table 4. Overview of the most active oxide-based SSB market players in R&D institutions and battery
industries.

Player * Description OEM
Collaboration

Year of
Market Entry Source

QuantumScape

In another cooperation between carmaker VW and cell
manufacturer Quantum Scape, market-ready batteries for
the automotive sector will be developed by 2025. In 2024,
Quantum Scape will build up a production capacity of
1 GWh, which will be expanded to 20 GWh by 2026.
QuantumScape describes the electrolyte material as ceramic
and has already demonstrated prototype cells with Li
anodes. Due to the potential proximity to oxide materials,
the announcements are classified as oxides.

VW 2024 [119,120]

ProLogium

Cell maker ProLogium and car manufacturers are teaming
up to put an SSB in a commercial vehicle (VinFast) or
Prototypes (Mercedes-Benz) by 2023. For this goal,
production capacities of 1 to 2 GWh were planned to be
built up in 2022. A battery with a ceramic separator and a
capacity of 2.5 kWh was demonstrated together with
scooter manufacturer Gogoro in 2022.

VinFast,
Mercedes-Benz,

Gogoro
2023 [119,120]

Ganfeng
Lithium

Ganfeng Lithium is one of China’s largest battery
producers. The Li and battery manufacturer started to build
a 10 GWh SSB factory in 2022 with a second 10 GWh factory
planned to produce SSBs with 360 Wh/kg.

- - [137]

Qing Tao
Energy

Qing Tao Energy Development and Ampcera are also
working on solid oxide electrolytes. Quin Tao announced a
production capacity of 1 GWh in 2020 and a second
production facility with an optional capacity of 10 GWh
in 2022.

SAIC Motor - [119,120]

Ilika

Founded in 2004, Ilika started designing the Stereax family
of mm-scale SSBs for medical implants and industrial IoT
devices in 2014. Financed by three rounds of venture capital,
the company was publicly listed in 2010. The company
currently plans to start its MWh scale-up of EV batteries.

BMW - [119,120,138]

* Other notable players include STMicroelectronics, LionVolt, Murata-Sony, TDK, FDK, Sakuu & NGK, Ohara,
3DOM, and Foxconn [119,120].
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Table 5. Overview of the most active sulfide-based SSB market players in R&D institutions and
battery industries.

Player * Description OEM
Collaboration

Year of
Market Entry Source

Samsung SDI
In 2020, SDI introduced a prototype cell with an in situ
Li-metal anode and started the construction of a pilot
production plant in 2022.

- 2027 [119,120]

CATL
According to the company‘s own roadmap, CATL plans to be
the first SSB cell manufacturer by developing a sulfide SSB
ready for market introduction by 2025.

- 2025 [119,120]

LGES SKI has announced their SSB will be ready for market
penetration by 2030. - 2030+ [119,120]

PowerSolid

In addition, PowerSolid plans to develop a prototype car with
an SSB before 2025 and a series-produced SSB for passenger
cars by the end of the decade in collaboration with BMW and
Ford. Since 2018, Hyundai has also taken a financial stake in
PowerSolid. PowerSolid plans to develop a 100 Ah cell with a
Si anode by 2026 and a 100 Ah cell with a Li metal anode by
2028, with investments from A123 Systems LLC.

BMW, Ford,
Hyundai 2025 [119,120]

Prime Planet
Energy

The cooperation between Toyota and Panasonic presented a
prototype of a car equipped with an SSB in 2021. Although no
technical data were published on this battery, it can be
assumed that a sulfide electrolyte was used. They plan to
bring the SSB to the market by 2025.

Toyota,
Panasonic 2025 [119,120]

* Other notable players include Hitz Hitachi Zosen, Idemitsu, ATL, LG Energy Solutions, GS Yuasa, Nissan (own
development), Honda (own development), and Maxell [119,120].

6. Conclusions

SSBs are highly promising upcoming battery technologies. It is a novel technology
vital in shaping the future of energy and sustainability. SSBs differ greatly from widely
employed Li-ion batteries by using solid electrolytes instead of liquid ones due to their
enhanced safety, higher energy density, and longer lifespans.

The development of solid electrolytes is crucial for SSBs and has advanced significantly,
with inorganic and organic solid electrolytes each offering unique benefits but also facing
notable limitations. Inorganic solid electrolytes such as LLZO excel in ionic conductivity
and thermal stability but are less flexible and compatible with certain materials. Alterna-
tively, organic solid electrolytes, such as PEO, are highly flexible and compatible but exhibit
lower ionic conductivity and thermal stability. To optimize properties, CSEs that blend
inorganic and organic components have emerged as a promising solution, harnessing the
strengths of both while mitigating their weaknesses, thus ushering in a new era of safer,
higher-energy-density SSBs.

Electrode materials for SSBs are also critical in determining their performance and
safety. In the context of anodes, Li metal is a popular choice due to its high theoretical
capacity, lightweight properties, and low electrochemical potential. However, it faces
challenges such as reactivity, susceptibility to oxidation, and dendrite formation, which
can pose safety concerns. Researchers are actively exploring alternative anode materials
like Si, S, metallic alloys, and carbon-based substances to overcome these limitations and
improve overall battery performance. On the other hand, cathode materials significantly
impact energy density and overall battery performance. Materials like LiCoO2, LiFePO4,
and LiNiMnCoO2 are commonly used due to their high energy densities, stability, and
relative cost-effectiveness. The choice of cathode material is closely tied to the selected
electrolyte, and researchers are exploring various strategies to optimize the connections
between solid electrolytes and cathodes. Inorganic solid electrolytes have shown promise
with nickel-rich cathodes in traditional LIBs, although density-related challenges hinder
their application in SSBs. Innovative approaches, such as single-crystalline structures, aim
to address these challenges.
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The global battery market is forecast to grow exponentially, driven by EVs, and SSBs
represent an emerging sector within this market. The current use of SSBs is limited, and
market share is expected to be just over 1% by 2035, while LIBs are expected to dominate
the market. Technological challenges, uncertainties, and high initial costs characterize
the development of SSBs. Still, they promise higher energy density that addresses key
consumer concerns such as range and charging times for electric vehicles. Achieving
economies of scale is critical for SSBs to reach price parity with LIBs by 2030, which could
lead to mass adoption. The production and commercial success of SSBs is highly dependent
on reducing material, processing, and production costs, and innovations in manufacturing
methods are crucial. Despite differing market and cost structure projections, there is a
consensus on the significant growth in the SSB sector, supported by extensive patent activity
and R&D investment. While the market penetration of SSBs depends on outperforming
LIB production costs and significant investments in production infrastructure, synergies
with existing LIB production and technological advances can potentially accelerate the
commercialization and adoption of SSBs by leveraging their inherent advantages in energy
storage solutions.
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