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Abstract: In a classic paper of 1960, W. H. Cherry and J. I. Gittleman discussed various thermal and
electrodynamic aspects of the superconductive transition process relevant to practical applications. In
a section of the paper that has remained unnoticed, they proposed a physical model for the Meissner
effect. Earlier in 1940–1943, in work that has also remained unnoticed, K. M. Koch had introduced
related physical ideas to explain the Meissner effect. Still earlier in 1937, J. C. Slater proposed a
model to explain the perfect diamagnetism of superconductors. None of these ideas are part of
the conventional London-BCS understanding of superconductivity, yet I will argue that they are
essential to understand the Meissner effect, the most fundamental property of superconductors. The
unconventional theory of hole superconductivity unifies and extends these ideas. A key missing
element in the conventional theory as well as in these early theories is electron-hole asymmetry. A
proper understanding of the Meissner effect may help with practical applications of superconductors,
as well as to find new superconducting materials with desirable properties.

Keywords: Meissner effect; Alfven’s theorem; Faraday’s law; Lorentz force; holes

1. Introduction

The Meissner effect is the process by which a normal metal develops a supercurrent
and expels an interior magnetic field as it transits from the normal into the superconducting
state. Any theory that claims to describe real superconducting materials has to have the
physical elements that are necessary to describe this process, as well as the reverse process,
the transition of a superconductor carrying a Meissner current into the normal state with
no current.

Key questions about the Meissner effect that have to be answered are: (i) What is
the force that causes the development of the supercurrent that is generated to expel and
ultimately exclude the magnetic field? (ii) How does the growing supercurrent overcome
the counter-emf resulting from Faraday’s law that tries to slow it down? (iii) How is
the momentum of the supercurrent compensated so that momentum conservation is not
violated? Similarly, key questions about the reverse process, the superconductor to normal
transition in a magnetic field, are: (i) How does the supercurrent stop before the material
develops resistance [1], which is necessary to ensure that the transition is reversible?
(ii) How is the momentum of the supercurrent transfered to the body as a whole without
generation of Joule heat and associated entropy production? (iii) How does the stopping
supercurrent overcome the Faraday counter-emf that propels it to continue flowing as the
magnetic flux penetrates?

These basic and fundamental questions have been by and large ignored in the super-
conductivity literature, which is extremely surprising. Over the past 20 years, we have
provided answers to these questions [2,3] based on the unconventional theory of hole
superconductivity [4], proposed to apply to all superconducting materials [5]. In short
and qualitatively, the force that drives the Meissner current is the magnetic Lorentz force
acting on electrons moving outward towards the surface during the transition. Backflowing
electrons of negative effective mass transfer their azimuthal momentum to the body as a
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whole without scattering processes, thus ensuring that the process is thermodynamically
reversible. Locally, outward motion of electrons results from enlargement of electronic
orbits. The same physics acting in reverse explains the superconductor to normal transition
in a field.

The conventional (BCS) theory of superconductivity [6] does not have the physical
elements necessary to describe these processes. It is indifferent to whether the charge
carriers have positive or negative effective mass, or negative or positive charge, and
it does not describe radial charge flow in the transition process nor large orbits in the
superconducting state. For this reason, we have argued that the conventional theory
cannot describe real superconductors, since all superconductors exhibit a Meissner effect.
Nevertheless, the theory continues to be used to describe existing and predicted new
superconductors [7].

There are three works in the early literature that addressed some of these questions
and provided partial answers to them, by J. C. Slater [8], K. M. Koch [9–11] and W. H.
Cherry [12]. They were independent of each other. None of them is cited in the classic BCS
paper [13] nor in any book on superconductivity (except Ref. [3]). We discuss them and
their relation with the theory of hole superconductivity in what follows.

2. Cherry–Gittleman Paper

In 1960, W. H. Cherry and J. I. Gittleman addressed the problem of current quenching
in superconductors [12], important for technological applications. They considered a
superconducting wire and analyzed the various processes that occur when the system
makes a transition to the normal state when the current exceeds the critical current. They
pointed out that Joule heat generated by eddy currents in the portions of the material that
initially become normal have an important effect on the transition process. Notably, they
do not discuss the fact that the process of supercurrent stopping when a portion of the
material becomes normal could also generate Joule heat if the supercurrent were to stop
by onset of resistance as one might expect. The reason they did not presumably is that it
had been shown conclusively by Keesom earlier [1,14] that the supercurrent stops before
the system develops resistance, hence no Joule heat is generated in this process. This is
also implicit in the BCS description of the thermodynamics of superconductors [6], but
nobody has explained how it happens dynamically within that theory. We have argued
that within the conventional theory the current can only stop through scattering processes
that generate Joule heat [15], in contradiction with the thermodynamic description.

Sect. III of Ref. [12], titled “Electrodynamic aspects of the transition process”, deals
with the Meissner effect. It was authored solely by W. H. Cherry (a footnote to Sect. III in
Ref. [12] reads “One of the authors of this paper (W. H. C.) is the sole author of this section, and
wishes to acknowledge much help from consultations with J. I. Gittleman, G. A. Morton and R.
H. Parmenter”) . It is noteworthy that none of the 70 papers that cited Ref. [12] make any
reference to Sect. III. Cherry pointed out the following:

On the London equation: “It does not account for the Meissner-Ochsenfeld effect, that is the
sudden appearance of almost perfect diamagnetism upon the instant following the transition into the
superconducting state. Instead it would predict the “freezing in” of magnetic flux”. He concludes
that the Meissner current is “induced through the interaction of the magnetic field with some
mechanism active in the material during the transition”, “What is important, however, is that the
mechanism is active only during the transition, and although the supercurrents it generates will
persist afterward, once the transition is over the mechanism itself is gone, and no new diamagnetic
currents are produced by it, even though the magnetic field should change”.

Later in the section, he states: “as a matter of general observation, the transition into the
superconducting state, at least in the presence of a magnetic field, takes place by a very pronounced
nucleation and growth process, it is conceivable that this growth, involving as it does the motion of
a boundary, provides just the mechanism sought”. And he proposes the following mechanism:
“We suppose that the material, presumably in a magnetic field, as it approaches the conditions in
which the superconducting fluid will form passes at first into the superconducting state only in
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the neighborhood of points where the conditions or characteristics of the material are slightly more
favorable . . . These regions now act as sources of the superconducting fluid which flows or diffuses
(not necessarily a random-walk process) outwards into regions which are slightly less favorable to
the formation of the fluid . . . ”. It continues: “Now in this process of outward diffusion, the fluid
passes across the lines of magnetic induction and correspondingly receives lateral thrusts which
bend the fluid into current paths surrounding the central source regions and the regions immediately
adjacent. These currents, as is easily seen, are in such directions as to weaken the magnetic fields on
the insides, and hence the inside regions not formerly able to generate the superconducting fluid
can now do so, or if previously able slowly, can now do so more rapidly, thereby contributing to the
further outward diffusion and the further expulsion of flux. To compensate for the slight charge
imbalance resulting from this outward diffusion, an inward diffusion of the normally conducting
fluid will take place. However, the latter, being closely coupled to the lattice, will perhaps move
more slowly and in any event will transfer the thrusts it receives from the magnetic field to the
lattice, so that there will be negligible counter diamagnetic currents generated. At the same time that
the outward diffusion into the magnetic field creates peripheral diamagnetic currents, the interior
acquires the properties of a bulk perfect conductor. The diamagnetic currents persisting there from the
previous growth stage are neutralized by the counter electric field produced by the new currents”.

This remarkably vivid description of the physics proposed to be involved in the
superconducting transition process in a magnetic field is in complete agreement with
what is predicted by the theory of hole superconductivity [2,3]. This physics is completely
absent in the conventional BCS description. Important missing elements to these insightful
remarks are what is the sign of the charge of the fluid diffusing outward and inward, and
any suggestion on the mechanism by which the inwardly diffusing fluid would “transfer
the thrusts it receives from the magnetic field to the lattice”.

3. Koch’s Papers

In 1940, K. M. Koch published a paper [9] titled “Versuch einer elektronenphysikalischen
Deutung des Meissner-Ochsenfeld-Effektes”, meaning “Attempt at an electrophysical interpretation
of the Meissner-Ochsenfeld effect”. In this paper, he emphasized the crucial fact that in the
derivation of London’s equation, infinite conductivity is assumed from the outset, hence
it cannot give any information on the transition process, hence on the mechanism of the
Meissner effect. He then proposed that during the transition a thermal gradient would
exist, with the interior of the body at higher temperature than the boundary, and that a
resulting radial thermoelectric charge outflow would be deflected through the magnetic
Lorentz force to give rise to a surface current screening the interior magnetic field. This is
the first time in the scientific literature where outgoing charge flow was proposed as an
explanation of the Meissner effect. Figure 1 from Koch’s paper shows the physics. Note
that this physics would work equally well whether the outflowing charge is electrons or
holes, i.e., whether the thermoelectric power of the material is negative or positive.

In a follow-up paper three years later [10], titled (translated from German) “A new
attempt at the interpretation of the Meissner effect and the “germ” theory of superconductivity”, Koch
abandons the thermoelectric interpretation and instead points out that the transition to the
superconducting state is likely to occur through nucleation, growth and ultimate merging
of initially small domains (“germs”). He points out that as a “germ” grows, so does the
magnetic flux through it, and claims that this gives rise to an induced current that generates
a magnetic field opposing the external field. However, in this paper he does not explicitly
talk about outward charge flow being associated with the growth of domains, and in the
absence of charge flow in fact no current would be induced.

Finally, in a later review article coauthored with the experimentalist E. Justi [11] Koch
writes (translated from German):

“Assuming that the transition N→S is in some way associated with electronic motion
from the interior of the body to its surface - and we will immediately see that for the
realization of this several different possibilities exist - one can see that that way a shielding
current can be generated in the presence of a constant magnetic field. Considering for
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simplicity a body of cylindrical shape, with H parallel to the axis, we can see in Figure 53
that electrons are deflected from their radial motion by the magnetic field, so that they
yield a circular current of orientation such that the primary field is weakened. One can
easily compute that the such developed current must become a surface current through
electrodynamic reasons and that (under the assumption of infinite conductivity) the
weakening of the primary magnetic field would result in a complete cancellation of it, if
the radial electron current persists for sufficiently long”.

Elektronenphysikalische Deutung des Meissner-Ochsenfeld-Effektes. 591 

setzungen der Gleichung (2) irgendwo nicht erfiillt sind, somit nut fiber 
einen Bereich, der zur G~nze im supraleitenden Oebiet liegt. Was beim 
Ubergang vom normal- zum supraleitenden Zustand mit einem Magnetfeld 
gesehieht, das den YersuchskSrper erffillt, darfiber k5nnen unsere Glei- 
chungen nichts aussagen. Eine Untersuchung der Vorgfinge, die den ]~ber- 
gang begleiten, auf die MSgliehkeit der AuslSsung eines Abschirmstromes 
kann in ~berIegungen, die sich auf die Gleichungen (2) bis (4) stiitzen, 
kein ~tindemis linden. 

II. D~e W~rkung des Magnet/eh~es au/ die Thetmoelektronen als auslSsen~ 
Ursache des Meissner-Ochsen/eld-E//ektes. 

Wir haben die Frage nach den Vorg~ngen aufgewoffen, die den l~ber- 
gang vom normal- zum supraleitenden Zustand begleiten. Denken wir 
uns also ~vieder einen u yon zylindrischer Form, die Achse 

Fig. 1. Die dem lemperaturgef i [ le  lolgend ( l l )  I s )  sich y o n  innen  n a c h  auBen b e w e g e n d e n  
Elektronen werden yore Magnetfeld 0 abgelenkt.  Die Nebenfigur zeigt flit ein naeh  rechts  
laufendes Elektron die Richtung der Lorentz-Kra.f~. Der so ents~ehende Kreisstrom ist in der 
Figur im konventionellen Sinne (positive Ladungstr~iger) eingezeichnet. Sein ~agnetfe ld  ~)8 

ist  dem primiiren (0) entgegengesetzt. 

parallel zur Riehtung des l~agnetfeldes, und nun kfihlen wir ab, um die 
Sprungtemperatur zu untersehreiten. Zur Abkiihlung ist efforderlieh, daI~ 
die Umgebung des K5rpers immer eine tiefere Temperatur aufweist, als 
dieser selber, und dab W~rme aus dem Kiirper in das Kiihhnittel strSmt. 
Ist der Zylinder so langgestreckt, dab wir den Einflul3 der Endfl~ichen 
vernaehl~ssigen kSnnen, so ist diese Str5mung iiberall rad/al und senl~eeht 
zur Achse, somit aue?a senkrecht zum Magnet/dd. /)ann mu~ abet in jedem 
Radius der Ettingshausen-Nernst-E//ekt, eine elektrische ~eldst~rke senk- 
recht zum Radius und zum ~agnetfeld, auftreten. Diese ~eldst~rke mul3 
in der speziellen Situation einen Kreisstrom auslSsen (Fig. 1). Wir haben 
sozusagen das thermomagnetische Analogon zum Corbino-E//ekt vor uns. 
Beim Corbino-Effekt wird einer kreisfSrmigen Platte, deren Fl~iehe senkrecht 

39* 

Figure 1. From Koch’s 1940 paper [9]. Its caption (translated from German) reads: “Electrons moving
from the interior outward due to the temperature gradient (T1 > T2) are deflected by the magnetic field H. The
figure on the side shows the direction of the Lorentz force for an electron moving to the right. The resulting
circular current is depicted in the Figure in the conventional sense (positive charge carriers). Its magnetic
field HS is in direction opposite to that of the primary field (H)”. “Nerst-Strom” in the figure means
“Nerst current”.

He continues to discuss his original thermoelectric explanation [9] for the outward
charge flow and dismisses it for a variety of reasons, then writes [11], in reference to his
second proposal [10]:

“ . . . we assume that the superconducting state develops from germs, that gradually
grow and finally somehow merge. Thinking about the growth of these microdomains
taking place in a constant magnetic field, one can see that the magnetic flux ϕ through
the cross-section of these domains grows and this gives rise to an induction current that
- according to elementary induction laws - cancel the primary flux. One can also think
about this growth process as only the outer covering of these domains being occupied by
superconducting electrons, and that this covering as it is joined by further accumulation
of normal particles preserves its electrical connection. Then it is also essentially again so,
that electrons - this time through a structural process - move centrifugally and are thus
deflected by the magnetic field”.

In other words, here Koch realized that his earlier proposal of domain growth without
charge flow [10] did not give a mechanism for current development, so he amended it to
include the necessary outflow of charge.

Thus, the physical explanations for the Meissner effect arrived at by K. M. Koch in the
1940’s and W. H. Cherry some 20 years later, are essentially identical: outward motion of
electrons associated with the growth of superconducting domains in a normal matrix in the
presence of a magnetic field gives rise, through the action of the magnetic Lorentz force
on the outflowing electrons, to a surface current that cancels the interior magnetic field.
Cherry’s explanation has the additional feature of describing backflow of charge, which is
necessary since otherwise a huge charge imbalance would develop.

It is essentially certain that Cherry was unaware of Koch’s work on the subject: Koch’s
paper on “germs” [10] has no citations, and the other Koch papers on the subject [9,11] have
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very few citations. I was unaware of the work of both of these authors when I developed
an explanation of the Meissner effect that contains this physics based on the theory of hole
superconductivity during the last 20 years.

Before delving into this, however, we should discuss another important precedent:
Slater’s explanation for the perfect diamagnetism of superconductors [8].

4. Slater’s Paper

In 1937, J. C. Slater proposed [8] that the perfect diamagnetism of superconductors
can be understood if electrons reside in “orbits of order of magnitude of 137 atomic diameters”.
One hundred thirty-seven is the inverse of the fine structure constant

α =
e2

h̄c
∼ 1

137
(1)

The rationale for Slater’s proposal is as follows. The Larmor diamagnetic suscepti-
bility for a solid with atomic density n and one electron per atom and electronic orbits
perpendicular to the applied magnetic field is

χ = − ne2

4mec2 < r2 > (2)

in Gaussian units, where e and me are the electron’s charge and mass, and < r2 > is the
average of the square of the radius of the electronic orbit. Perfect diamagnetism as occurs
in a superconductor requires χ = −1/(4π), which implies

< r2 >=
mec2

πe2n
(3)

Assuming n = 1/v, with v = (4/3)πa3
0 the atomic volume for an atom of radius

a0 = h̄2/(mee2), the Bohr radius, yields for the radius of the electronic orbits ro

ro ∼
√
< r2 > = 1.15 × (137a0) (4)

justifying Slater’s proposal. The conventional theory of superconductivity does not describe
such orbits. As we will discuss, they are essential to understand the Meissner effect within
the theory of hole superconductivity. We were not aware of Slater’s paper when we came
to that conclusion.

5. Meissner Effect in the Theory of Hole Superconductivity

The theory of hole superconductivity was developed over the past 35 years [4], starting
in 1988 [16]. It was only beginning in the year 2003 that its implications for the understand-
ing of the Meissner effect started to become apparent.

A fundamental aspect of the theory is electron-hole asymmetry, and in particular
the fact that superconductivity originates in electronic energy bands that are almost full.
Within this theory hole carriers are necessary for superconductivity to exist. This was clear
from the outset [16]. In early work, we found that charge asymmetry would lead to an
effective attractive interaction between holes resulting from their Coulomb interaction and
the nature of the electronic wavefunctions in the solid state environment [17,18] and to
pairing and superconductivity when the band is almost full [19,20].

In the year 2001, I reached the conclusion that the fundamental charge asymmetry
underlying the theory would cause superconductors to expel electrons from the interior
towards the surface [21]. I predicted that the ground state of a superconductor would have
a macroscopically inhomogeneous charge distribution, as shown in Figure 2, taken from
my 2001 paper. At that time I was unaware of the fact that Koch had predicted charge
expulsion as shown in Figure 1 (I discovered Koch’s papers in 2009 through a Google
Scholar search).
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Abstract

The theory of hole superconductivity proposes that the fundamental asymmetry between electrons and holes in solids is
responsible for superconductivity. Here we point out a remarkable consequence of this theory: a tendency for negative charge to
be expelled from the bulk of the superconductor towards the surface. Experimentally observable consequences of this physics
are discussed. 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The theory of hole superconductivity [1,2] asserts
that superconductivity originates in the fundamental
charge asymmetry of condensed matter. This asymme-
try has its root in the fact that the positively charged
proton is far heavier than the negatively charged elec-
tron. The theory asserts that only (positively charged)
hole carriers in a solid can give rise to superconductiv-
ity. Here we propose that a generic consequence of this
theory is that superconductors will have the tendency
to expel negative charge from their bulk. The negative
charge will move to the surface, and the charge distri-
bution in all superconductors will look qualitatively as
in Fig. 1.

In this theory, superconductivity occurs through
‘undressing’ of heavy hole carriers in electronic en-
ergy bands that are almost full [3]. The holes are

E-mail address: jhirsch@ucsd.edu (J.E. Hirsch).

Fig. 1. Schematic picture of a spherical superconducting body.
Negative charge is expelled from the bulk to the surface.

dressed due to the electron–electron interaction, which
makes them heavy, and the dressing is postulated to be
an increasing function of electronic band filling. When
holes pair, they partially undress; the superfluid car-
riers have smaller effective mass, and the associated
lowering of kinetic energy provides the superconduct-
ing condensation energy [4].

The gap function has a slope of universal sign [2],
shown schematically in Fig. 2. This universal slope
reflects the electron–hole asymmetry that gives rise to
superconductivity. The quasiparticle excitation energy

0375-9601/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(01)00101-3

Figure 2. Schematic picture of the charge distribution in the ground state of a superconducting body,
from Ref. [21] of 2001. The figure caption in Ref. [21] says “Negative charge is expelled from the bulk to
the surface”, but no connection to the Meissner effect is made in that paper.

In 2003, for the first time, I made a connection between outflow of negative charge in
the transition from the normal to the superconducting state and the Meissner effect [22,23]
that unbeknownst to me had been proposed by Koch 60 years earlier. It was not until
5 years later that I came to the conclusion that outflow of negative charge would require
the existence of backflow to restore approximate charge neutrality, as I discussed in a
paper in 2008 [24]. Figure 3 shows the predicted behavior. At that time, I was unaware
of the fact that Cherry had predicted that behavior in 1960 in his discussion of outward
and inward diffusion of the conducting fluid during the transition process reviewed in
Sect. 2 (I discovered the Cherry-Gittleman paper in 2017 through a Google Scholar search).
Nor did I correctly understand at that time how the backflowing electrons transfer their
momentum to the ions, as indicated in the caption of Figure 3.J. Phys.: Condens. Matter 20 (2008) 235233 J E Hirsch

Figure 3. Superfluid electrons flow from the interior towards the
surface and are deflected to the left by the magnetic field pointing up.
Normal electrons backflow from the surface towards the interior and
are deflected to the right by the magnetic field. The momentum in
this normal current is transferred to the ions by collisions with
impurities.

scenario provides an origin for the azimuthal forces giving
rise to the Meissner current and ionic countercurrent), this
scenario also requires a division of electrons into ‘normal’ and
‘superfluid’. While it may contribute at finite temperatures, it
cannot play a role as the temperature approaches zero in the
process where the external magnetic field is changed from just
above to just below the critical field. Instead, we argue in what
follows that the spin–orbit interaction plays a crucial role in the
Meissner effect.

6. Role of the spin–orbit interaction

The spin–orbit interaction offers a natural solution to the
puzzle. In the spin-Meissner effect scenario proposed in [25],
as the electron orbit radius expands from k−1

F to 2λL, a torque
�τie is exerted by the positive ionic charge on the equivalent
electric dipole �p [33] resulting from the moving electron
magnetic moment �μ = eh̄/(2mec)�σ

�p = �v
c

× �μ (33a)

�τie = �p × �Ei =
( �v

c
× �μ

)
× �Ei (33b)

where �Ei is the radial electric field generated by the positive
ionic charge density |e|ns

�Ei = 2π |e|ns�r . (34)

This torque causes electrons of opposite spin to acquire
azimuthal velocities in opposite directions, giving rise to a
spontaneous spin current (spin-Meissner effect) [25]. By
Newton’s third law, the torque exerted by the ions on the
electrons is necessarily accompanied by an equal and opposite
torque exerted by the electrons on the ions:

�τei = −
( �v

c
× �μ

)
× �Ei = − �p × �Ei. (35)

In the absence of external magnetic field, spin up and
spin down electrons acquire opposite angular momenta, and
exert equal and opposite torques on the ions, hence the net
angular momentum transferred to the ionic lattice is zero. The

Figure 4. Up and down magnetic moments get deflected in opposite
directions due to the torque exerted by the radially pointing electric
field from the positive charge distribution. The figure shows the
equivalent electric dipoles, equation (33a), as they move out and
after they acquired the azimuthal velocity.

resulting azimuthal motion of the electrons (figure 4) can be
understood as resulting from the action of an effective ‘spin–
orbit’ magnetic field [25]

�Bσ = 2πns �μ ≡ −Bso �σ (36)

of magnitude Bso pointing antiparallel to the electron spin
(parallel to its magnetic moment). Expansion of the electron
orbit to radius 2λL results in an azimuthal velocity of
magnitude [25]

v0
σ = |e|λL

mec
Bso = h̄

4meλL
(37)

with opposite spin electrons orbiting in opposite directions.
In the presence of an external magnetic field �B, the effective
magnetic field acting on the electrons has magnitude (Bso ±
B), with the + sign corresponding to electrons with spin
antiparallel to �B. The resulting azimuthal velocities are

vσ = |e|λL

mec
(Bso ± B). (38)

Because the speed acquired by opposite spin electrons is
different, the net torque exerted by electrons on the ions,
equation (35), no longer vanishes. The speed acquired by
electrons with magnetic moment parallel to the magnetic field
is larger, and consequently the net torque exerted by electrons
on ions points antiparallel to the applied magnetic field. Thus,
the lattice acquires angular momentum in a direction opposite
to the net angular momentum acquired by the electrons.

Figure 5 illustrates in more detail how the net torque on the
ions arises. Electrons with magnetic moment pointing out of
(into) the paper move outward a distance �r along trajectories
labeled 1 and 3 respectively. In the process they acquire a
perpendicular impulse

�I =
∫

F dt = e

c
�r(Bso ± B) (39)

where the + (−) sign applies to trajectory 1 (3). This
impulse causes deflection in the perpendicular direction,

7

Figure 3. Schematic picture of the charge flow during the superconducting transition proposed to
explain the Meissner effect, from Ref. [24] of 2008 . The figure caption in Ref. [24] reads “Superfluid
electrons flow from the interior towards the surface and are deflected to the left by the magnetic field pointing up.
Normal electrons backflow from the surface towards the interior and are deflected to the right by the magnetic
field. The momentum in this normal current is transferred to the ions by collisions with impurities”. It was
only 8 years later that I realized that the last sentence in this caption is incorrect.

The fact that expulsion of magnetic field requires radial charge flow can in fact be
proven mathematically [25,26]; it is a consequence of Alfven’s theorem [27,28]. Consider the
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equation of motion for an electron in the superconducting fluid that follows from Newton’s
and Maxwell’s equations

dv⃗s

dt
=

e
me

(E⃗ +
v⃗s

c
× B⃗) (5)

where d/dt is the convective time derivative. It yields [29]

∂w⃗
∂t

= ∇⃗ × (⃗vs × w⃗) (6)

where w⃗ is the generalized vorticity

w⃗(⃗r, t) = ∇⃗ × v⃗s (⃗r, t) +
e

mec
B⃗(⃗r, t). (7)

The condition w⃗(⃗r, t) = 0 is equivalent to the London equation, describing the situation
where the magnetic field is excluded from the interior. In the initial state with an applied
magnetic field B⃗0, w⃗(⃗r, t = 0) = e/(mec)B⃗0 is non-zero everywhere in the interior of the
material. In cylindrical coordinates with B⃗ in the z direction w⃗ = wẑ and Equation (6) is

∂w
∂t

= −1
r

∂

∂r
(rwvr) (8)

which shows that a radial velocity vr ̸= 0 of the fluid is a prerequisite for w to change in time.
In the absence of a radial velocity, ∂w/∂t = 0 and the magnetic field in the interior of the
metal becoming superconducting would remain unchanged.

Also in 2008, I came to the conclusion that mesoscopic orbits of radius 2λL, with λL the
London penetration depth, play a key role. I came to this conclusion through the following
argument [30]: “Assume the transition to superconductivity involves a radially outward motion of
electrons to orbits of radius r = 2λL. The electrons will acquire an azimuthal velocity vϕ as they
move outward due to the magnetic Lorentz force F⃗ = (e/c)⃗v × B⃗”. As shown in Ref. [30], the
resulting azimuthal velocity for an orbit of radius r is

vϕ = − e
2mec

r⃗ × B⃗ (9)

and for r = 2λL

vϕ = − eλL
mec

Bϕ̂ (10)

which is precisely the velocity of electrons in the Meissner current for a superconductor in
an applied magnetic field B according to the conventional theory [6]. This is seen from the
fact that the canonical momentum of an electron is

p⃗ = mev⃗ − e
c

A⃗. (11)

In the superconducting state in a simply connected superconductor p⃗ = 0, and A = λLB in
a cylindrical geometry, from which Equation (10) follows.

This argument not only predicts that superconducting electrons reside in orbits of
radius 2λL but also provides a dynamical explanation for how the electrons acquire the
Meissner velocity Equation (10) in the process of going from normal to superconducting, as
shown schematically in Figure 4. From Equation (2) for the diamagnetic susceptibility it is
easy to see [24] that for < r2 >= (2λL)

2 the susceptibility is −1/(4π), and for < r2 >= k−2
F ,

with kF the Fermi wavevector, Equation (2) yields the Landau diamagnetic susceptibility
of the normal metal. Thus, the “some mechanism active in the material during the transition”
hypothesized by Cherry is precisely the expansion of the orbit from the microscopic radius
k−1

F in the normal state to the mesoscopic radius 2λL in the superconducting state, which
causes the electron to acquire an azimuthal velocity through the action of the Lorentz force.
Conversely, shrinking of the orbit from the mesoscopic to the microscopic radius in the
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superconductor to normal transition provides, through the action of the Lorentz force, the
mechanism sought by Keesom [1] for the supercurrent to stop without generation of Joule
heat and entropy [31]. We should also point out that even in the absence of an applied
magnetic field, electrons expanding their orbits acquire an azimuthal velocity through the
spin-orbit interaction, in the opposite direction for the two members of a Cooper pair [30].

 
orbit  
expansion/ 
contraction 
in a magnetic 
field 

B 

2λ L 

Figure 4. An electron expanding its orbit in the presence of a magnetic field B perpendicular to the
orbit acquires an azimuthal velocity that generates a magnetic field opposite to the applied field.

Note that 2λL orbits are closely related to Slater’s orbits hypothesized in 1937 [8] and
discussed in Sect. 4. The London penetration depth follows from London’s equation as [6]

1
λ2

L
=

4πnse2

mec2 (12)

with ns the superfluid density. Hence,

(2λL)
2 =

mec2

πnse2 (13)

identical to Equation (3) if ns = n and 2λL =
√
< r2 >. I was completely unaware of

Slater’s paper [8] when I came to understand the relevance of 2λL orbits [24,30].
In Figure 5 top panel, from Ref. [32] of 2015, we show how the superconducting state

evolves from growth and merging of domains. Figure 5 bottom panel, from Ref. [24], shows
how expansion of the orbits leads to negative charge expulsion and a radial electric field
at the boundary of the domain. In Figure 6, from Ref. [33] of 2016, we show how the
phase boundary advances as the superconducting region grows, in a planar geometry for
simplicity. Normal carriers expand their orbit as they become superconducting, and in
the process extend their wavefunction into the normal region. This is equivalent to the
charge thrusting forward a distance λL, as shown in the lower panel of Figure 6. This
causes the backflow of normal carriers towards the superconducting region, as discussed
by Cherry [12].

In the final superconducting ground state, electrons reside in overlapping orbits of
radius 2λL, with azimuthal velocity Equation (10) in the presence of a magnetic field B.
The interior velocities cancel out, and only the velocities of electrons within a London
penetration depth of the surface remain, giving rise to the Meissner current. That this
is so is most simply seen from the following argument [24]: the angular momentum of
the Meissner current flowing in a cylinder of radius R and height h within a London
penetration depth of the surface is

L = [mevϕR]× ns × (2πRλLh) (14)

where the factor in square parentheses is the angular momentum for one electron in the
Meissner current (assuming R >> λL), and the factor in round parentheses is the volume
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where the Meissner current flows, i.e., the cylindrical shell of thickness λL next to the
surface. Equation (14) can also be written as

L = [mevϕ(2λL)]× ns × (πR2h) (15)

describing the motion of all the electrons in orbits of radius 2λL in the entire volume πR2h.
The factor in square brackets is the angular momentum of one electron in its 2λL orbit.

J.E. Hirsch / Annals of Physics 362 (2015) 1–23 3

Fig. 1. Three possible routes for the magnetic field expulsion in a cylindrical superconductor. The dots represent magnetic
field lines coming out of the paper. The arrows give the direction of the currents (I). See text for a discussion of the processes.

(a) s → n. (b) n → s.

Fig. 2. (a) Growth of the normal (n) phase into the superconducting (s) phase for a cylinder, under application of a magnetic
fieldH larger than the critical fieldHc . (b) The reverse process (Meissner effect), under an appliedmagnetic fieldH smaller than
the critical field. For both cases, the magnetic field at the normal–superconductor boundary is the critical field Hc . The shading
of gray indicates the magnitude of magnetic field, white color indicates no magnetic field.

Fig. 3. Growth of the normal (n) into the superconducting (s) phase for a planar geometry, under application of a magnetic
field H = Hc(1 + p), with p > 0. The magnetic field points out of the paper, the shading of gray indicates schematically its
intensity. The n–s phase boundary (dashed line) moves down.

2. Growth of the normal into the superconducting phase

Instead of a cylindrical geometry we will consider the planar geometry shown in Fig. 3, following
Pippard [6]. The physics is the same and the calculation is considerably simpler. Later in Section 9 we
return to the more interesting case of a cylindrical geometry.

J. Phys.: Condens. Matter 20 (2008) 235233 J E Hirsch

angular momentum of the electrons in the Meissner current in
the surface layer arises from mesoscopic orbits of radius 2λL

for each electron in the bulk that expanded from a microscopic
radius a = k−1

F in the normal state (equation (7)). As the
expanding electronic orbit cuts through magnetic field lines the
electron acquires angular momentum due to the Lorentz force
acting on it, satisfying

lfinal − linitial = −ns
e

2πc
(φfinal − φinitial) (28)

where φ is the magnetic flux enclosed in the orbit.
Equation (28) exactly accounts for the difference between
the angular momenta equations (7) and (9) for initial radius
a = k−1

F and final radius 2λL, and provides a ‘dynamical’
explanation of the Meissner effect [25] (i.e. it explains the
origin of the force that causes the electrons to move in the
direction required for the Meissner current). However, we
still need to understand how this extra electronic angular
momentum is compensated.

Assume every electron in the cylindrical sample undergoes
such an orbit expansion. The electrons within a distance 2λL of
the surface will have their orbits ‘spill out’ beyond the surface
of the superconductor, leaving behind a positive surface layer
of charge density σ = |e|nsλL, which will give rise to a ‘double
layer’ with an electric field

E = 4π |e|nsλL = mec2

eλL
(29)

pointing radially outward, as shown schematically in figure 2.
The electric field can be assumed to be uniform over a
thickness λL, and it gives rise to an angular momentum of the
electromagnetic field (equation (10))

"Lfield = 2πens

c
λ2

L R2h "b = V
ens

2c
(2λL)2 "B (30)

which is equal and opposite to the angular momentum
of the Meissner current equation (9). Thus, (neglecting
the small angular momentum in the normal state) in this
scenario the angular momentum in the electromagnetic field
accounts for the ‘missing’ angular momentum equation (13),
and the angular momentum puzzle is resolved. In other
words, the ‘reaction’ to the angular momentum imparted
by the electromagnetic field to the expanding electron orbit
is stored as equal and opposite angular momentum in the
electromagnetic field [30].

Unfortunately, this is not a realistic scenario. The electric
energy density in the assumed double layer is an enormous
E2/8π = nsmec2/2, and the electric energy density per unit
volume in the entire sample is

u = nsmec2 λL

R
(31)

which is much larger than the superconducting condensation
energy density even for a sample of R ∼ 1 cm. The electric
field in the double layer equation (29) is of order 1011 V cm−1

which is clearly unsustainable. It is clear that the interaction
of electrons with the positive ionic lattice will prevent the

Figure 2. In the normal state, electrons in a magnetic field traverse
microscopic orbits of radius a = k−1

F (left side). When the system
goes superconducting, the orbits expand to radius 2λL (right side).
Assuming the centers of the orbits do not move, negative charge
spills out and a surface ‘double layer’ of charge of thickness ∼ 2λL is
created with outward pointing electric field.

electrons from spilling out a distance 2λL as depicted in
figure 2. What is not yet clear is how the ions, in the process of
preventing the electrons from spilling out to the extent shown
in figure 2, will acquire compensating angular momentum in
the required direction.

In [5] we explored a related scenario, using the fact that
the theory of hole superconductivity predicts that a positive
charge density ρ0 exists uniformly distributed in the interior
of the superconductor and a negative charge density ρ− in a
surface layer of thickness λL [28]. To account for a suppression
of the internal magnetic field to a fraction y of its original
value and compensating the electronic angular momentum with
momentum in the electromagnetic field requires an electric
field near the surface [5]

Em = 4mec2

eR
1 − y

y
(32)

hence, for example, for a 99% suppression (y = 0.01) with
R = 1 cm, Em = 2 × 108 V cm−1. While this electric field is
three orders of magnitude smaller than equation (29) it is still
too large, and in addition this scenario cannot account for a full
Meissner effect, since Em diverges as y → 0 (equation (32)).
We conclude from these considerations that it is impossible
to explain the Meissner effect in superconductors without a
mechanism that allows the ions to acquire angular momentum
in a direction opposite to the applied magnetic field through
interaction with the electrons.

One possible way for ions to acquire angular momentum
is depicted in figure 3. Suppose that when superfluid electrons
are expelled towards the surface there is a radial backflow of
’normal’ electrons attempting to maintain charge neutrality.
The normal electrons will be deflected by the Lorentz force in
the opposite direction to the superfluid electrons, as shown in
figure 3. In the presence of disorder, these normal electrons
will scatter off the ions and transmit their momenta to the
ions, which will thus acquire angular momentum in a direction
opposite to the Meissner current. To achieve a full Meissner
effect, it is necessary that a fraction ∼λL/R of electrons in the
surface layer of thickness λL flow there from the interior [29],
and the same amount has to flow in from the surface layer and
transmit their momenta to the ions.

While somewhat less far-fetched than the scenario
described earlier, in the conventional framework (at least this

6

Figure 5. The top left panel, from Ref. [32], shows how superconducting domains with surface
currents are created that exclude the magnetic field (black dots) from their interior; the top right panel
shows the final state after the superconducting domains grow and merge. The bottom panel, from
Ref. [24], shows a single domain where the enlarged orbits lead to expulsion of negative charge and a
radial outgoing electric field.
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Fig. 5. Electronic orbits in the normal and superconducting states as proposed in the theory of hole superconductivity [12].
Note that large orbits centered in the superconducting side close to the phase boundary enter the normal side up to a distance
2λL from the phase boundary.

Fig. 6. As a consequence of the orbit enlargement when carriers become superconducting, negative charge thrusts from the
superconducting into the normal region and in the process acquires through the Lorentz force a velocity �vy in the +ŷ direction.
In addition, this generates a backflow of charge in the normal region.

and the speed in the ŷ direction that an electron acquires in time �t is

vy =
� �t

0

FL

me

dt = − e

c
Hc

� �t

0
vxdt = − e

c
Hc�x (31)

so that for �x = λL

vy = − e

mec
λLHc (32)

which is precisely the speed of the carriers in the Meissner current Eq. (1). Under the assumption
that vx � ẋ0, the effect of Ey on the forward thrusting electron can be ignored. This process then
explains what drives the generation of the Meissner current flowing against the Faraday field Ey as
the superconducting phase boundary advances into the normal phase. This physics also explains how
in the reverse process, when the normal phase advances into the superconducting phase, theMeissner
current stops without generating Joule heat, as will be discussed in detail in Section 9.

This motion of negative (superconducting) charge into the normal region will create a charge
imbalance and an electric field Ex will be generated in the normal region within distance λL from
the phase boundary pointing in the +x̂ direction, that will drive a flow of normal charge in the x

direction, as shown schematically in Fig. 7. Fig. 7, reproduced from Ref. [10], assumes that the normal
carriers (n carriers) are negatively charged electrons. This is incorrect, as discussed in the next section.
In addition, the caption of this figure in Ref. [10] reads ‘‘The normal (n) carriers do not acquire a large
vy in the opposite direction because they scatter off impurities and transfer their y-momentum to the
lattice’’. This is also incorrect, as we discuss in the subsequent section.

7. The sign of the normal state charge carriers

Experiments thatmeasure the gyromagnetic effect [21]. the Londonmoment [22] and the Bernoulli
potential [23] in superconductors establish that the superconducting charge carriers are negatively
charged. Therefore, as carriers at the boundary become superconducting negative charge is transferred
into the normal regionwithin a boundary layer, creating an electric field Ex pointing in the+x̂direction
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which is precisely the speed of the carriers in the Meissner current Eq. (1). Under the assumption
that vx � ẋ0, the effect of Ey on the forward thrusting electron can be ignored. This process then
explains what drives the generation of the Meissner current flowing against the Faraday field Ey as
the superconducting phase boundary advances into the normal phase. This physics also explains how
in the reverse process, when the normal phase advances into the superconducting phase, theMeissner
current stops without generating Joule heat, as will be discussed in detail in Section 9.

This motion of negative (superconducting) charge into the normal region will create a charge
imbalance and an electric field Ex will be generated in the normal region within distance λL from
the phase boundary pointing in the +x̂ direction, that will drive a flow of normal charge in the x

direction, as shown schematically in Fig. 7. Fig. 7, reproduced from Ref. [10], assumes that the normal
carriers (n carriers) are negatively charged electrons. This is incorrect, as discussed in the next section.
In addition, the caption of this figure in Ref. [10] reads ‘‘The normal (n) carriers do not acquire a large
vy in the opposite direction because they scatter off impurities and transfer their y-momentum to the
lattice’’. This is also incorrect, as we discuss in the subsequent section.

7. The sign of the normal state charge carriers

Experiments thatmeasure the gyromagnetic effect [21]. the Londonmoment [22] and the Bernoulli
potential [23] in superconductors establish that the superconducting charge carriers are negatively
charged. Therefore, as carriers at the boundary become superconducting negative charge is transferred
into the normal regionwithin a boundary layer, creating an electric field Ex pointing in the+x̂direction

Figure 6. Upper panels show schematically orbits in the superconducting and normal regions. As
normal electrons enter the superconducting region, their orbits expand causing a forward thrust of
negative charge over a distance λL, as shown in the lower panel left side. This gives rise to a backflow
of normal charge shown on the right side of the lower panel.

Figure 7 shows in more detail the motion of carriers. Electrons becoming supercon-
ducting thrust into the normal region and are deflected to the left by the Lorentz force (“s



Materials 2024, 17, 254 10 of 16

carrier”). It would appear that backflowing electrons (“n carrier”) would be deflected to
the right by the Lorentz force, as shown in Figure 7. However that is not what happens.
Because the Fermi level is close to the top of the band, normal carriers have hole-like
character. If we think about backflowing electrons as forward-flowing holes, as shown in
Figure 8, it is clear that the motion is perpendicular to the phase boundary, because electric
and magnetic forces are exactly balanced. Figure 8 also shows how this can be understood
in terms of backflowing electrons. The magnetic Lorentz force FB and the electric force due
to the Faraday field both act in the same direction and are counterbalanced by a force that
the lattice exerts on them, FL. In turn, the electrons exert a force −FL on the lattice that
transfers the same momentum to the lattice as the supercurrent acquires in the opposite
direction. This is explained in quantitative detail in Ref. [34]. The transfer of momentum
from electrons to the body as a whole can be understood as the Ampere force that results
when hole carriers are the normal current carriers [34]. In Figure 9, we show the process
in a cylindrical geometry with the applied magnetic field H coming out of the paper. The
backflow is in fact not quite complete, and a small charge imbalance remains in the final
state, as shown in Figure 2; the compensating azimuthal momentum for the excess negative
charge near the surface is stored in the electromagnetic field [34]. The same processes with
the arrows reversed occur in the transition from the superconducting to the normal state
in the presence of a magnetic field and, in particular, explain how the supercurrent stops
without entropy generation [15].J.E. Hirsch / Annals of Physics 373 (2016) 230–244 239

Fig. 7. As carriers become superconducting (s carriers) they thrust forward into the normal region over a boundary layer of
thickness λL , and are deflected by the Lorentz force acquiring speed vy = −c/(4πnseλL)Hc , in the +ŷ direction assuming the s
carriers are electrons. This process creates an electric field Ex in the+x̂ direction that drives normal carrier (n carrier) backflow.

Fig. 8. Analysis of forces on the normal backflowing charge carriers (n carriers). If the carriers are electrons, electric and
magnetic Lorentz forces FE and FB act in the same direction creating a current in the ŷ direction. We argue that this does not
occur, hence have circled such a carrier with a dashed line. Instead, if the normal carriers are holes, electric andmagnetic forces
act in opposite directions and exactly cancel each other, generating no current in the ŷ direction. We argue that this is the
situation in real materials.

and a normal ‘backflow’ current Jx flowing in the +x̂ direction. This backflow of normal carriers could
occur through negative electrons moving in the −x̂ direction or through positive holes moving in the
+x̂ direction.

Fig. 8 shows the forces acting on the backflowing normal carriers. The speed of the normal carriers
in the x direction, vx, has to be ẋ0, the speed of motion of the phase boundary, so that no charge
accumulation results. If the normal carriers are electrons, electric (FE) and magnetic (FB) Lorentz
forces act in the same direction (−ŷ) as shown in Fig. 8, and this would create an eddy current in
the +ŷ direction generating entropy and rendering the process irreversible. Instead, if the normal
state carriers (n carriers) are positive holes, electric and magnetic forces exactly cancel each other if
the hole carriers are moving at the same speed ẋ0(t) as the phase boundary, as given by Eq. (29) and
shown in Fig. 8.

This then implies that the normal carriers ofmaterials that become superconducting in a reversible
process and exhibit a Meissner effect are necessarily holes.

8. Resolution of the angular momentum puzzle

For several years we have been pointing out that the Meissner effect raises a puzzling question
concerning angular momentum conservation [11,12]. Consider a superconducting cylinder with axis
in the ẑ direction to which a magnetic field in the+ẑ direction is applied. Experiments show [21] that
the body as a whole develops angular momentum in the −ẑ direction, consistent with the fact that
electrons in theMeissner current have angularmomentum in the+ẑ direction to generate amagnetic
field in the −ẑ direction that nullifies the field in the interior. For this situation the development
of angular momentum for both the electrons and the ions can be understood as arising from the
force created on the charges by the Faraday electric field generated by the changing magnetic field
attempting to penetrate the superconductor [11]. However, for the reverse situation where a metallic
cylinder is cooled into the superconducting state in thepresence of amagnetic field, the sameMeissner
current results, hence the same angularmomentumhas to be generated for both the electrons and the
ions respectively. This has not been tested experimentally but is dictated by conservation of angular
momentum. In this case however the motion of both the negative electrons in the Meissner current

Figure 7. Motion of electrons becoming superconducting (s carriers) and backflowing normal
electrons (n carriers) as the S-N phase boundary moves up in the figure. The magnetic Lorentz force
acts to the left on s carriers and to the right on n carriers. However, the backflowing electrons are not
deflected to the right as the figure shows. The explanation is given in Figure 8.

240 J.E. Hirsch / Annals of Physics 373 (2016) 230–244

Fig. 9. Superconducting phase expanding from the center in a cylindrical geometry, with magnetic field pointing out of the
paper. Electrons in the Meissner current flow in counterclockwise direction and their angular momentum increases as the
phase boundary moves out. Correspondingly, the body rotates in the clockwise direction with increasing angular velocity as
the phase boundary moves out.

Fig. 10. Balance of forces. Holes propagate in the +x̂ direction, which means electrons propagate in the −x̂ direction. In order
for this to happen, the lattice has to exert a force FL = FE + FB = 2FE on the electrons in the +ŷ direction, shown in the figure.
This implies that the electrons are exerting a force −FL on the lattice in the −ŷ direction, shown in the figure in the dotted
rectangle. In addition, the Faraday field Ey exerts a force on the positive lattice that is half as large as FL and points in the +ŷ
direction (not shown in the figure). The net result is that a force FE in the −ŷ direction acts on the lattice.

and the positive ions is in direction opposite to that dictated by the Faraday electric field, as shown in
Fig. 9. We have called this the angular momentum puzzle.

In Ref. [12], titled ‘the missing angular momentum of superconductors’, we discussed this
question and argued that it can be explained through the role of the spin–orbit interaction in the
superconducting transition. While we still believe that the spin–orbit interaction plays a key role in
superconductivity [17], we do not believe that it is the explanation for the angularmomentum puzzle.

In Ref. [10] we have proposed that the angular momentum puzzle is resolved through transfer
of momentum of the backflowing normal electrons to the lattice through scattering by impurities.
However, this would be incompatible with the reversibility of the process.

Consider once more the process of backflow in the planar geometry, shown now in Fig. 10. In a
sense, whether we talk about holes or electrons is semantics. In the process of a hole moving in the
+x̂ direction an electron necessarily has to bemoving in the−x̂ direction. Themotion is exactly along
the x̂ direction because we have argued that the forces in the ŷ direction are balanced for hole carriers.

But the electric and magnetic forces point in the same direction for the negative electron. How is
it possible that it moves purely in the −x̂ direction?

The answer is, of course, that there is another force acting on the electron. The lattice exerts a force
on the electrons when the charge carriers are holes. In order to balance the forces in the −ŷ direction on
the electrons, the lattice has to exert a force FL = FE + FB on the electron, pointing in the+ŷ direction,
as shown in Fig. 10.

And, by Newton’s 3rd law, the electrons in the ‘backflow’ current exert a force −FL = −(FB + FE)
pointing in the −ŷ direction, also shown in Fig. 10.

Figure 8. Explanation of how momentum is conserved in the normal to superconductor transition.
Backflowing electrons of negative effective mass experience a force FL from the lattice to balance
electric (from Faraday’s law) and magnetic forces acting on them. The resulting force −FL from
electrons acting on the ions transfers momentum to the body as a whole.
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Figure 9. Meissner transition for a cylinder. The magnetic field points out of the paper, Meissner
current flows clockwise. EF is the Faraday electric field. The backflowing carriers are shown both
as electrons moving in (upper part) or equivalently as holes moving out (lower part). For holes,
electric and magnetic forces FE and FH are balanced. For backflowing electrons, they are balanced
by the force Flatt exerted by the lattice on electrons with negative effective mass. Associated with it
there is a force on the lattice, Fon−latt, that transfers momentum to the body that rotates with angular
momentum equal and opposite to that of the Meissner current [34].

The same physics that explains how electrons acquire and lose the Meissner velocity in
the transition of the system to and from the superconducting state explains what happens
when conduction electrons enter and exit a superconducting wire connected to normal
metal leads [35]. Figure 10 shows these processes in steady state. As normal electrons enter
the superconducting region from the left, their orbits suddenly expand to radius 2λL. This
corresponds to a thrust to the left a distance λL, as shown on the left part of the lower
panel of Figure 10, which through the action of the magnetic Lorentz force gives rise to
a velocity (vy) pointing upward (downward) in the upper (lower) part of the wire. This
accounts for the discontinuous change in the slope of the streamlines shown in the upper
panel of Figure 10 [35], which is obtained through solution of the London equations [29].
Similarly, when electrons leave the superconducting region their orbits suddenly contract,
which also corresponds to a thrust to the left, as seen in the right part of the lower panel in
Figure 10, and again the action of the magnetic Lorentz force explains the discontinuous
slope of the streamlines shown in the upper panel of Figure 10 right side. This illustrates
that the “mechanism active in the material during the transition” hypothesized by Cherry does
not require the “motion of a boundary” that takes place during the phase transition but also
acts when carriers enter and leave a superconducting region of fixed boundaries.

This same physics sheds light on how thermodynamic equilibrium at the phase
boundary between a normal and a superconducting region in the presence of the critical
magnetic field works [15], first addressed but not resolved by H. London in 1935 [36].
Electrons near the boundary must constantly transfer in and out of the superconducting
region due to thermodynamic fluctuations, in the process acquiring and losing the large
Meissner velocity at the phase boundary, and transferring compensating momentum to
the body. This cannot possibly happen through scattering processes that would generate
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entropy, as would be expected within the conventional theory [15] since it is the only
mechanism available within it.
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Figure 10. Cross-section of a superconducting wire connected to normal metal leads carrying a
current from right to left (opposite to the horizontal arrows). The magnetic field generated by the
current points into (out of) the paper in the upper (lower) half of the wire. The upper panel shows
streamlines of electrons obtained through solution of London’s equation [29]. Note the discontinuous
change in the vertical component of the velocity as electrons enter and leave the superconducting
regions. This is explained through the same orbit expansion and contraction discussed earlier, as
illustrated in the lower panels and explained in the text.

Finally, we have argued that in the absence of the mechanism described here for
electrons to acquire and lose the Meissner velocity, the transition between normal and
superconducting states in the presence of a magnetic field would take an arbitrarily long
time as the temperature approaches zero, i.e., in a magnetic field close to the zero temper-
ature critical field [15]. To our knowledge this has not been observed. Instead, reported
experimental observations [37] are consistent with the transition time being determined by
Faraday’s law as discussed by Pippard [38].

6. Relation with BCS-London Theory

It is believed by some that London’s theory explains the Meissner effect. That is not so.
The London derivation [6] leads to the equation for the current density j⃗

∂

∂t
(∇⃗ × j⃗) = − c

4πλ2
L

∂B⃗
∂t

(16)

from which the London equation

∇⃗ × j⃗ = − c
4πλ2

L
B⃗ (17)

predicting no magnetic field in the interior of the superconductor does not follow. Instead,
the correct time integration of Equation (16) yields

∇⃗ × (⃗j(⃗r, t)− j⃗(⃗r, 0)) = − c
4πλ2

L
(B⃗(⃗r, t)− B⃗(⃗r, 0)) (18)
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from which Equation (17) follows for initial conditions B⃗(⃗r, 0) = j⃗(⃗r, 0) = 0, i.e., when a
magnetic field is applied to a the system already in the superconducting state. Instead,
for the Meissner effect the initial conditions are B⃗(⃗r, 0) = B⃗0, j⃗(⃗r, 0) = 0. So, the correct
equation is

∇⃗ × j⃗(⃗r, t) = − c
4πλ2

L
(B⃗(⃗r, t)− B⃗0) (19)

with solution B⃗(⃗r, t) = B⃗0 and j⃗(⃗r, t) = 0 for all t, and hence the magnetic field remains in
the interior of the superconductor and there is no Meissner effect.

It is also not so that BCS theory predicts the Meissner effect, as generally believed. The
“derivation” of the Meissner effect within BCS theory [13] starts with the system in the BCS
ground state to which a magnetic field is applied, and the resulting current that cancels the
internal field is calculated through linear response theory. That is not a derivation of the
Meissner effect, as we discuss in Sect. II of Ref. [26], because the system cannot be in the
superconducting state with the magnetic field in the interior and then expel it. The system
is initially in the normal state and only reaches the superconducting state in the process of
expelling the magnetic field.

BCS theory correctly describes that the superconducting state with the magnetic field
excluded has lower free energy that the normal state with the magnetic field in the interior.
But the theory does not provide a mechanism for the system to go from the initial to the
final state, as discussed further in the next section.

BCS theory certainly describes correctly many properties of the superconducting state,
such as the pairing structure of the wavefunction, the superconducting energy gap, and
macroscopic phase coherence. But that does not mean that it gives a correct description of
the equilibrium state, as discussed in the next section.

7. Consequences for the Equilibrium State

The conventional BCS-London theory has not provided a dynamical explanation of
the Meissner effect [26,39]. It is often stated by BCS practitioners that this is not necessary
as long as the theory describes the equilibrium state. However, we argue that if BCS
theory cannot describe the Meissner effect, its description of the equilibrium state cannot
be correct either.

In particular, we argued in the previous sections that charge asymmetry is essential to
understand the Meissner effect. This is also illustrated by the fact that rotating supercon-
ductors exhibit a magnetic field that is always parallel, never antiparallel, to their angular
velocity [40]. The charge that is expelled and acquires the Meissner velocity through the
Lorentz force is negative charge, and the backflowing normal charge has to be electrons
with negative effective mass or equivalently forward-flowing holes. BCS theory does not
distinguish between electrons and holes, and hence cannot describe this physics.

The understanding of the Meissner effect through the theory of hole superconductivity
implies that the equilibrium state of a superconductor is different from what is predicted
by BCS theory. In particular, the net result of the transition process where electrons
becoming superconducting move outward and normal electrons backflow inward is a small
remnant (of order 1 electron per 106 atoms) of excess negative charge within a London
penetration depth of the surface: the superfluid density in equilibrium is macroscopically
inhomogeneous, as shown qualitatively in Figure 2. The quantitative description of it is
given in Refs. [41,42]. Furthermore, a spin current is predicted to flow near the surface of
superconductors in the absence of applied fields [30,42] in thermodynamic equilibrium.
None of this physics is part of BCS theory.

8. Discussion

The Meissner effect is the most fundamental property of superconductors. BCS theory
is universally believed to be the correct theory to describe conventional superconductiv-
ity [43]. Yet, we have argued that it does not describe the physics of the Meissner effect. The
models used within BCS theory to describe superconductors do not contain the necessary
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physics to describe the Meissner effect because they are electron-hole symmetric and hence
cannot describe the physics of charge expulsion, which requires a recognition that negative
and positive charges are different. A material described by such models would not undergo
a transition to a superconducting state as real superconductors do. In the presence of a
magnetic field, even if electrons interacted through an effective attractive interaction, a
system described by BCS theory would remain in a metastable normal state in the pres-
ence of a magnetic field, unable to expel the magnetic field to reach the phase-coherent
superconducting state.

The fundamental charge asymmetry that according to the theory of hole superconduc-
tivity is at the root of superconductivity originates in the fact that electrons and protons
have vastly different masses. A clear manifestation of this physics is the fact that the mean
inner potential of solids is necessarily positive; in other words, electrons have to pay an
energetic price to come out of a solid. The deep connection between charge asymmetry,
mean inner potential, diamagnetism, and superconductivity is discussed in Ref. [44]. We
have also explained the microscopic reasons for why superconductors expel negative
charge [45,46].

Expulsion of magnetic field requires expulsion of charge, as recognized first by Koch
80 years ago [9–11] and proved mathematically in Ref. [25]. It requires expulsion of
negative charge, as predicted by the theory of hole superconductivity [21]. It requires,
besides out f low of charge, back f low of charge to preserve (near) charge neutrality, as first
recognized by Cherry 60 years ago [12]. And it requires that superconducting electrons
occupy mesoscopic orbits of radius 2λL, as first recognized by Slater 85 years ago [8].

The explanation of the Meissner effect by the theory of hole superconductivity contains
all those physical elements [3]. It explains the Meissner effect as a direct consequence of
Alfven’s theorem [26], which states that in a perfectly conducting fluid magnetic field lines
move with the fluid. The fluid that as it moves expels the magnetic field cannot carry either
charge or mass, which necessitates that it is composed of electrons and holes: the electrons
acquire the azimuthal speed of the supercurrent, and the holes transfer the compensating
momentum to the body without scattering processes. It explains the questions posed
in the Introduction: what the force that causes the development of the supercurrent in
the Meissner effect is, how the growing supercurrent overcomes Faraday’s counter-emf,
how the momentum of the supercurrent is compensated so that momentum conservation
is not violated, how the supercurrent stops before the material develops resistance in
the superconductor to normal transition, how its momentum is transferred to the body
without development of Joule heat, how rotating superconductors generate magnetic
fields, how electrons discontinuously change their velocity when they enter and leave
a superconducting wire, etc. None of these fundamental questions is addressed by the
conventional theory. We also note that the process of flow of superconducting fluid and
backflow of normal fluid argued to be essential to the understanding of the Meissner effect
also plays a key role in the physics of superfluid 4He [47].

Neither Slater nor Koch nor Cherry cited each other, indicating that they reached
their physical insights independent of one another. Neither was I aware of any of their
works when I developed an explanation of the Meissner effect based on the theory of
hole superconductivity that contains the physical elements identified by Slater, Koch and
Cherry as essential ingredients. Note in particular that I reached the conclusion that
superconductors expel negative charge to the surface without relating it to the Meissner
effect [21]. The coincidence of all these independent efforts is, I believe, strong evidence
that these physical elements are an integral part of the correct physical understanding of
the Meissner effect.

Consequences of the physics discussed here that should be experimentally detectable
include that electric fields should exist around small superconducting particles in thermal
equilibrium at low temperatures [48], that radial electric fields in the interior of the ma-
terial should develop during the normal–superconductor transition [49] and that Alfven
waves that include temperature waves as in helium’s second sound should propagate
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along normal–superconductor phase boundaries [50]. These have not been experimentally
explored to date.

In closing, I point out that a proper understanding of the Meissner effect and of
the associated predicted Spin Meissner effect [30,42] may well help with future practical
applications of superconductors in ways we cannot anticipate. We also note that the theory
of hole superconductivity implies that the electron–phonon interaction is irrelevant to
superconductivity, contrary to what BCS theory says. This implies that efforts to raise the
critical temperature by searching among compounds with light elements [51,52] are futile.
Room temperature superconductors will be found when scientists focus their search for
new materials on criteria consistent with physical reality [3] rather than with fiction [7].
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