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Abstract: Cellular materials offer industries the ability to close gaps in the material selection design
space with properties not otherwise achievable by bulk, monolithic counterparts. Their superior
specific strength, stiffness, and energy absorption, as well as their multi-functionality, makes them
desirable for a wide range of applications. The objective of this paper is to compile and present a
review of the open literature focusing on the energy absorption of periodic three-dimensional cellular
materials. The review begins with the methodical cataloging of qualitative and quantitative elements
from 100 papers in the available literature and then provides readers with a thorough overview of
the state of this research field, discussing areas such as parent material(s), manufacturing methods,
cell topologies, cross-section shapes for truss topologies, analysis methods, loading types, and test
strain rates. Based on these collected data, areas of great and limited research are identified and
future avenues of interest are suggested for the continued maturation and growth of this field, such
as the development of a consistent naming and classification system for topologies; the creation of
test standards considering additive manufacturing processes; further investigation of non-uniform
and non-cylindrical struts on the performance of truss lattices; and further investigation into the
performance of lattice materials under the impact of non-flat surfaces and projectiles. Finally, the
numerical energy absorption (by mass and by volume) data of 76 papers are presented across multiple
property selection charts, highlighting various materials, manufacturing methods, and topology
groups. While there are noticeable differences at certain densities, the graphs show that the categorical
differences within those groups have large overlap in terms of energy absorption performance and
can be referenced to identify areas for further investigation and to help in the preliminary design
process by researchers and industry professionals alike.

Keywords: additive manufacturing; cellular materials; energy absorption; lattice topology;
relative density

1. Introduction

While the research field of metamaterials, defined as materials engineered with proper-
ties not easily found in nature, is vast and ever-growing [1–6], there is a subsection within
this field of particular interest: cellular solids. Simply put, cellular solids are defined as “an
assembly of cells with solid edges or faces, packed together so that they fill space” [7]. The
cells themselves are usually an assembly of connected struts or plates and the tessellation
to fill a volume can be stochastic or periodic, as is usually the case for foams and lattices,
respectively [7–11]. Early work on cellular materials is thanks to Gibson and Ashby [7],
whose book discussed the structure, properties (such as mechanical, thermal, and acoustic),
and use of cellular materials, specifically foams and honeycombs. As is discussed in great
detail in [9], micro-architected materials—of which cellular materials are a category—were
developed to attempt to close gaps in the material property selection design space, which
the manipulation of the chemistry and the microstructure of monolithic materials was not
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otherwise capable of. Specifically, for a given density, by manipulating the appropriate
parameters, it may be possible to increase properties—such as stiffness, strength, or thermal
conductivity—by a factor of 1000 or more [8].

These types of materials can offer a wide range of beneficial properties for many
industries. For the biomedical industry, they can be employed within orthopedic implants
for load-bearing or energy absorption applications or as scaffolding to optimize osseointe-
gration [12–19]. Parisien et al. [20,21] investigated periodic cellular solids for their ability to
promote better mature bone growth stimulation while Zhang et al. [22] found that a graded
lattice structure with tapered struts increased permeability by over 27% as compared to
the ungraded and untampered variation and bone density by over 50% as compared to
the ungraded variation. Within the automotive industry, the appeal is for their use within
structural components, such as crash mitigation, and to decrease noise conduction [23–26].
For the aerospace and defense industries, the appeal is similar to the automotive industry,
in addition to the use within more advanced aircraft and propulsion systems [24,27–31].
Trudel et al. [30] achieved a 44% reduction in weight in a simple aircraft door hinge by
utilizing lattice materials while Opgenoord and Willcox [32] applied their cellular structure
design method to an aircraft bracket from the literature, achieving a 24% reduction in
weight. Moreover, among other applications, lattice materials can be used in sports equip-
ment as protective helmets, for thermal insulation and heat exchange, for electromagnetic
shielding, for the protective packaging of delicate components, and as acoustic absorption
barriers [24,33–41]. Chen et al. [42] presented a novel helmet design made with an auxetic
lattice liner that was determined to reduce the head injury criterion (HIC) by over 72%, as
compared to the allowable threshold HIC.

However, the issue of manufacturing arises with the desire for cellular materials
with a high degree of controllability and repeatability; conventional methods for creating
foams—such as the melt foaming method or investment casting—do not allow for sufficient
control of mechanical properties, can be costly and inefficient, and can limit the achievable
manufacturable geometrical complexities [43,44]. With the promise of the expansion of
the material selection design space, the demand for such cellular materials—with highly
controllable properties for a variety of applications—has pushed the search for new manu-
facturing techniques, particularly additive manufacturing (AM) [45]. As compared to the
traditional techniques of manufacturing cellular materials, AM allows for the repeatable
manufacture of these materials at a much smaller scale, with features on the order of micro-
and nano-meters; a much higher complexity than subtractive or traditional manufactur-
ing; and a more rapid build rate [44,46–51]. Zhao and Zong in [52] actually outline five
complexities that AM has the potential of achieving: shape complexity (capable of building
almost any geometry); hierarchical complexity (different design features can be included at
multiple length scales); functional complexity (multiple parts can be manufactured assembled
together); material complexity (multiple materials can be integrated into the design); and
metallurgical complexity (metallic microstructures can be customized by adjusting heating
and cooling regimes).

To refine the scope of this investigation, the following limitations were introduced
during the review of the available literature:

• While cellular materials can be split into stochastic or periodic tessellation categories,
the interest in this paper is for periodic cellular materials. The choice to eliminate
stochastic variations from this work stems from the understanding that while their
properties can be approximated, the recreation and exact prediction of properties are
not possible due to the randomized nature of the cells [53]. Thus, periodic cellular
materials are of greater interest for critical applications requiring a known response
within a given environment.

• While tessellation and parameter variability of a lattice unit cell can vary in different
Cartesian length scales, the focus of this paper is on 3D lattices versus 2D honeycombs
or 1D counterparts.
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• Our review includes closed or open-cell lattice topologies with sheets/plates or strut-
like architecture, respectively, which includes but is not limited to, sheet-based (such as
triply periodic minimal surfaces (TPMSs)) and periodic micro-truss architected lattices.
In this work, the term lattice(s) is used to refer to all of these types of three-dimensional
cellular materials, which each have a unique unit cell geometry that can be repeated in
any and multiple of the principal Cartesian directions to form a cluster.

• There are also no limitations on the types of manufacturing technologies (traditional or
additive) utilized for the fabrication of samples, so as to highlight the variety of tech-
niques available; though, as previously briefly discussed, advances in AM technologies
allow for the manufacture of cellular materials with higher geometrical complexities
while offering the ability to reduce cost and increase reliability and repeatability.

• Finally, the interest is on energy absorption of 3D periodic lattices and, as such, the
literature that did not adequately discuss the energy absorption of the investigated
lattice(s) was not included in investigations and summaries of trends. For directly
calculating energy absorption and associated parameters, the reader is directed to the
other literature for the formulaic definitions [54,55].

This paper is organized as follows: after this introduction, Section 2 describes the
method of collecting and organizing the existing literature; Section 3 discusses the types of
materials and manufacturing methods utilized in the literature; Section 4 considers lattice
topologies, including their classification system, the variation in number of topologies
investigated per paper, and their design, including software types; Section 5 examines
different characterization approaches, including experimental and numerical methods;
Section 6 explores the strain rates and speed ranges—such as quasi-static or dynamic—utilized
in the literature; and Section 7 explores energy absorption trends present in the published
literature. The conclusion follows these sections.

2. Methods

With a focus on the characterization of energy absorption properties of periodic lattice
materials, over 250 publications were reviewed—and then narrowed to 100 papers of
interest based on the restrictions outlined in Section 1—spanning approximately the last
two decades, where the average number of publications per year for the specified time
range is provided in Figure 1. These publications were located using Google Scholar
(Google, Mountain View, CA, USA) searches, using key search terms including “cellular
materials”, “lattices”, and “energy absorption”, as well as reviewing reference sections of
those papers and other review papers, such as [53,56]. Tools such as Connected Papers [57],
Inciteful [58], and Litmaps [59] were also utilized to help discover the additional applicable
literature based on the literature already identified as relevant.
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Once a publication was identified as one of interest, all relevant data were collected
including analysis approach of either analytical, computation, or experimental; commercial
software package used for the analysis; impact test speed; and lattice-related information
such as parent material, cell size, manufacturing method, among others. A summary of
data collected for those papers of interest can be found in Table A1 at the end of the paper.
Commentary regarding the results and trends illuminated by the information in that table
is the focus of the following sections, and any challenges encountered during the data
extraction process are discussed as they become applicable, notably in Sections 4 and 7.

Overall, the data collected were reviewed using content and thematic analysis meth-
ods, as well as making inferences about the field based on the sample of numerical energy
absorption data collected from 76 papers. It is noted that while there are emerging litera-
ture review and analysis methods using Artificial Intelligence (AI) and other automation
techniques [60,61], only classical methods were adopted for data extraction and analysis
purposes here.

It should also be noted that while there were limitations placed on the selection of
papers of interest, papers that fell outside of the scope of what was defined in Section 1 are
still referenced and discussed, particularly as a means of identifying additional gaps in
research and looking for solutions from other disciplines.

3. Parent Materials and Manufacturing Processing Stages

This section discusses the importance of parent material in the design and manufacture
of lattice materials, focusing not only on the general selection of the bulk material, but also
on how the processing stage (i.e., manufacturing method) and post-processing stage (e.g.,
heat treatments) can influence the properties of this bulk material, thereby affecting the
overall performance of the lattice material.

3.1. Pre-Processing Stage: Material Types

It is generally agreed upon that parent material is one of three dominating factors that
influence the cellular material characteristics, meaning this choice is not insignificant in the
scheme of cellular material examination [8]. Table 1 provides some information regarding
potential motives for choosing one material over another.

As shown in Figure 2, steel and titanium alloy materials account for almost half of the
research into the energy absorption characteristics of cellular materials while composites,
nickel alloys, and copper alloy-based cellular materials are examined much less often. Given
the maturity of the technologies available for manufacture and the availability of different
materials, such a distribution is understandable. Steel and aluminum alloys are among the
most widely used metals in the world [62–64], and availability of mature manufacturing
techniques that are compatible with such materials (such as Selective Laser Melting) makes
experimentation and analysis of lattice materials made from those parent materials more
convenient [65,66]. The high use of nylon and other polymers/resins can also be explained
by their low melting (and curing) temperature, general chemical stability, and good flow
during manufacture following a polymer-suitable AM technique, such as Fused Filament
Fabrication or Fused Deposition Modeling [67–69]. On the other hand, copper and its alloys
are difficult to process via Selective Laser Melting as a result of the low laser absorption
rate and high thermal conductivity or copper, meaning that research with this material has
been relatively limited so far [44]. Additionally, there can be some difficulties associated
with the additive manufacture of composite materials such as ensuring the even dispersion
of discontinuous, chopped fibers (specifically, carbon nano-tubes) within the matrix of the
composite [70,71]; void formation and poor fiber–matrix adhesion [72,73]; and extrusion-
based techniques may experience nozzle clogging by the fibers [73]. While there has been
research into continuous fiber-reinforced composites [74], the AM of continuous fiber
composites comes with additional challenges [75]; all composites within the papers of
interest consisted of discontinuous fibers or carbon nano-tubes.
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Table 1. General description of properties of materials with some examples of applications.

Material Type Descriptions, Advantages, and Disadvantages General Applications

Steel and Steel
Alloys [62–64]

Iron-based metals and alloys are the most widely used metal, particularly since they are relatively economical to produce.
While in general they are versatile, they are also susceptible to corrosion.

Low-Carbon Steel (LCS)—relatively low strength since increasing carbon content will increase strength; soft, good
ductility; and least expensive of the carbon steels to produce.

Medium-Carbon Steel (MCS)—high strength; high wear resistance; and high toughness.
High-Carbon Steel (HCS)—hardest, strongest, and least ductile of the carbon steels; high wear resistance.

Stainless Steel (SS)—good corrosion resistance; high strength and ductility.

LCS—nails; consumer goods; and cans.
MCS—machine parts; rivets and other

fasteners; and gears.
HCS—cutting tools; files; and saws.

SS—chemical and food processing (cutlery,
kitchen equipment); petroleum industries;

and health care (surgical equipment).

Titanium and
Titanium Alloys

[62–64,76]

Advantages: high strength-to-weight ratio; high elastic modulus; highly ductile; good corrosion resistance at high and low
temperatures; high melting point; and low density as compared to iron.

Disadvantages: expensive; chemically reactive with other elements at high temperatures.

Aircraft; engines; chemical and petrochemical
industries; biomaterials (orthopedic implants);

and dental applications.

Aluminum and
Aluminum Alloys

[62–64]

Advantages: high strength-to-weight ratio; low density; high ductility; good corrosion resistance; high thermal and
electrical conductivity; non-toxic; non-magnetic; and abundant (it is the second most-used metal).

Disadvantages: aluminum–lithium alloys, which are attractive for aerospace applications due to their high
strength-to-weight ratios and excellent fatigue properties, are costly.

Containers; packaging; transportation
industry (automotive, aircraft, aerospace,

railroad); electrical products; and consumer
appliances.

Copper and Copper
Alloys [44,62,63]

Copper and its alloys are good for applications with multiple requirements, such as good electrical and
mechanical properties.

Advantages: good thermal and electrical conductivity; high corrosion resistance in multiple environments (e.g., seawater
and industrial chemicals); and good wear resistance.

Disadvantages: unalloyed, they are soft and ductile; low laser absorption rate and high thermal conductivity can make the
AM of copper-based materials difficult.

Heat capacitor and heat exchanger
applications.
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Table 1. Cont.

Material Type Descriptions, Advantages, and Disadvantages General Applications

Thermoplastics
[62,63,70,77–80]

Generally cheap and abundant, thermoplastics are the default for use in Fused Deposition Modeling (FDM)
AM technology.

Acrylonitrile butadiene styrene (ABS)—high strength; high toughness; good abrasion, chemical, and heat resistance; and
good electrical properties.

Polyamide (PA, Nylon)—good mechanical properties; good toughness; good abrasion and chemical resistance; low
coefficient of friction; and can absorb moisture/water (a limiting factor for design applications).

Polyethylene (PE)—highest-volume polymer in the world. In general, good electrical and chemical properties; high
toughness and ductility; low coefficient of friction; low moisture/water absorption; good ease of processing; low strength
(can be a limiting factor for applications); and poor weather resistance. Low-Density PE (LDPE): high impact strength,

toughness, and ductility. High-Density PE (HDPE): low cost, good availability, good ease of processing, and high
performance-to-cost ratio. Ultra-High-Molecular-Weight PE (UHMWPE): good abrasion resistance; high toughness; and

difficulty processing.
Polylactide (PLA)—biodegradable; high strength; and low ductility.

Polypropylene (PP)—good mechanical (including fatigue strength), electrical, and chemical properties; low weight; low
cost; good availability; good ease of processing; high performance-to-cost ratio; resistant to heat distortion; and low

moisture/water absorption.

ABS—automotive, aerospace, and medical
device applications.

PA, Nylon—gears; bearings; bushings; rollers;
fasteners; zippers; electrical parts; tubing;

guides; and surgical equipment.
LDPE: packaging films (e.g., shrink film).

HDPE: bottles (milk, juice); food containers;
gas tanks; and garbage bags.

UHMWPE: artificial knee and hip joints.

Composites [77]

Advantages of using such materials include weight reduction; high stiffness- and strength-to-weight ratios; tailorable
properties (can align fibers in direction of load); redundant load paths (multiple fibers); can have increased/decreased

thermal or electrical conductivity; and better fatigue life.
Disadvantages of these materials include high material and fabrication costs; weak properties transverse to the fibers;

matrix has low toughness and is subjected to environment, potentially leading to degradation due to those conditions; and
difficult to analyze properties and non-destructive testing can be tedious.
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3.2. Processing Stage: Manufacturing Methods

The fabrication of cellular materials encounters unique challenges while ensuring
geometric accuracy and overall efficiency, particularly at the micro- and nano-scales for pe-
riodic lattices. Rashed et al. [46] (and others [81,82]) outlined those manufacturing methods
proven for the fabrication of micro-lattice materials, specifically metallic, including invest-
ment casting, deformation forming, woven and non-woven textiles, Selective Laser Melting
(SLM), Electron Beam Melting (EBM), and a self-propagating photopolymer waveguide
technique (using collimated ultraviolet (UV) light and a patterned mask). They mentioned
that conventional methods of manufacture—for which they group investment casting,
deformation forming, and woven and non-woven textile techniques—generally have a
higher minimum requirement for relative density and cell size than those AM techniques
discussed. Additionally, as mentioned in Section 1, AM allows for the fabrication of parts
with much higher geometrical complexity, including those geometries developed from
topology optimization [44,46,48–51,83]. Table 2 outlines additive manufacturing technolo-
gies per the seven categories outlined in the ISO/ASTM standard of [84] and provides some
general advantages and disadvantages as well as suitable materials for those techniques.

Such a conclusion—that AM provides greater flexibility in the design and manufacture
of cellular materials—is reflected in the distribution and variety of manufacturing methods
encountered in the papers of interest, which is summarized in Figure 3. Additionally,
though not generally a topic within the reviewed literature, there are advancements to
AM technologies that allow for the fabrication of parts using multiple materials, opening
the doors for this avenue of research within this field [85–87]. Indeed, the vast majority
of methods identified follow AM techniques and other, more conventional, methods are
limited; one of the conventional methods utilized was water jet cutting of titanium alloy
plates by Dong et al. [88] to fabricate their lattice samples, snap-fitting and vacuum brazing
the joints.
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As the influence of parent material on the performance of a lattice material is non-
negligible, it is important to note that the parameters associated with the AM of specimens
(e.g., laser power, laser exposure, layer thickness) can affect the final microstructure of the
parent material. While the influence of those parameters during AM is not limited to only
lattice materials, the unique geometry of these materials means that investigations with AM
cellular materials should not be disregarded. In [89], Tsopanos et al. investigated the effect
of laser power and laser exposure time during the Selective Laser Melting manufacture of
body-centered cubic (BCC) lattices on their mechanical performance. They noted that low
laser powers reduced the strength of struts while higher laser powers yielded struts that
performed comparably to the bulk material properties. Sallica-Leva et al. [90] manufactured
titanium alloy lattice specimens using Selective Laser Melting and investigated the effects
of low- and high-energy inputs on their microstructure and mechanical performance.
They found that the samples manufactured at higher input energy had higher mechanical
properties, as compared to the low-energy samples at the same relative density. They used
the increase in oxygen and nitrogen in the struts of those high-energy samples as rationale
for the increase in mechanical properties.
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Table 2. Additive manufacturing technologies per the seven categories outlined by ISO/ASTM 52900 [84], including advantages, disadvantages, and types of
materials suitable for the technique. Adapted from [69,76,79–81,91–93].

ASTM Categ. 1 Technique Advantages Disadvantages Materials
Build Volume Size

(X mm × Y mm × Z mm)
Resolution: (µm)

BJT 2 3D inkjet

Free of support/powder bed acts as integrated
support structure
Design freedom

Large build volume
High print speed

Relatively low cost
Large range of material options

Fragile parts with limited
mechanical properties

May require post-processing
Rough or grainy appearance

Polymers
Ceramics

Composites
Metals
Hybrid

Vol: Small to large
(<4000, <2000, <1000)

–

LD
Reduced manufacturing time/cost, high material

deposition rate, and high material utilization
Accurate composition control

Highly controlled grain structure/microstructure
High-quality parts

Excellent mechanical properties
Excellent for repair and retrofitting applications

Surface quality and speed requires
fine-tuning/balance

Limited to metals/metal-based hybrids
Limitations with regards to complex shape

with fine details

Metals
Hybrid

Vol: Small to large
(600–3000, 500–35,000,

350–5000)
Res: (250)

LENS
EBDED

PAM

MEX FDM/FFF/FLM

Inexpensive, widespread use
Scalable

High speed
Simplicity

Can build fully functional parts

Long build time
Vertical anisotropy, weak

mechanical properties
Step-structured surfaces (due to

layer-by-layer build)
Not amenable to fine details

Limited materials

Polymers
Composites

Vol: Small to medium
(<900, <600, <900)

Res: (50–200)

3D inkjet

High accuracy of droplet deposition
No/low material waste

Multi-material, multi-color possible

Support material is often required and cannot
be recycled/reused

Mainly photopolymers and thermoset resins
can be used

Post-processing could damage thin or
small features

Polymers
Ceramics

Composites
Hybrid

Biologicals

Vol: Small
(<300, <200, <200)

–
MJT DIW
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Table 2. Cont.

ASTM Categ. 1 Technique Advantages Disadvantages Materials
Build Volume Size

(X mm × Y mm × Z mm)
Resolution: (µm)

EBM Fine resolution, high quality, accuracy
Small footprint

Powder bed acts as integrated support structure
Large range of material options

Polymer and metal powder can be recycled

Relatively slow build rate
Lack of structural integrity, rough surface

finish
Size limitations

Expensive machines
Finish depends on precursor powder size

Polymers
Ceramics

Composites
Metals
Hybrid

Vol: Small
(200–300, 200–300, 200–350)

SLS/SLM Res: (80–250)

DMLS
PBF SLS/SLM

LOM
High fabrication speed

Low cost
Ease of material handling

Reduced tooling and manufacturing times
Excellent for manufacturing large structures

Multi-material, multi-color possible

Strength and integrity of parts depend on
adhesive used

Finishes may require post-processing
Inferior surface quality and dimensional

accuracy, warpage possible
Limited material use, limitations in

design complexity
High material waste

Polymers
Ceramics

Metals
Hybrids

Vol: Small
(150–250, 200, 100–150)

LOM Res: varies based on
sheet thickness

SHL
UC/UAM

SLA

High fabrication speed
Excellent accuracy, fine resolution

Excellent surface finish and details, high quality

Low shelf-life
Poor mechanical properties, post-curing

required to enhance strength
Expensive

Slow build process
Requires supports and post-processing to

remove them

Polymers
Ceramics

Vol: Medium
(<2100, <700, <800)

SLA Res: (10)
VPP

DLP

1 Liquid , powder , and solid bulk material. 2 Liquid- and powder-based. Acronyms in table: Vol.—Volume; Res.—Resolution; BJT—binder jetting; DED—direct energy deposition;
MEX—material extrusion; MJT—material jetting; PBF—powder bed fusion; SHL—sheet lamination; VPP—vat photopolymerization; LD—laser deposition; LENS—Laser Engineered
Net Shaping; EB—Electron Beam; PAM—Plasma Arc Melting; FDM—Fused Deposition Modeling; FFF—Fused Filament Fabrication; FLM—Fused Layer Modeling; DIW—Direct Ink
Writing; EBM—Electron Beam Melting; DMLS—Direct Metal Laser Sintering; SLS—Selective Laser Sintering; SLM—Selective Laser Melting; LOM—Laminated Object Manufacturing;
UC/UAM—Ultrasound Consolidation/Ultrasound Additive Manufacturing; SLA—Stereolithography; and DLP—Digital Light Processing.
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Even the geometry can have an effect on the microstructure development during
AM. In [94], del Guercio et al. evaluated the mechanical performance of titanium alloy
lattice structures and also performed a microstructural analysis of the specimens. They
noted that “the rapid and directional solidification phenomena during the AM process can
define the local microstructure”, noting differences between the microstructure of three
topologies (dode thin, G-structure, and rhombic dodecahedron) at similar strut diameters,
but finding similarities when the strut diameters varied from one topology to another. They
explain this peculiar result as perhaps related to the thermal history during AM. Pyka
et al. [45,95] noted differences in surface roughness between the top and bottom surfaces
of non-vertical struts and explained in [45] that the heat flow and staircase effect play a
role in such a phenomenon; the bottom surfaces of struts see a greater accumulation of
powder particles during AM due to variations in heat flow while the surfaces of vertical
struts are more uniform. Dong et al. [96] also discussed this phenomenon. In [97], Liu et al.
discussed variations in material microstructure between the struts and nodes of a BCC-type
lattice, even noting differences in microstructure based on the location within those bodies
(e.g., top or bottom of node or angled strut). They rationalized this gradient microstructure
as arising from “varied cooling rates resulting rom the lower thermal conducting of the
un-melted powder particles in contact with built regions”.

3.3. Post-Processing Stage: Treatments

While it appears that the majority of papers performed no post-processing treatments
on the as-built lattices prior to experiments, some did note investigating the effect of post-
processing treatments [49,98–100]; others simply utilized post-processing treatments to
reduce residual stress in the as-printed part before performing experiments [101,102]. In
2016, Maskery et al. [49] investigated the mechanical and energy absorption characteristics
of uniform and functionally graded BCC lattices. They performed heat treatments on the
as-built SLM aluminum samples and found that the post-manufacturing process allowed
the lattices to exhibit a more ideal stress–strain behavior of cellular materials as compared
to the as-built lattices. In 2017, Maskery et al. [98] manufactured “double gyroid” TPMS Al-
Si10-Mg lattices and investigated their compressive deformation response, including their
energy absorption capabilities. They also performed a post-manufacturing heat treatment,
noting that it eliminated the brittle fracture and its low-strain failure. They concluded by
suggesting that a smaller cell size should be chosen so as to avoid low-strain failure due
to localized fracture and crack propagation but noted that the resolution of the additive
manufacturing technique must also be considered to ensure the manufacturability of the
lattice. They also compared to previous work with BCC lattices [49], mentioning the heat-
treated double gyroid lattices absorbed almost three times as much specific energy by a 50%
compressive strain as those BCC lattices. Köhnen et al. [99] experimentally investigated
the tensile, compressive, and fatigue responses of lattices made of either face-centered
cubic with vertical struts (FCC-Z) or hollow spherical unit cells, having also prepared
annealed samples of the FCC-Z topology to investigate the effects of that heat treatment.
They found that the annealing had no significant benefit to the tensile or fatigue properties
of the FCC-Z SLM lattice: it decreased the maximum force and elongation to fracture, and
the slope of the force number of cycles line during fatigue investigations was steeper for
the annealed samples (thus, for a given force, the annealed samples would fail in fewer
cycles). Jin et al. [100] manufactured BCC and octet Ti6Al4V lattices by SLM and performed
a variety of heat treatments (750 ◦C–1050 ◦C and hot isostatic pressing) to investigate their
effect on resulting mechanical properties. They noted that for the bending-dominated
BCC, a higher heat treatment temperature (920 ◦C) gave better properties, while a lower
temperature (750 ◦C) was better for the stretching-dominated octet.

The investigation into the effects of treatments to the lattice in the post-processing
stage appears to be well underway for the general microstructural and basic mechanical
characterization of additively manufactured lattice materials but is still lacking when it
comes to specific influences on the energy absorption of lattice materials [45,90,95,103–106].
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Some investigations concerning, specifically, additively manufactured lattice materials
(outside of the interest in energy absorption capabilities) include Wauthle et al. [106], who
investigated the effects of build orientation and heat treatment on both the microstructure
and mechanical properties of SLM Ti6Al4V lattice samples. Having looked at five orienta-
tions and three heat treatments, they noted the importance of avoiding horizontal struts
in relation to the build direction and that a hot isostatic pressing heat treatment could be
beneficially used for static and dynamic loading situations. De Formanoir et al. [105] inves-
tigated the effects of chemical etching on the microstructure and mechanical properties of
EBM Ti6Al4V lattice structures, finding that the parts treated with the chemical etchant had
reduced surface roughness and an increase in relative stiffness as compared to as-built parts.
On the chemical etching note, Pyka et al. [45] investigated the effect of chemical etchant
on an SLM Ti6Al4V strut-based lattice material. They found that the concentration of the
etchant was most influential on surface roughness reduction and that the strut thickness
could decrease the effectiveness of the treatment.

4. Lattice Material Topologies
4.1. Topology Classification

Bhate in [107] ponders four key questions regarding cellular material design, the first
of which is what is the optimum unit cell? Such a question appears straightforward enough
but quickly becomes very difficult given that there is technically a nearly infinite list of unit
cell topologies to choose from, each providing their own unique set of characteristics. Helou
and Kara in [53] mentioned that there tends to be shortcomings in definitions of lattice
structures, which either ignore stochastic possibilities or non-strut-based configurations.
Indeed, with a nearly infinite list of topologies to choose from, it becomes difficult to come
up with a consistent naming convention for new designs. Attempts have been made,
such as in [108], which proposed a framework for describing trusses using a hierarchical
language system with a lexicon, grammar, and syntax, having derived it to describe the
position of the nodes of a lattice in space and their connectivity (struts). Additionally, a
three-tiered classification system was proposed in [109] based on tessellation (division of
the design volume into smaller segments); elements (use of beams and/or shells or plates
within the smaller volume segment); and connectivity (how the elements are connected
within the smaller volume segment).

And yet, the obstacle of inconsistent naming conventions for topologies was encoun-
tered while compiling publications and their associated data. For the most part, a standard
name was used across the literature for a given topology, but, still, sometimes the label
provided for an illustrated topology did not match the convention other publications had
been following. In an attempt to be as clear as possible on the distribution of topologies
addressed in the literature, in publications where the label and topology photo did not
match what appeared to be the standard in other papers, the label was switched to reflect
the topology being analyzed more accurately. Some examples in the literature to highlight
these naming inconsistencies are outlined in the following list, where it should be noted
that the examples pulled from the literature are not meant to be a critique of the choice
of terminology by those authors, only a critique of the general inconsistencies, which
can make research and comparison more difficult. Figures 4 and 5 provide some visual
representations of these topologies (as noted).

• The use of the terms “sheet-” or “skeletal-based” for TPMS topologies is not universal.
For example, in [98] (who also distinguishes between sheet and skeletal using matrix
phase and network phase), what may have been identified as a skeletal gyroid and
sheet gyroid by other sources [110–115] are termed a gyroid and double gyroid, respec-
tively. Some additional terms in the literature for “skeletal” in such a context include
“solid” [116]; “ligament” [117]; and “primary” and “secondary” [118]. For differences
between sheet and skeletal TPMS topologies, see the illustrations in Figure 5.

• In [119], the topologies BCC and BCC-Z (such as is identified in [120–123]) are termed
octahedral (or [±45◦]) and pillar-octahedral (or [0◦,±45◦]), respectively. While these
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terms are used for the same geometry (see Figure 4(1) and Figure 4(3), respectively),
these terms may also be used to describe geometries with slight variations (see
Figure 4(2) and Figure 4(4), respectively), such as in [124–126]. This has also been
noted by Noronha et al. [127] during their comprehensive review of hollow-walled
lattice materials.

• Tancogne-Dejean et al. [128], Jin et al. [100,129], and Alberdi et al. [130] identify an
octet topology (Figure 4(24), as in [131–133]) as FCC. In naming the combinations of
multiple elementary strut-based unit cells, they [128] utilize the elementary names
(simple cubic—SC, BCC, FCC) and a certain combination, termed as SC2-BCC, the
Delaunay or isotruss geometry is created (Figure 4(10)), without reference to those
particular names that are used elsewhere in the literature [134–137]. The use of a name
that indicates the elementary cell combination is used in the other pieces of literature,
such as [138], but the method of creating such a term—such as the abbreviations
used—is not always consistent.

• Other variations in naming combinations of pre-existing unit cells include the term
F2FCC-Z [139] to describe the FCC-Z cell [120,121] (Figure 4(3)); the term SC-BCC [128]
to describe what might be called star or cubic center in other sources [20,140,141]; and
the term F2BCC [142], which may be described as Face- and Body-Centered Cubic
(FBCC) in the other pieces of literature [20] (Figure 4(14)).

• There also tends to be some variation in the identification of the tetrakaidecahedron
topology (Figure 4(19)). Some pieces of the literature may reference it as a tetrakaidec-
ahedron, while others may use the term Kelvin, sometimes referencing the other term
and other times making no mention of it [50,143–149]. The terms Voronoi or truncated
octahedron are also used to describe a geometry that is identical to tetrakaidecahe-
dron/Kelvin [134,150–152]. By shifting the unit cell, an apparently new geometric
configuration is created (Figure 4(20)), generally termed Vintile(s) [20,140].

• As a final note, such inconsistencies are not limited to the written literature but also
spread into design software for lattices. For example, the Rhinoceros/Grasshopper
plugin IntraLattice [153] uses the terms grid, X, star, and cross for topologies otherwise
identified as cube/cubic, BCC, SC-BCC or cubic center, and All Face-Centered Cubic
(AFCC) (Figure 4(6) and Figure 4(1) for cubic and BCC topologies, respectively).

The distribution of the number of instances a particular topology was examined in
the literature is provided in Figure 4, with a more detailed breakdown of TPMS topologies
provided in Figure 5. As mentioned, it should be noted that the name utilized in a given
paper may not match how it was categorized in the figure as an attempt was made to keep
naming consistent with how the majority of papers presented its geometry and geometries
that deviated had names changed to a term more consistent across the literature.

One takeaway from Figure 4 is that there are many topologies classified within the
“Other” category. This label was used to group not only plate-based topologies (of which
there were a few, including [70,154–157]) but also newly designed unit cells [158], topology-
optimized designs [43,159,160], and bio-inspired topologies [161], which may have only
been examined just once, within the paper of interest. With the advent of new topologies,
particularly as new topologies emerge from the increasing use of multi-objective and
topology optimization, and of bio-inspired topologies, it can be seen from Figure 4 that
while some “conventional” topologies (e.g., octet, cubic, BCC) are prominent in the literature,
new topologies (in the “Other” category) are also increasingly of interest.

On this note, Helou and Kara [53] critiqued the lack of a definition for new versus
existing topologies, as many of the existing topologies are simply slight variations of other
existing topologies (such as the Delaunay or isotruss topology being a combination of two
cubic cells and a BCC cell, as in [128]), and that this leads to the need for classifications
on how to distinguish between what is indeed a new topology and what is simply a
variation of existing topologies. This classification also links to what appears to be a
general lack of naming system for topologies; as new topologies get designed, how is
consistency and clarity ensured in the naming of those topologies, such that the literature
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focusing on those topologies can be easily located? As highlighted with some examples
previously, if there are inconsistencies in the identification of a particular topology, finding
the literature concerning that particular geometry requires knowing a variety of terms.
Some considerations when adapting or developing a naming and classification system
may include the following, which considers previous classification systems presented
in [108,109]:

• Shape:

• Elements: Beams, plates, or surfaces or based on a mathematical equation (e.g.,
TPMS).

• Topology optimization: Is it possible to classify unique topologies arising from
topology optimization processes [162–165]? Yang et al. [159] utilized topology
optimization to create a unique unit cell, which they recognized had a similar
microstructure to that of a cuttlefish bone, calling the cell “CLL” (cuttlebone-like
lattice).

• Biomimetic structures: How does the classification system handle unique topologies
arising from biomimetic approaches [166–169]? Bhat et al. [170] began their nested
lattice creation with a sea-urchin-inspired shell lattice, noting that it is nearly a
replica of the Schwarz-P TPMS topology.

• Multi-scale and multi-morphology:

• Hierarchy: Is it possible to specify a hierarchical component(s) of the cellular
material in a clear manner? Lv et al. [171] investigate the mechanical properties
of hierarchical lattices, from zeroth-order to second-order.

• Heterogeneity: Is it possible to clarify the presence of multiple separate topologies
within one cluster or part, as in Alberdi et al. [130] and Yu et al. [172], who both
created clusters of octet cells with patterns of either BCC or rhombic dodecahe-
dron unit cells, respectively, spread throughout. Or in Bhat et al. [170], who nested
truss-based topologies (BCC, octet, rhombic dodecahedron) within the Schwarz-P
TPMS topology. Bernard et al. [173,174] created unique lattice clusters by layering
different topologies, terming these configurations both “sandwich lattices” and
“multi-layer multi-topology (MLMT)” lattices.

• Tessellation: Periodic or stochastic; uniform or functionally graded.

• Cell symmetry, cell envelope: Can the system account for both cell symmetry and
cell envelope shape (i.e., variations in 2D polygons or 3D polyhedral unit cell
envelopes)?

• Multi-material: As in [52] by Zhao and Zong, Pan et al. [175] predict the development
direction of lattice structures to include, among others, designs with multiple ma-
terials. Thus, can the system accommodate the naming of topologies consisting of
multiple materials (particularly two or more solid-phase materials, which Pan et al.
cite as possible due to the layer-by-layer additive manufacturing technology)? Indeed,
such dual- or multi-material investigations have begun. In [176], Li et al. fabricate
4130 steel lattices by SLM, where the remaining volume is filled with epoxy. Mueller
and Shea in [177] take a different approach where the beams of the lattice are fabricated
with two materials: a brittle core and flexible exterior.

Such a classification and naming system could be presented as an invaluable resource
to the cellular material community as a web page of an interactive library of geometries,
organized in multiple ways, allowing for ease of identification of the topology of interest.
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Figure 4. Distribution of topologies investigated in the literature. Bars for maximum 3 values filled
with orange speckle, bars for minimum value filled with blue diagonal lines, and all other bars
filled in gray. “TPMS” has a more detailed breakdown in a separate figure; “Circular” also includes
variations in the strut-based circular topology (e.g., semi-circle, cross semi-circle); “Diamond” includes
“Dfcc”; and “Other” includes topology-optimized geometries as well as unique geometries created
for the purposes of the paper of interest (e.g., “Twisted-octet”, “CLL”, “cross-chiral honeycomb”) and
plate-/shell-based topologies (e.g., “BCC-6H”, “BCC-12H”) are also grouped within this category.
Numbers in brackets preceding topology names are associated with the respective numbered topology
unit cell view. nTopology (nTop, New York City, NY, USA) [178] was utilized to create the majority of
the illustrations of the strut-based cells; Ansys SpaceClaim (Ansys Inc., Canonsburg, PA, USA) [179]
was utilized for the circular and rhombicuboctahedron cells.
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Figure 5. Distribution of TPMS topologies investigated in the literature. Bars for maximum 3 values
filled with orange speckle, bars for minimum value filled with blue diagonal lines, and all other bars
filled in gray. Here, the “Other” category includes TPMS-like sheet topologies, TPMS-BCC, “FRD”,
and “IWP”. Images of TPMS topologies are provided above the respective bar value and include
illustrations for (left) sheet-based/matrix phase and (right) a version of the skeletal-based/network
phase. nTopology (nTop, New York City, NY, USA) [178] was utilized to create the illustrations of the
TPMS topologies.
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4.2. Quantity of Topologies per Paper

Figure 6 provides a summary of the distribution of the literature examining only one
topology versus multiple topologies as well as, if it does examine multiple topologies, how
many topologies it does end up examining. While over half of the literature investigated
multiple topologies, a large majority of them investigated five or fewer topologies. Averag-
ing the number of topologies across all papers yields an average of 2.5 topologies per paper
while averaging the number of topologies across only those papers that investigate multiple
yields 3.6. Since there can be many experimental or numerical model differences between
one paper and another, which can lead to difficulties in comparing the results and conclu-
sions drawn, investigating multiple topologies at once would be ideal. Understandably,
limitations including cost and time can make investigating multiple topologies difficult. As
will be discussed in a subsection of Section 4.3, the availability of design software for lattice
geometry may also be prohibitive to the investigation of many topologies.
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4.3. Topology Designs

This subsection is divided into four parts, the first of which focuses on software
available for lattice design. The second part discusses the mathematical design of TPMS
structures while the third focuses on struts, a structural design element of truss lattices. Fi-
nally, a discussion of lattice clusters and the application of lattices to real-world components
is presented in the final part.

4.3.1. General Lattice Design Software

Prior to any sort of characterization or examination of cellular materials, the geometry
itself must be generated, whether for use in finite element analysis or for manufacturing
and experimental testing. It is possible to generate the geometry (1) explicitly by using
traditional computer-aided design (CAD) software or (2) implicitly by using mathematical
functions (particularly for TPMS structures) [180,181]. Yet, given the apparent importance
of such a step in the investigation of these materials, it is quite difficult to determine the most
efficient method of geometry generation or a method that provides flexibility for a large
variety of geometries. Indeed, even with great advancements in AM technology, allowing
for the manufacture of materials as geometrically complex as cellular materials, it is still
difficult—and sometimes impossible—to find a software solution capable of designing
them [180–183]. Curiously then, it was noted during the review that many authors do
not even provide this information. Of those papers that do provide such information,
the methods provided in Table 3 were some of those identified as having been used for
geometry generation.
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Table 3. Non-exhaustive list of software available for lattice geometry generation.

Software Description Utilized in

Altair Inspire (Altair
Engineering Inc., Troy, MI, USA)

[184]

has a PolyMesh module that provides the capability to fill a
volume with a lattice mesh, selecting from a library of

topologies [185]
[160]

Ansys SpaceClaim (Ansys Inc.,
Canonsburg, PA, USA) [179]

can fill a selected part with one of over ten topologies by
making use of the “Facets” tab [186]

[187]
Ref. [141] developed a script to

automate the geometry
generation with a library of 15

strut-based topologies and
different cross-sectional shapes

Autodesk Fusion 360 (Autodesk
Inc., San Francisco, CA, USA)

[188]

has a Volumetric Lattice tool to fill a selected body, with the
ability to select from a library of unit cells (as well as create

a custom unit cell based on selected geometry) [189]
[190]

CATIA (Dassault Systèmes SE,
Vélizy-Villacoublay, France)

[191]
-

[192]
Ref. [183] manually created

topology within CATIA

CUBIT (Sandia National Lab,
Albuquerque, NM, USA) [193],
coreform Cubit (Coreform LLC,

Orem, UT, USA) [194]

- [130]

Materialise’s
3-matic (Materialise LV, Leuven,

Belgium) [195]

has a Lattice Module for internal or external lattice structure
design [195] [196,197]

MATLAB (MathWorks, Natick,
MA, USA) [198]

has multiple open-source tools and programs that aid in the
geometry generation of lattices:

TPMS Designer [199] described in [200] as “a tool for
rapidly generating, visualizing and analyzing implicitly

defined structures” with the ability to export to traditional
CAD programs

STL Lattice Generator [201] described in [202] as “a highly
customisable free open source method of generating

periodic lattice structures directly to the generic STL format”

[101,110,111,114,203–205]

MSLattice (NYU Abu Dhabi,
Abu Dhabi, United Arab

Emirates) [206]

detailed in [207] as “a software that allows users to design
uniform, and functionally [graded] lattices and surfaces
based on TPMS using two approaches, namely, the sheet

networks and solid networks”

[208]

nTopology (nTop, New York
City, NY, USA) [178]

utilizes an implicit approach to modeling strut and TPMS
lattices, with a library of over 30 topologies (strut-based,

TPMS, plate-based, etc.) and the ability to add more
[178,209]

[107,109,210,211]

Rhinoceros (Robert McNeel &
Associates, USA) [212] and its

graphical algorithm editor
Grasshopper (Robert McNeel &

Associates, USA) [213]

has multiple plugins providing the capacity to design lattice
structures:

Crystallon [214]
IntraLattice [153]

[215]
Ref. [150] developed a lattice
structure generator plugin for
Rhinoceros with a library of
topologies to choose from

Ref. [216] utilized, among other
commands, CreatePipe in

Rhino/Grasshopper to create
the lattice based on a mesh from

ABAQUS (Dassault Systèmes
SE, Vélizy-Villacoublay, France)
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Table 3. Cont.

Software Description Utilized in

SolidWorks (Dassault Systèmes
SE, Vélizy-Villacoublay, France)

[217]
-

[78,101,115,124,133,218,219]
Refs. [216,220] utilized

SolidWorks’ Application
Programming Interface (API) to
create a library of unit cells to
select from when generating a
lattice within the design space

While Table 3 is by no means an exhaustive list, note that it also includes methods
identified in papers outside of the scope of 3D periodic cellular materials for energy absorption
such that it could be useful for the reader to be aware of the methods currently available.
For information on methods specific to functionally graded lattice structures, the reader
is directed toward [221], which provides a table of additional tools for such lattices. A
review of design tools for AM, which also provides ease-of-use and cost for those CAD
tools, (though not specifically for lattice materials) is provided in [222].

For some of the literature performing both experiments and numerical investigations,
after manufacturing samples for experiments, they utilized the geometry of the as-built
sample to create the model for the finite element analysis [124,223]. This allows for a more
accurate representation of the as-built cellular material, which has been cited as one of the
possible reasons for differences in experiments and finite element analysis [224]. Indeed, to
reduce the differences between as-designed and as-built structures, other methods have
also been used. Smith et al. [125] modeled the struts with multiple collinear beams of
different diameters (beams nearest to the nodes had larger diameters) to more accurately
“account for the lack of contact between the struts around the nodal region within a unit
cell”. Outside of energy absorption investigations, Park et al. [150] ran multiple Finite
Element Analyses (FEAs) to determine the optimal array type, relative density, and unit cell
type before then performing experiments on samples using SLM. Noting that initial fracture
in the specimens started at locations of high stress concentration, they added fillets into
the design of the transition between nodes and struts of the lattices. They saw a reduction
in stress concentration as well as an increase in compressive strength. Nazir et al. [225]
investigated the effect of fillets on the performance of Kelvin unit cells by filleting an
increasing number of connections between struts. They noted a 20% improvement in
energy absorption from the un-filleted Kelvin cell to the fully filleted Kelvin cell, seeing
also that the failure location shifted from the sharp edges at the joints to other locations
with the addition of fillets. Some of these design approaches within FEA models are also
referenced in Section 5.3.

4.3.2. Triply Periodic Minimal Surface (TPMS) Lattice Design

As mentioned, TPMS lattices are generated implicitly using mathematical equations;
general forms of these equations for TPMS lattices, as in Figure 5, have been highlighted in
Table 4, where additional variations in the equations, as seen in the investigated literature,
have also been provided. Note that these equations capture the general form used in the
literature (e.g., sines and cosines) and do not necessarily reflect the exact form presented in
the reference source, particularly in relation to the level-set values utilized, since they were
put in the form f (x, y, z)− C(x, y, z) = 0, which is required for MSLattice [206].

Described simply, a zero-level set surface (“iso-surface”) is defined when f (x, y, z) = 0 and
divides a given volume into two separate volumes of f > 0 and f < 0 [118,226,227]. Sheet-based
TPMS can be created by thickening the iso-surface [110,111] or when −c < f < c [228], where
c is an arbitrary numerical value that falls within the range of t, the level-set parameter;
skeletal-based TPMS are created when f ≥ c or f ≤ −c (thus, there are two types of
skeletal-based TPMS possible for a given TPMS surface type) [226–228]. For a more in-
depth explanation with regards to the mathematical workings of the TPMS equations,
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the reader is directed to [226–228], while additional surface equations are documented
in [229,230].

Table 4. Select equations from the literature for TPMS topologies. Sheet (left image) and skeletal
(right image) illustrations of the TPMS topologies were created with MSLattice [206].

TPMS Type Refs. f(x,y,z)−C(x,y,z) 1

Diamond
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[98,110,111,114,229,230,237–
239] 

cos(𝑘𝑥) sin(𝑘𝑦) + cos(𝑘𝑦) sin(𝑘𝑧) + cos(𝑘𝑧) sin(𝑘𝑥) − 𝐶 

[232] cos(𝑘𝑥) sin(𝑘𝑥) + cos(𝑘𝑦) sin(𝑘𝑦) + cos(𝑘𝑧) sin(𝑘𝑧) − 𝐶 
Schwarz P/Primitive 

 

[111,112,114,205,210,215,229
–233,237,239] 

cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) − 𝐶 

Neovius 

 

[210,215,229–231,240] 3 cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) + 4 cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − 𝐶 

[237] cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) + 3 cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − 𝐶 

Split P 
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[110,205,210,229–
231]

sin(kx) sin(ky) sin(kz) + sin(kx) cos(ky) cos(kz) + cos(kx) sin(ky) cos(kz) +
cos(kx) cos(ky) sin(kz)− C

[44] sin(kx) sin(ky) sin(kz) + sin(kx) cos(ky) cos(kz) + cos(kx) sin(ky) cos(kz) +
cos(kx) cos(ky) sin(kz)− 0.07{cos(4kx) + cos(4ky) + cos(4kz)} − C

[111,232] sin(kx) sin(ky) sin(kz) + cos(kx) sin(ky) sin(kz) + sin(kx) cos(ky) sin(kz) +
sin(kx) sin(ky) cos(kz)− C

[233] cos(kz) sin(kx + ky) + sin(kz) cos(kx − ky)− C
[234] cos(kx) cos(ky) cos(kz)− sin(kx) sin(ky) sin(kz)− C

Gyroid
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Gyroid 

 

[204,205,210,231,233–236] 
In [112], 𝐶 = 1.6 
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239] 

cos(𝑘𝑥) sin(𝑘𝑦) + cos(𝑘𝑦) sin(𝑘𝑧) + cos(𝑘𝑧) sin(𝑘𝑥) − 𝐶 

[232] cos(𝑘𝑥) sin(𝑘𝑥) + cos(𝑘𝑦) sin(𝑘𝑦) + cos(𝑘𝑧) sin(𝑘𝑧) − 𝐶 
Schwarz P/Primitive 

 

[111,112,114,205,210,215,229
–233,237,239] 

cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) − 𝐶 

Neovius 
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Split P 

 

[210,229–231] 

1.1 sin(2𝑘𝑥) sin(𝑘𝑧) cos(𝑘𝑦) + sin(2𝑘𝑦) sin(𝑘𝑥) cos(𝑘𝑧)+ sin(2𝑘𝑧) sin(𝑘𝑦) cos(𝑘𝑥)− 0.2 cos(2𝑘𝑥) cos(2𝑘𝑦) + cos(2𝑘𝑦) cos(2𝑘𝑧)+ cos(2𝑘𝑧) cos(2𝑘𝑥)  − 0.4 cos(2𝑘𝑥) + cos(2𝑘𝑦) + cos(2𝑘𝑧) − 𝐶 

[204,205,210,231,
233–236]

In [112], C = 1.6
sin(kx) cos(ky) + sin(ky) cos(kz) + sin(kz) cos(kx)− C

[98,110,111,114,
229,230,237–239] cos(kx) sin(ky) + cos(ky) sin(kz) + cos(kz) sin(kx)− C

[232] cos(kx) sin(kx) + cos(ky) sin(ky) + cos(kz) sin(kz)− C

Schwarz P/Primitive
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[110,205,210,229–231] 
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[111,232] 
sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) + cos(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧)+ sin(𝑘𝑥) cos(𝑘𝑦) sin(𝑘𝑧)+ sin(𝑘𝑥) sin(𝑘𝑦) cos(𝑘𝑧) − 𝐶 

[233] cos(𝑘𝑧) sin(𝑘𝑥 + 𝑘𝑦) + sin(𝑘𝑧) cos(𝑘𝑥 − 𝑘𝑦) − 𝐶 
[234] cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) − 𝐶 

Gyroid 

 

[204,205,210,231,233–236] 
In [112], 𝐶 = 1.6 

sin(𝑘𝑥) cos(𝑘𝑦) + sin(𝑘𝑦) cos(𝑘𝑧) + sin(𝑘𝑧) cos(𝑘𝑥) − 𝐶 

[98,110,111,114,229,230,237–
239] 

cos(𝑘𝑥) sin(𝑘𝑦) + cos(𝑘𝑦) sin(𝑘𝑧) + cos(𝑘𝑧) sin(𝑘𝑥) − 𝐶 

[232] cos(𝑘𝑥) sin(𝑘𝑥) + cos(𝑘𝑦) sin(𝑘𝑦) + cos(𝑘𝑧) sin(𝑘𝑧) − 𝐶 
Schwarz P/Primitive 

 

[111,112,114,205,210,215,229
–233,237,239] 

cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) − 𝐶 

Neovius 

 

[210,215,229–231,240] 3 cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) + 4 cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − 𝐶 

[237] cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) + 3 cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − 𝐶 

Split P 

 

[210,229–231] 

1.1 sin(2𝑘𝑥) sin(𝑘𝑧) cos(𝑘𝑦) + sin(2𝑘𝑦) sin(𝑘𝑥) cos(𝑘𝑧)+ sin(2𝑘𝑧) sin(𝑘𝑦) cos(𝑘𝑥)− 0.2 cos(2𝑘𝑥) cos(2𝑘𝑦) + cos(2𝑘𝑦) cos(2𝑘𝑧)+ cos(2𝑘𝑧) cos(2𝑘𝑥)  − 0.4 cos(2𝑘𝑥) + cos(2𝑘𝑦) + cos(2𝑘𝑧) − 𝐶 

[111,112,114,205,
210,215,229–
233,237,239]

cos(kx) + cos(ky) + cos(kz)− C

Neovius
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Table 4. Select equations from the literature for TPMS topologies. Sheet (left image) and skeletal 
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TPMS Type Refs. 𝒇(𝒙, 𝒚, 𝒛) − 𝑪(𝒙, 𝒚, 𝒛) 1 

Diamond 

 

[110,205,210,229–231] 
sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) + sin(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧)+ cos(𝑘𝑥) sin(𝑘𝑦) cos(𝑘𝑧)+ cos(𝑘𝑥) cos(𝑘𝑦) sin(𝑘𝑧) − 𝐶 

[44] 

sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) + sin(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧)+ cos(𝑘𝑥) sin(𝑘𝑦) cos(𝑘𝑧)+ cos(𝑘𝑥) cos(𝑘𝑦) sin(𝑘𝑧)− 0.07 cos(4𝑘𝑥) + cos(4𝑘𝑦) + cos(4𝑘𝑧) − 𝐶 

[111,232] 
sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) + cos(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧)+ sin(𝑘𝑥) cos(𝑘𝑦) sin(𝑘𝑧)+ sin(𝑘𝑥) sin(𝑘𝑦) cos(𝑘𝑧) − 𝐶 

[233] cos(𝑘𝑧) sin(𝑘𝑥 + 𝑘𝑦) + sin(𝑘𝑧) cos(𝑘𝑥 − 𝑘𝑦) − 𝐶 
[234] cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) − 𝐶 

Gyroid 

 

[204,205,210,231,233–236] 
In [112], 𝐶 = 1.6 

sin(𝑘𝑥) cos(𝑘𝑦) + sin(𝑘𝑦) cos(𝑘𝑧) + sin(𝑘𝑧) cos(𝑘𝑥) − 𝐶 

[98,110,111,114,229,230,237–
239] 

cos(𝑘𝑥) sin(𝑘𝑦) + cos(𝑘𝑦) sin(𝑘𝑧) + cos(𝑘𝑧) sin(𝑘𝑥) − 𝐶 

[232] cos(𝑘𝑥) sin(𝑘𝑥) + cos(𝑘𝑦) sin(𝑘𝑦) + cos(𝑘𝑧) sin(𝑘𝑧) − 𝐶 
Schwarz P/Primitive 

 

[111,112,114,205,210,215,229
–233,237,239] 

cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) − 𝐶 

Neovius 

 

[210,215,229–231,240] 3 cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) + 4 cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − 𝐶 

[237] cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) + 3 cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − 𝐶 

Split P 

 

[210,229–231] 

1.1 sin(2𝑘𝑥) sin(𝑘𝑧) cos(𝑘𝑦) + sin(2𝑘𝑦) sin(𝑘𝑥) cos(𝑘𝑧)+ sin(2𝑘𝑧) sin(𝑘𝑦) cos(𝑘𝑥)− 0.2 cos(2𝑘𝑥) cos(2𝑘𝑦) + cos(2𝑘𝑦) cos(2𝑘𝑧)+ cos(2𝑘𝑧) cos(2𝑘𝑥)  − 0.4 cos(2𝑘𝑥) + cos(2𝑘𝑦) + cos(2𝑘𝑧) − 𝐶 

[210,215,229–
231,240] 3{cos(kx) + cos(ky) + cos(kz)}+ 4 cos(kx) cos(ky) cos(kz)− C

[237]

cos(kx) + cos(ky) + cos(kz) + 3 cos(kx) cos(ky) cos(kz)− C

Split P
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workings of the TPMS equations, the reader is directed to [226–228], while additional 
surface equations are documented in [229,230]. 

Table 4. Select equations from the literature for TPMS topologies. Sheet (left image) and skeletal 
(right image) illustrations of the TPMS topologies were created with MSLattice [206]. 

TPMS Type Refs. 𝒇(𝒙, 𝒚, 𝒛) − 𝑪(𝒙, 𝒚, 𝒛) 1 

Diamond 

 

[110,205,210,229–231] 
sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) + sin(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧)+ cos(𝑘𝑥) sin(𝑘𝑦) cos(𝑘𝑧)+ cos(𝑘𝑥) cos(𝑘𝑦) sin(𝑘𝑧) − 𝐶 

[44] 

sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) + sin(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧)+ cos(𝑘𝑥) sin(𝑘𝑦) cos(𝑘𝑧)+ cos(𝑘𝑥) cos(𝑘𝑦) sin(𝑘𝑧)− 0.07 cos(4𝑘𝑥) + cos(4𝑘𝑦) + cos(4𝑘𝑧) − 𝐶 

[111,232] 
sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) + cos(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧)+ sin(𝑘𝑥) cos(𝑘𝑦) sin(𝑘𝑧)+ sin(𝑘𝑥) sin(𝑘𝑦) cos(𝑘𝑧) − 𝐶 

[233] cos(𝑘𝑧) sin(𝑘𝑥 + 𝑘𝑦) + sin(𝑘𝑧) cos(𝑘𝑥 − 𝑘𝑦) − 𝐶 
[234] cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) − 𝐶 

Gyroid 

 

[204,205,210,231,233–236] 
In [112], 𝐶 = 1.6 

sin(𝑘𝑥) cos(𝑘𝑦) + sin(𝑘𝑦) cos(𝑘𝑧) + sin(𝑘𝑧) cos(𝑘𝑥) − 𝐶 

[98,110,111,114,229,230,237–
239] 

cos(𝑘𝑥) sin(𝑘𝑦) + cos(𝑘𝑦) sin(𝑘𝑧) + cos(𝑘𝑧) sin(𝑘𝑥) − 𝐶 

[232] cos(𝑘𝑥) sin(𝑘𝑥) + cos(𝑘𝑦) sin(𝑘𝑦) + cos(𝑘𝑧) sin(𝑘𝑧) − 𝐶 
Schwarz P/Primitive 

 

[111,112,114,205,210,215,229
–233,237,239] 

cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) − 𝐶 

Neovius 

 

[210,215,229–231,240] 3 cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) + 4 cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − 𝐶 

[237] cos(𝑘𝑥) + cos(𝑘𝑦) + cos(𝑘𝑧) + 3 cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − 𝐶 

Split P 

 

[210,229–231] 

1.1 sin(2𝑘𝑥) sin(𝑘𝑧) cos(𝑘𝑦) + sin(2𝑘𝑦) sin(𝑘𝑥) cos(𝑘𝑧)+ sin(2𝑘𝑧) sin(𝑘𝑦) cos(𝑘𝑥)− 0.2 cos(2𝑘𝑥) cos(2𝑘𝑦) + cos(2𝑘𝑦) cos(2𝑘𝑧)+ cos(2𝑘𝑧) cos(2𝑘𝑥)  − 0.4 cos(2𝑘𝑥) + cos(2𝑘𝑦) + cos(2𝑘𝑧) − 𝐶 

[210,229–231]
1.1{sin(2kx) sin(kz) cos(ky) + sin(2ky) sin(kx) cos(kz) + sin(2kz) sin(ky) cos(kx)}−

0.2{cos(2kx) cos(2ky) + cos(2ky) cos(2kz) + cos(2kz) cos(2kx)} −
0.4{cos(2kx) + cos(2ky) + cos(2kz)} − C

Lidinoid
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Lidinoid 

 

In [229–231], 𝐶 = −0.3 

sin(2𝑘𝑥) cos(𝑘𝑦) sin(𝑘𝑧) + sin(2𝑘𝑦) cos(𝑘𝑧) sin(𝑘𝑥)+ sin(2𝑘𝑧) cos(𝑘𝑥) sin(𝑘𝑦)− cos(2𝑘𝑥) cos(2𝑘𝑦) + cos(2𝑘𝑦) cos(2𝑘𝑧)+ cos(2𝑘𝑧) cos(2𝑘𝑥) − 𝐶 

[210] 

0.5 sin(2𝑘𝑥) cos(𝑘𝑦) sin(𝑘𝑧) + sin(2𝑘𝑦) cos(𝑘𝑧) sin(𝑘𝑥)+ sin(2𝑘𝑧) cos(𝑘𝑥) sin(𝑘𝑦)− 0.5 cos(2𝑘𝑥) cos(2𝑘𝑦) + cos(2𝑘𝑦) cos(2𝑘𝑧)+ cos(2𝑘𝑧) cos(2𝑘𝑥) − 𝐶 
I-graph-Wrapped 

Package (IWP) 

 

[101,112,118,215,234] −2 cos(𝑘𝑥) cos(𝑘𝑦) + cos(𝑘𝑦) cos(𝑘𝑧) + cos(𝑘𝑥) cos(𝑘𝑧)+ cos(2𝑘𝑥) + cos(2𝑘𝑦) + cos(2𝑘𝑧) − 𝐶 

[114,240] 
In [229,230], 𝐶 = −0.25 

cos(𝑘𝑥) cos(𝑘𝑦) + cos(𝑘𝑦) cos(𝑘𝑧) + cos(𝑘𝑥) cos(𝑘𝑧) − 𝐶 

Face-centered cubic 
Rhombic Dodecahedron 

(FRD) 

 

[112,229,230] 4 cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − cos(2𝑘𝑥) cos(2𝑘𝑦)− cos(2𝑘𝑥) cos(2𝑘𝑧) − cos(2𝑘𝑦) cos(2𝑘𝑧) − 𝐶 

Fisher–Koch C(Y) 

 

[234] 

− sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) + sin(2𝑘𝑥) sin(𝑘𝑦) + sin(2𝑘𝑦) sin(𝑘𝑧)+ sin(2𝑘𝑧) sin(𝑘𝑥) − cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧)+ sin(2𝑘𝑥) cos(𝑘𝑧) + sin(2𝑘𝑦) cos(𝑘𝑥)+ sin(2𝑘𝑧) cos(𝑘𝑦) − 𝐶 
1 Note: 𝑘 = 2𝜋/𝐿, where 𝐿 is the length of a unit cell; 𝐶(𝑥, 𝑦, 𝑧) is the isovalue function (for graded 
lattices) and is equal to constant 𝑡, the level-set parameter (overall range is dependent on the type 
of surface), for uniform lattices. 

4.3.3. Truss Topology Cross-Section Shape Design 
Perhaps limited due to the methods available for generating lattices, the vast majority 

of papers with truss-based topologies had those struts designed with circular cross-
sections, as is illustrated in Figure 7. There are a few papers with non-hierarchical 
topologies that designed their topologies with non-circular cross-sections, namely 
[78,88,241–245], but they did not investigate the effect that any change in cross-sectional 
shape might have on the mechanical or energy absorption response of the lattice material. 
Since advantages to the properties of truss-based lattices for other applications have 
already been in development (specifically with the use of shape transformers, detailed by 
Pasini [246]), further research into this area for energy absorption capabilities could yield 
great results [55,247–250]. 

There have also been some papers that do not investigate the effect of changes to 
cross-sectional shape but instead the effect of non-constant diameter along the length of 
the struts [10,251–254]. In 2016, Tancogne-Dejean et al. [251] looked into the effect of 
varying the diameter of a circular cross-section over the length of a strut on the 
performance of an octet truss lattice under quasi-static and dynamic loading rates. They 
found that a ratio of minimum to maximum strut diameter of 0.8 provided the highest 
yield strength of the lattice material. Then, in 2018, Tancogne-Dejean et al. [252] derived 
analytical expressions for the homogenized macroscopic moduli of a BCC topology as a 
function of relative density and investigated the effects of strut tapering on the 
performance of a BCC lattice during quasi-static and dynamic loadings. They concluded 
that a BCC structure with tapered beams has higher specific mechanical properties than 
one with no tapering. Also in 2018, Cao et al. [10] investigated the effects of modifying the 
strut radius along its length for a rhombic dodecahedron topology. They introduced a 
shape parameter for the relationship of the minimum cross-section radius to the original 
(maximum) cross-section radius. It was possible to increase the compressive modulus, 

In [229–231],
C = −0.3

sin(2kx) cos(ky) sin(kz) + sin(2ky) cos(kz) sin(kx) + sin(2kz) cos(kx) sin(ky)−
{cos(2kx) cos(2ky) + cos(2ky) cos(2kz) + cos(2kz) cos(2kx)} − C

[210] 0.5{sin(2kx) cos(ky) sin(kz) + sin(2ky) cos(kz) sin(kx) + sin(2kz) cos(kx) sin(ky)}−
0.5{cos(2kx) cos(2ky) + cos(2ky) cos(2kz) + cos(2kz) cos(2kx)} − C

I-graph-Wrapped
Package (IWP)
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Lidinoid 

 

In [229–231], 𝐶 = −0.3 

sin(2𝑘𝑥) cos(𝑘𝑦) sin(𝑘𝑧) + sin(2𝑘𝑦) cos(𝑘𝑧) sin(𝑘𝑥)+ sin(2𝑘𝑧) cos(𝑘𝑥) sin(𝑘𝑦)− cos(2𝑘𝑥) cos(2𝑘𝑦) + cos(2𝑘𝑦) cos(2𝑘𝑧)+ cos(2𝑘𝑧) cos(2𝑘𝑥) − 𝐶 

[210] 

0.5 sin(2𝑘𝑥) cos(𝑘𝑦) sin(𝑘𝑧) + sin(2𝑘𝑦) cos(𝑘𝑧) sin(𝑘𝑥)+ sin(2𝑘𝑧) cos(𝑘𝑥) sin(𝑘𝑦)− 0.5 cos(2𝑘𝑥) cos(2𝑘𝑦) + cos(2𝑘𝑦) cos(2𝑘𝑧)+ cos(2𝑘𝑧) cos(2𝑘𝑥) − 𝐶 
I-graph-Wrapped 

Package (IWP) 

 

[101,112,118,215,234] −2 cos(𝑘𝑥) cos(𝑘𝑦) + cos(𝑘𝑦) cos(𝑘𝑧) + cos(𝑘𝑥) cos(𝑘𝑧)+ cos(2𝑘𝑥) + cos(2𝑘𝑦) + cos(2𝑘𝑧) − 𝐶 

[114,240] 
In [229,230], 𝐶 = −0.25 

cos(𝑘𝑥) cos(𝑘𝑦) + cos(𝑘𝑦) cos(𝑘𝑧) + cos(𝑘𝑥) cos(𝑘𝑧) − 𝐶 

Face-centered cubic 
Rhombic Dodecahedron 

(FRD) 

 

[112,229,230] 4 cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) − cos(2𝑘𝑥) cos(2𝑘𝑦)− cos(2𝑘𝑥) cos(2𝑘𝑧) − cos(2𝑘𝑦) cos(2𝑘𝑧) − 𝐶 

Fisher–Koch C(Y) 

 

[234] 

− sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧) + sin(2𝑘𝑥) sin(𝑘𝑦) + sin(2𝑘𝑦) sin(𝑘𝑧)+ sin(2𝑘𝑧) sin(𝑘𝑥) − cos(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧)+ sin(2𝑘𝑥) cos(𝑘𝑧) + sin(2𝑘𝑦) cos(𝑘𝑥)+ sin(2𝑘𝑧) cos(𝑘𝑦) − 𝐶 
1 Note: 𝑘 = 2𝜋/𝐿, where 𝐿 is the length of a unit cell; 𝐶(𝑥, 𝑦, 𝑧) is the isovalue function (for graded 
lattices) and is equal to constant 𝑡, the level-set parameter (overall range is dependent on the type 
of surface), for uniform lattices. 

4.3.3. Truss Topology Cross-Section Shape Design 
Perhaps limited due to the methods available for generating lattices, the vast majority 

of papers with truss-based topologies had those struts designed with circular cross-
sections, as is illustrated in Figure 7. There are a few papers with non-hierarchical 
topologies that designed their topologies with non-circular cross-sections, namely 
[78,88,241–245], but they did not investigate the effect that any change in cross-sectional 
shape might have on the mechanical or energy absorption response of the lattice material. 
Since advantages to the properties of truss-based lattices for other applications have 
already been in development (specifically with the use of shape transformers, detailed by 
Pasini [246]), further research into this area for energy absorption capabilities could yield 
great results [55,247–250]. 

There have also been some papers that do not investigate the effect of changes to 
cross-sectional shape but instead the effect of non-constant diameter along the length of 
the struts [10,251–254]. In 2016, Tancogne-Dejean et al. [251] looked into the effect of 
varying the diameter of a circular cross-section over the length of a strut on the 
performance of an octet truss lattice under quasi-static and dynamic loading rates. They 
found that a ratio of minimum to maximum strut diameter of 0.8 provided the highest 
yield strength of the lattice material. Then, in 2018, Tancogne-Dejean et al. [252] derived 
analytical expressions for the homogenized macroscopic moduli of a BCC topology as a 
function of relative density and investigated the effects of strut tapering on the 
performance of a BCC lattice during quasi-static and dynamic loadings. They concluded 
that a BCC structure with tapered beams has higher specific mechanical properties than 
one with no tapering. Also in 2018, Cao et al. [10] investigated the effects of modifying the 
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of papers with truss-based topologies had those struts designed with circular cross-
sections, as is illustrated in Figure 7. There are a few papers with non-hierarchical 
topologies that designed their topologies with non-circular cross-sections, namely 
[78,88,241–245], but they did not investigate the effect that any change in cross-sectional 
shape might have on the mechanical or energy absorption response of the lattice material. 
Since advantages to the properties of truss-based lattices for other applications have 
already been in development (specifically with the use of shape transformers, detailed by 
Pasini [246]), further research into this area for energy absorption capabilities could yield 
great results [55,247–250]. 

There have also been some papers that do not investigate the effect of changes to 
cross-sectional shape but instead the effect of non-constant diameter along the length of 
the struts [10,251–254]. In 2016, Tancogne-Dejean et al. [251] looked into the effect of 
varying the diameter of a circular cross-section over the length of a strut on the 
performance of an octet truss lattice under quasi-static and dynamic loading rates. They 
found that a ratio of minimum to maximum strut diameter of 0.8 provided the highest 
yield strength of the lattice material. Then, in 2018, Tancogne-Dejean et al. [252] derived 
analytical expressions for the homogenized macroscopic moduli of a BCC topology as a 
function of relative density and investigated the effects of strut tapering on the 
performance of a BCC lattice during quasi-static and dynamic loadings. They concluded 
that a BCC structure with tapered beams has higher specific mechanical properties than 
one with no tapering. Also in 2018, Cao et al. [10] investigated the effects of modifying the 
strut radius along its length for a rhombic dodecahedron topology. They introduced a 
shape parameter for the relationship of the minimum cross-section radius to the original 
(maximum) cross-section radius. It was possible to increase the compressive modulus, 
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Table 4. Cont.

TPMS Type Refs. f(x,y,z)−C(x,y,z) 1
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1 Note: k = 2π/L, where L is the length of a unit cell; C(x, y, z) is the isovalue function (for graded lattices) and is
equal to constant t, the level-set parameter (overall range is dependent on the type of surface), for uniform lattices.

4.3.3. Truss Topology Cross-Section Shape Design

Perhaps limited due to the methods available for generating lattices, the vast majority
of papers with truss-based topologies had those struts designed with circular cross-sections,
as is illustrated in Figure 7. There are a few papers with non-hierarchical topologies that
designed their topologies with non-circular cross-sections, namely [78,88,241–245], but they
did not investigate the effect that any change in cross-sectional shape might have on the
mechanical or energy absorption response of the lattice material. Since advantages to the
properties of truss-based lattices for other applications have already been in development
(specifically with the use of shape transformers, detailed by Pasini [246]), further research
into this area for energy absorption capabilities could yield great results [55,247–250].

There have also been some papers that do not investigate the effect of changes to
cross-sectional shape but instead the effect of non-constant diameter along the length of the
struts [10,251–254]. In 2016, Tancogne-Dejean et al. [251] looked into the effect of varying
the diameter of a circular cross-section over the length of a strut on the performance of an
octet truss lattice under quasi-static and dynamic loading rates. They found that a ratio
of minimum to maximum strut diameter of 0.8 provided the highest yield strength of the
lattice material. Then, in 2018, Tancogne-Dejean et al. [252] derived analytical expressions
for the homogenized macroscopic moduli of a BCC topology as a function of relative
density and investigated the effects of strut tapering on the performance of a BCC lattice
during quasi-static and dynamic loadings. They concluded that a BCC structure with
tapered beams has higher specific mechanical properties than one with no tapering. Also in
2018, Cao et al. [10] investigated the effects of modifying the strut radius along its length for
a rhombic dodecahedron topology. They introduced a shape parameter for the relationship
of the minimum cross-section radius to the original (maximum) cross-section radius. It was
possible to increase the compressive modulus, initial yield strength, and specific energy
absorption (SEA) by modifying this relationship. Then, in 2020, Cao et al. [253] developed
a finite element model where the lattice material model employed the Johnson–Cook
strength and failure models. The results were compared to dynamic loading experimental
results with good accuracy, and they found that at higher strain rates, the performance
improved (from 0.001/s to 1000/s; higher compressive strength, plateau stress, normalized
SEA). Using those experimental results, [254] validated a finite element model to further
investigate the effect of the variation in cross-sectional area along the length of a strut on the
performance of the rhombic dodecahedron topology. They also proposed a modified rigid,
perfectly plastic-locking shock wave model, seeing good correlation between predicted
results and FEA results.

Additionally, some hierarchical (or higher-order) topologies have been designed and
investigated, where the zeroth-topology or first-order topology is generally a strut-based
topology with circular cross-sections (e.g., an octet). Then, for higher-order hierarchical
topologies, another topology is patterned along the struts of the lower-order topology
(e.g., octahedron), such that on a macro-scale, the result is an octet topology, but on the
meso-scale, there is the octahedron topology. Such an example is only for two levels of
hierarchy (octet and octahedron) but can be continued for more levels. Lv et al. [171]
investigated hierarchical lattices with the octet topology at the macro-scale. They noted
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that the peak stress and length of the stress plateau range for the second-order hierarchical
octet (each rib of the re-entrant structure of the first-order cell replaced with a re-entrant
hexagon, keeping strut aspect ratio constant) were smaller as compared to the first-order
(each strut of the octet lattice replaced by the tubular re-entrant structure) and zeroth-order
(each strut of the octet truss kept with a circular cross-section and the radius selected such
that the relative density is the same as the hierarchical structures). However, its specific
energy absorption was also lower than the first-order hierarchical lattice (but still higher
than the zeroth-order). Bernal et al. [255] used the hierarchical design to develop a cellular
material that attempted to combine the desirable effects of a periodic lattice structure
with those effects of stochastic foams. By investigating this hierarchical structure (lattice
macrostructure, foam microstructure), they found that the post-yielding flow stress was
significantly increased as compared to only the lattice structure or only the stochastic foam,
though they note that it is inconclusive as to whether the hierarchical concept allows for
specific energy absorptions higher than simply the foam or lattice on its own.

While Lakes [256] pioneered the investigation of man-made hierarchical materials
back in 1993 and while hierarchical structures have already begun to be applied to lattice
materials for other characterization purposes [145,257–261], it is still lacking in the area of
lattice materials for energy absorption applications.
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4.3.4. Lattice Cluster Design

When it comes to the selection of a single unit cell versus a cluster of unit cells (and the
size/number of unit cells of that cluster), an important consideration is the manufacture
time and build limits when manufacturing samples and the computation time when using
finite element analysis. Larger samples may not be possible with the available additive
manufacturing devices, and computation time can increase quickly as samples get larger
(though element size within the model also plays an important role) [224,262]. Yet, ac-
curately capturing the response of the lattice structure at this research stage is crucial,
particularly since these cellular materials will generally be integrated into a component
instead of being utilized in an assembly as a stand-alone cuboid volume [30,42,263–265].
Smith et al. [125] showed that it was possible to obtain mechanical properties from a numer-
ical model containing one (or very few) unit cells. On the other hand, Morrish et al. [266]
suggests a minimum of four unit cells along each orthogonal direction for the convergence
of uniaxial compression results (note: they were working with cells with a cubic envelope
and within the Cartesian coordinate system). Wang et al. [267] ran finite element simu-
lations on clusters of 16, 100, 400, and 900 cells (note that this was for a single plane of
cells (e.g., 16 cells = 4 cells × 4 cells) where the out-of-plane direction is orthogonal to the
compression direction) and compared deformation modes between clusters. They noted
that for the deformation mode of the 4 × 4 cluster, there was a greater boundary influence
on the response and that both the 4 × 4 and 10 × 10 clusters had significantly different
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plateau stresses than the other clusters. For a balance between accuracy and computation
time, they moved forward with the 20 × 20 cluster for further investigations.

Since most topologies within the papers of interest fit within a cubic representative
volume envelope, clusters of cells for samples and within numerical models were generally
tessellated along x-, y-, and/or z-directions, leading to the cluster fitting within a rectangu-
lar prismatic volume (i.e., a sample may have been replicated three times in the x-direction,
three times in the y-direction, and four times in the z-direction, such that the cluster had
an overall 3 × 3 × 4 arrangement of unit cells). Despite the cubic shape of those unit cells,
however, some papers did investigate clustered samples with an overall cylindrical volume,
not a rectangular prism. Wang et al. [238] investigated the behavior of a cluster of TPMS
sheet gyroid cells arranged in a cylindrical shell shape. They began by proposing a method
for mapping TPMS lattices to cylindrical shell specimen shapes before investigating the
response of the gyroid cylindrical shell shape lattice numerically, validating by experiments.
They noted that the energy absorption of such a lattice increased with increasing relative
density and also investigated the effect of geometrical gradients on its compression re-
sponse. Ahmadi et al. [17] experimentally investigated the mechanical behavior, including
energy absorption capacity, of six topologies as cylindrical lattice samples. They found
that the topologies could be divided between a group of high stiffness (truncated cube,
truncated cuboctahedron, rhombicuboctahedron, cube) and of low stiffness (diamond,
rhombic dodecahedron) topologies, also noting that the energy absorption of all topologies
was similar across relative densities, except for diamond, which, at higher relative densities,
had a much lower energy absorption as compared to the other topologies.

Additionally, configurations of lattices generally did not involve sandwich structures
(i.e., with face sheets sandwiching the lattice as a core material), but there were some
papers who did use the sandwich structure configurations. For example, Smith et al. [126]
experimentally investigated the response of BCC and BCC-Z lattice clusters under quasi-
static and blast loading conditions, finding that rate sensitivity could lead to a significant
increase in yield strength at high strain rates. They also investigated the response of
sandwich structures with carbon fiber-reinforced plastic face sheets and the lattice core,
noting that the constraints imposed on the lattice by the face sheets improves the mechanical
properties. Yazdani Sarvestani et al. [157] investigated the quasi-static bending and low-
velocity impact response of sandwich panels with plate-based lattice cores. They noted
that at a relative density of 30% (and larger unit cell) and under quasi-static bending, the
panels with the plate-based octet topology had higher energy absorption than the other
configurations. Yet, at a relative density of 50% (and smaller unit cell), the plate-based
cubic and “Isomax” panels had higher energy absorption capabilities. They also noted
that for impact, the three configurations had similar energy absorption capabilities. Shen
et al. [123] investigated the compressive and bending responses of BCC and BCC-Z lattices,
as well as the result of unit cell orientation with respect to load, under quasi-static and
low-velocity loading. They found that topologies and orientations where there were struts
aligned with the load direction had superior properties and that during low-velocity impact,
the sandwich beams absorbed most of the impact energy directly at the point of impact.
Gültekin and Yahşi [268] studied the crashworthiness of sandwich plates with lattice cores
for application in battery housing. While they found that a plain sheet (no lattice core) and
the 2D honeycomb designs led to the greatest energy absorption, the plain sheet also had
the highest impact stress while the Kagome design had the lowest stress.

5. Characterization and Analysis Methods

Bhate et al. in [109] describe three methods of approach for the selection of a topology
for a given application: analytically, representing behavior using mathematical models;
empirically, using experimental data to compare material behavior or to develop models for
predicting behavior; or by optimization, using computational tools to derive a design based
on multiple objectives. And, as was mentioned in [109], selecting a topology is usually
approached through empirical (experimental or numerical) methods. Such an observation
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is reflected in the results of Figure 8, where over 90% of the different approaches taken are
empirical and less than 10% are analytical in nature. It should be noted that if a paper used
multiple approaches (e.g., FEA combined with experiments), both methods are counted;
over 55% of papers used more than one approach. Additionally, while optimization (e.g.,
multi-objective, topology) is not listed in Figure 8, a handful of the papers did utilize this
approach [43,112,159,160]; generally, such an approach was combined with FEA as well.
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5.1. Loading Types

The vast majority of the literature reviewed focuses on compressive loading of the
cellular materials, which is perhaps understandable given the focus of this paper on the
energy absorption of those materials. However, during the high-level research stages while
determining whether a paper did or did not investigate energy absorption, it was noted
that compressive loading of cellular materials vastly outnumbers any other type of loading,
such as tensile [99,269], bending [104,270,271], and fatigue [272–274], suggesting room for
further investigation.

5.2. Experimental Test Standards

When it comes to the experimental testing of cellular materials, there are a couple
recurrent testing standards utilized in the literature:

• ASTM D1621: Standard Test Method for Compressive Properties of Rigid Cellular
Plastics [275];

• ISO 13314: Mechanical Testing of Metals—Ductility Testing—Compression Test for
Porous and Cellular Metals [276], which are standards specifically for the experimental
compression of cellular materials. However, as mentioned, some papers investigated
the cellular materials as the core of sandwich materials, and additional testing stan-
dards were referenced for those unique tests [277,278]. For characterizing the parent
material, usually for use within the material model for finite element analysis, other
standards included the following:

• ASTM D638: Standard Test Method for Tensile Properties of Plastics [279];
• ASTM D695: Standard Test Method for Compressive Properties of Rigid Plastics [280];
• ASTM E8M: Standard Test Methods for Tension Testing of Metallic Materials [281];
• ASTM E9: Standard Test Methods of Compression Testing of Metallic Materials at

Room Temperature [282].

For the most part, at least one applicable standard is referenced in a given paper,
though it is not always the case. Additionally, while most of the papers referenced within
this review deal specifically with additive manufacturing technologies, standards such
as ASTM D638 and ISO 527-2 [283] (Plastics—Determination of Tensile Properties—Part 2:
Test Conditions for Molding and Extrusion Plastics, the ISO near-equivalent of ASTM D638)
were not specifically made with additively manufactured parts in mind. Though, perhaps
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interestingly enough ASTM ISO/ASTM 52921 [284]—which provides standard terminology
for coordinate systems and test methods of AM technologies—cites the non-AM-specific
ASTM D638, ASTM E8M, and ISO 527 standards. In 2015, Gao et al. [91] mention that the
“rapid proliferation or AM technologies” has led to a lack of design guidelines and a lack of
standard best practices. And in 2019, García-Domínguez et al. [285] reiterate that the prolific
nature of the characterization of additively manufactured materials is not only a result
of their increasing importance across industries, but also a lack of standardization. They
reference Popescu et al. [286] who have specifically demanded for the development of test
standards specific to FDM parts, and in [285], they compare the Spanish standard UNE
116005:2012 [287] to the 2014 version of the international standard ASTM D638, finding
that the AM-specific national standard has better repeatability than the non-AM-specific
international standard. It has been previously documented in [288] that ASTM D638 and
ISO 527-2 produce similar results but do note the testing was performed over two decades
ago using unfilled, unreinforced, and uncolored thermoplastic resin samples from a variety
of laboratories, and those laboratories testing ASTM samples did not also test ISO samples.
Additionally, the testing did not consider AM specimens. Furthermore, there are still
critiques of the lack of a unified AM-focused standards, particularly as it pertains to the
validity of the comparison of results between different sources, who may not have used
the same machine, let alone the same numerous build parameters [286,289,290]. One could
thus expand this critique of those ASTM and ISO standards to ASTM D1621 and ISO 13314,
who are also not AM-specific.

5.3. Finite Element Method Solutions

When it came to finite element solutions for numerical modeling of lattice materials,
the following were utilized:

• ABAQUS (generally Standard and/or Explicit) (Dassault Systèmes SE, Vélizy-
Villacoublay, France) [291];

• LS-DYNA (Ansys Inc., Canonsburg, PA, USA) [292];
• RADIOSS (Altair Engineering Inc., Troy, MI, USA) [293];
• Ansys (generally Workbench) (Ansys Inc., Canonsburg, PA, USA) [294];
• DEFORM (Scientific Forming Technologies Corporation, Columbus, OH, USA) [295].

While finite element analysis is a good solution for costly experimentation (both
in terms of time and money), it can itself also quickly become computationally expen-
sive, especially for 3D elements or larger sample sizes [224,262]. Smith et al. [125] devel-
oped a finite element model to predict the response of BCC and BCC-Z lattice structures.
They created two Finite Element (FE) models—one with 3D elements and another with
beam elements (multiple collinear beams with different diameters—see Section 4.3 for
more information)—and were able to obtain good agreement between the FE models and
experimental results. While they did not investigate energy absorption characteristics,
Ushijima et al. [296] developed a theoretical model for predicting the mechanical proper-
ties of the BCC lattice and compared it to experimental and FEA results. They noted the
significance of the strut aspect ratio on the accuracy of predicting experimental results using
either the theoretical or numerical approach. For aspect ratios above 0.1, the Finite Element
Model (FEM) made of 1D beam elements was less accurate in predicting the experimental
results; the FEM made of 3D solid elements agreed better with experiments over a larger
range of strut aspect ratios.

Lattice samples with more unit cells can also increase computation time, making it
desirable to determine the minimum number of unit cells to be able to accurately capture
the response of lattices; Section 4.3 discusses this topic while Table 5 presents such advan-
tages and disadvantages, including experimental testing and homogenization approaches.
Though not a focus of this work and not a method utilized in the papers of interest, ho-
mogenization [297–301] as an approach to the investigation and characterization of lattice
materials has already begun [140,302–305] and could prove to be a valuable avenue for this
type of research as it can significantly reduce computation time in numerical models. An
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additional tool, which could help in the comparison of simulation data to experimental
results and increase confidence in the accuracy of the simulation model, is EikoSim [306]
and has been used in the successful vibration analysis of a hydromechanical actuator [307].

Table 5. Advantages and disadvantages of experimental and simulation approaches. Adapted
from [224], additionally referencing [80,181].

Approach Advantages Disadvantages

Experimental Reflects as-fabricated properties
Can be used to validate simulation results

High cost for manufacturing
Geometry will differ from CAD model, could have defects,

and may require post-processing to eliminate
Standard test machines may not be suitable for

complex components

Homogenization
Low computational cost

Can be used to represent lattice material
in multi-material hybrids

Not applicable to heterogeneous lattices (e.g.,
functionally graded)

Not easy to incorporate manufacturing defects
Mathematically difficult to implement on new topologies

Finite Element (2D
beam elements)

Low computational cost
Can model heterogeneous lattices,

irregular strut thickness (variations in
beam diameter, stiffness)

Using a beam element requires assuming slender strut
Does not model the manufacturing defects

Cannot accurately model the joint geometry

Finite Element (3D
solid elements)

Can use an as-fabricated model by X-ray
or microCT image to accurately capture

the as-fabricated geometry
Models to joint geometry

High computational cost
Difficult to mesh a thin strut
Dependent on mesh quality

As previously mentioned in Section 4.3, finite element analysis also does not, by
default, account for any geometrical imperfections that are present in as-built specimens,
which can cause differences between the experimental and numerical results [124,223,308].
Lei et al. [124] manufactured BCC and BCC-Z lattice specimens using SLM technology and
investigated the geometrical imperfections of the printed struts, using the X-ray micro-
computed tomography (microCT) information to create an FE model that considered the
non-uniformity of the struts based on the diameter of the beam elements within the model.
They found that by incorporating these defects into the model, the results more closely
matched the results of experiments, as compared to an FE model with a uniform cross-
sectional area along the length of the struts. Tallon et al. [223] investigated the behavior of
additively manufactured maraging steel rhombic dodecahedron lattices, specifically under
quasi-static compression. They developed two numerical models to predict experimental
results—one based on the as-built geometry following manufacture and the other based
on the as-designed CAD geometry model. They found that the as-built geometry over-
predicted the strength, possibly due to the model being unable to accurately model any
micro-porosities and other additional complexities of an as-built sample, whereas the as-
designed geometry model under-predicted the strength. This difference is mentioned to
possibly be due to the specimen size used to calibrate the parent material tensile response
in the numerical model (the struts being only one tenth the size of the specimen used for
calibration). They also highlight that the as-designed geometry model has some additional
stress concentrations where struts join; in the as-built model, as a result of the additive
manufacturing process, the struts are joined with something resembling fillets, reducing the
concentration of stresses in those areas. While they do not investigate energy absorption
characteristics, Bahrami Babamiri et al. [308] reconstructed the as-printed geometry model
from X-ray computed tomography (XCT) as well and used this model within finite element
analyses, comparing to experimental results and numerical results with an as-designed
CAD geometry model. They found that the stress–strain results of the finite element model
based on the XCT geometry predicted experimental results better than the as-designed
CAD geometry model, which did not account for any strut non-uniformity or surface
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roughness. Using this observation, they calculated correction factors based on the ratio of
the relative density of the as-built sample to the as-designed CAD model.

As from Section 5.1, there are applicable testing standards for the characterization of
parent material properties, which can be used to define material models within numerical
models or used for analytical investigations. For the most part, these standards require
a dog-bone-shaped specimen where, for example, an ASTM D638 Type I specimen has
overall dimensions of 3.2 mm × 19 mm × 165 mm (thickness × width × length) [279]. Yet,
as briefly mentioned previously, this scale can be orders of magnitude larger than the scale
of the components of a topology (e.g., diameters of struts, thicknesses of surfaces). Outside
of the realm of the papers identified as focusing on energy absorption properties, there
has been some material testing on long, cylindrical strut-like samples whose diameters are
more representative of the scale of the struts of the lattice topology. Tsopanos et al. [89]
printed individual struts at different angles relative to the build direction and performed
tensile tests to characterize their response for the use in analytical and numerical models,
finding reductions in yield stress as the strut angled further from vertical. Li et al. [309]
ran tensile tests on struts with diameters of 1 mm and 5 mm (where the struts within the
BCC-Z lattices had diameters of 1 mm), finding that the mechanical results of the larger
sample were higher than those results from the smaller sample, attributing the differences
to the effects of temperature during the powder-based SLM process, where the smaller
sample would have had less accumulation of heat, leading to some un-melted powder
particles. Gümrük and Mines [310] used the stress–strain results from an individual strut
within theoretical and numerical studies, noting it could be a practical and efficient way to
incorporate defects into those models (as the material results more closely resemble the
as-built struts, and there is no need to attempt to model the complex surface of the lattice,
which differs from the as-designed CAD model by its very nature).

Another point to note on the topic of standards and finite element method solutions
is the general lack of consistency in terms of boundary conditions, initial conditions,
and general variations in numerical model set-up between different publications. Such
variations in the finite element approach, as critiqued by Helou and Kara [53], make
results difficult, or impossible, to compare between sources, and they suggested, already a
few years ago now, “the creation of a detailed FEA procedure identifying and clarifying
boundary conditions specific to lattice structures.” Additionally, it has already been noted
in Figure 6 that most publications only investigate one topology, which further limits the
accurate comparison of performance between topologies.

6. Impact Strain Rates and Impactor Shapes
6.1. Speeds and Strain Rates

As is evident in Figure 9, the majority of the literature reviewed focuses solely on
the quasi-static response of lattice materials. Additionally, 21% still investigate the quasi-
static response, just in conjunction with dynamic loading. As mentioned in Section 1,
an application of the energy absorption properties of lattice materials is for crash/blast
protection, protective packaging, and within contact sports helmets. Such applications will
generally enter, at the very least, the low dynamic loading range, with the possibility of
high dynamic, or even ballistic/blast speeds.

For those papers that did venture into the experimental dynamic strain rate range,
typical equipment used included drop (weight) towers [70,119,123,133,154,157,235,311,312],
(Split) Hopkinson Pressure Bars (S/HPBs) [102,129,235,245,251–253], or ballistic pendu-
lums [119,126]. The cost for such equipment, particularly S/HPBs, can quickly become
prohibitive in nature, perhaps suggesting one reason for the majority of the literature
focusing instead on more accessible testing [313,314]. Additionally, S/HPBs generally
require a large footprint, which may not be possible for all labs to accommodate, and
while some smaller devices do exist, such as the desktop Kolsky bar, those smaller devices
would also limit the maximum specimen dimensions [315]. Digital Image Correlation (DIC)
may also be utilized for the measurement and characterization of these materials under
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dynamic loading, which would require additional equipment, increasing the experimental
cost [47,187,253,316–319].
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6.2. Impactor Shapes

Across the reviewed literature, whether for quasi-static or dynamic loading, the
majority of the compression plate or impactor shapes were flat where they contacted the
lattice materials with few exceptions, and, of those that did, there was not an investigation
of the effect of other impactor shapes. Epasto et al. [311] investigated the performance of
titanium alloy rhombic dodecahedron lattices manufactured via EBM under both quasi-
static and impact loading conditions. They noted that by decreasing the cell size, the
compression and crush strength increased, while the specific energy absorption was at its
optimal point with the mid-cell size. They also performed some heat treatments on as-
built lattices, testing their compression response and noting that the performance actually
decreased following heat treatment, attributing this result to the insignificant effect that
residual stresses (if present) play in the response of as-built specimens. They also concluded
by noting that a smaller unit cell size, but higher relative density, should be utilized in
crashworthiness applications.

While they did not focus on energy absorption properties of lattices specifically,
Mines et al. [312] experimentally investigated the impact performance of sandwich panels
with Carbon Fiber-Reinforced Polymer (CFRP) skins and BCC cores, manufactured using
SLM out of either Ti6Al4V or SS316L. They noted the influence of processing parameters
on the quality of the manufactured specimens, finding that the SS316L BCC cores were less
sensitive to those variables and had a higher build quality but had lower specific strength as
compared to the Ti6Al4V ones. In comparison to aluminum honeycomb sandwich panels,
the Ti6Al4V ones were noted as capable of competing with their performance.

Other research areas have begun to investigate performance based on impact with
non-flat shapes and impactors of various sizes [320–325], with some common profiles
illustrated in Figure 10, and they were found to influence the energy absorbed and peak
force during impact. As investigations into the energy absorption performance of materials
based on impact by non-flat (e.g., spherical, conical) shapes are being accomplished in other
areas and would begin to represent more realistic impact conditions, such an avenue is
sensible for lattice materials as well.
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7. Energy Absorption Trends in the Literature

In addition to the qualitative data collected whose trends have been discussed in the
previous sections, quantitative data for the energy absorption results from the 100 papers of
interest were collected (as available) and analyzed for trends. Such data were collected di-
rectly from tabulated results or from images using the online WebPlotDigitizer (Automeris
LLC, CA, USA) [326], a tool for extracting numerical data from graphs and plots. It is noted
that the latter method does inherently introduce some uncertainty in the numerical values
extracted but it has been noted to be an acceptable method, particularly for allowing for
the analysis of trends and not exact numerical values. Hanks et al. [327] utilized the WebPlot-
Digitizer during the collection of a variety of numerical mechanical properties (Young’s
modulus, yield, strength, Poisson’s ratio, etc.) for their Lattice Unit-cell Characterization
Interface for Engineers (LUCIE, PennState, University Park, PA, USA [328]), an application
that compiles (to date) the mechanical property data for 18 topologies from 69 papers,
creating Gibson–Ashby plots to aid in the selection of a unit cell topology during design.

Within this section, specific energy absorption by volume (SEAvol) versus part density
is plotted for those papers of interest. Lines of continuous specific energy absorption by
mass (SEAm) are plotted to aid in data visualization. Once the energy absorption data
were plotted, four categorical highlights were made to observe trends: material type (as
in Section 3.1); manufacturing method (as in Section 3.2); and topology (as in Section 4.1;
divided into truss-based as in Figure 4 and TPMS as in Figure 5). There are also two figures
that plot SEAm versus relative density to further aid in the comparison of truss-based and
TPMS topologies, respectively. It should be noted that

• Not all papers of interest had adequate data for collection and presentation. Common
reasons as to why data could not be collected from a source include unit ambiguity
for reported energy absorption or specific energy absorption values and/or failing
to explicitly provide either relative density or part density (not to be confused with
parent material density). In the end, the data from 76 papers were presented in each of
the figures of this section.

• If a paper did not explicitly state the parent material density, a default value was
utilized in conjunction with the relative density to calculate part density, a selection of
which is provided in Table 6.

• For functionally graded lattices, data were plotted for the average part density.
• While the y-axis data are specific energy absorption per volume, it should be noted

that the strain point for calculating these values did and does vary across the literature
(e.g., at the densification strain, at 30% strain, at 60% strain).

• The legend for the figures in the following subsections is provided in Figure 11 due to
the large number of sources. Each entry is provided a number in brackets, which can
be cross-referenced to Table A1 for the actual numerical reference.

• These graphs can be utilized to identify gaps in the literature, highlighting areas of
future research while also being used as a tool during the design selection process.
However, as previously discussed in Section 5.1, the test standards utilized are not all
the same across the literature; the reader should be aware of potential differences in
test configurations while analyzing the presented graphs.

Table 6. Selection of default parent material density [kg/m3] used when not explicitly stated in the
source paper.

Aluminum
(AlSi10Mg)

Steel
(SS316L)

Titanium
(Ti6Al4V)

Nylon
(PA12)

2670 [122] 8000 [119] 4430 [329] 919 [143,144]
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7.1. Material Type Trends

Based on the results from Figure 2, those material categories with over ten instances
within the investigated papers (aluminum, steel, titanium, polymer/resin, and nylon) were
plotted, as in Figure 12. Note that while nylon is itself a polymer, it was utilized enough as
a parent material to warrant a separate category for analysis.

As in Figure 12, the metals—aluminum, steel, and titanium—generally trend to
higher specific energy absorption per mass (SEAm) values (2 × 10−4 MJ/kg to higher
than 2 × 10−2 MJ/kg) while it is possible for the nylon and other polymers to fall below
2 × 10−6 MJ/kg. However, it appears possible to increase the relative density (and thus the
part density) of any part—regardless of parent material—above approximately 102 kg/m3

to achieve an SEAm greater than 2 × 10−2 MJ/kg.
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Figure 12. Specific energy absorption by volume versus lattice part density with highlights for select
categories of parent material types. The “Polymer” group includes PLA, ABS, etc., but excludes nylon.
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7.2. Manufacturing Method Trends

Based on the results from Figure 3, the manufacturing method categories with counts
of greater than five (FDM/FFF, MJF/MJT, PBF/LPBF, SLM, SLS, and SLA) were plotted, as
in Figure 13, with the exception of the “Other” category.

In combination with Figure 12, it is possible to see the relationship between material
and manufacturing method in Figure 13. SLA, MJF/MJT, and SLS utilized nylon, other
polymers, and resin and thus result in the same SEAvol and SEAm results as those parent
materials. On the other hand, metal parts from aluminum, titanium, and steel were
manufactured using powder bed fusion techniques (PBF/LPBF, SLM), and the overall
energy absorption trends reflect it.
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Figure 13. Specific energy absorption by volume versus lattice part density with highlights for select
categories of manufacturing methods.

7.3. Truss-Based Topology Trends

For truss-based topology trends, those topology categories with over five instances,
per Figure 4, (BCC, BCC-Z, cubic (simple cubic, “SC”), diamond, Kelvin, octet, rhombic
dodecahedron) are plotted, as in Figure 14, with the exception of the “Other” category.
Those same categories were also plotted for SEAm versus relative density in Figure 15,
which further aids in comparing and contrasting the topologies.

From Figure 14, it appears that there is no obvious difference between the bending-
dominated BCC, BCC-Z, cube, diamond, and rhombic dodecahedron [10,120,121,129,134,
150,160,241,245,254,330] and the stretching-dominated octet [129,134,138,146,160]; based
on variations in the parent material and relative density of the lattice, the SEAm generally
falls between 2 × 10−4 MJ/kg and 2 × 10−2 MJ/kg. It is notable that at lower part densities
(< ∼ 102 kg/m3), the range of SEAm for the octet topology begins to fall to the lower
part of the range of the BCC and BCC-Z energy absorptions. Additionally, the bending-
dominated Kelvin [134,143,146,150] generally absorbs energy per mass at a couple of
magnitudes less than the other topologies highlighted (2 × 10−6 MJ/kg to 2 × 10−4MJ/kg).
It is also interesting that, of the papers for which these data were presented, there was a
wide range of part densities (and, thus, relative densities) investigated for BCC, BCC-Z, and
octet, with slightly fewer for cubic, rhombic dodecahedron, and diamond, and the fewest
for Kelvin; while the data of the former six topologies would create a linear trendline with
a positive slope, the Kelvin topology data would have an almost-vertical trendline.
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From Figure 15, this observation regarding the span of relative densities investigated
is further illustrated; the Kelvin topology generally did not get investigated at relative
densities below 0.1 while BCC and BCC-Z topologies have data from relative densities as
low as approximately 3 × 10−3.
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7.4. TPMS Topology Trends

For TPMS topology trends, the diamond, gyroid, primitive, and neovius categories
were plotted, as in Figure 16, as they all had five or more instances within the literature per
Figure 5. Figure 17, which plots SEAm versus relative density for those same categories,
has also been presented to further aid in the comparison of these TPMS topologies. It
should be noted that there is no distinction between sheet and solid variations in these
TPMS topologies within these figures (i.e., the gyroid category contains both sheet and
solid versions of the gyroid topology).

From Figure 16, at part densities above about 4 × 102 kg/m3, the gyroid, diamond,
primitive, and neovius TPMS topologies all have similar SEAvol (> 10−1 MJ/m3) and
SEAm (> 2 × 10−4 MJ/kg). Below this part density value, the gyroid and diamond TPMSs
continue to perform above SEAm > 2 × 10−4 MJ/kg, but the primitive and neovius TPMSs
drop, ending near SEAm ∼= 2 × 10−6 MJ/kg at a part density below 102 kg/m3.

From Figure 17 it is seen that the gyroid TPMS topology is examined at the largest
range of relative densities, whereas the diamond, primitive, and neovius TPMS topologies
only reach minimum relative densities of about 3 × 10−2. Interestingly, as a relative density
between about 0.1 and 0.3, it is possible to manipulate the design to have any one of the
four TPMS topologies yield the same SEAm as the others.
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8. Conclusions and Outlooks

A review of the literature from 100 papers from approximately the last two decades was
performed, which focused specifically on 3D periodic cellular materials for energy absorption
applications. The process of collecting qualitative and quantitative data from those papers
and presenting the data in Table A1 in multiple graphs has allowed for trends and gaps to be
identified and suggestions for future avenues of advancement and research to be provided.
Keeping with the organization of the paper, the following paragraphs summarize these trends
and the suggestions for growth opportunities within this field of research.

Material Types, Manufacturing Processes, and Post-Processing Treatments: Materials are
dependent on the availability of technologies for manufacturing the complex geometries,
but pushing the limits of the available technology (e.g., by using an “uncommon” material
and developing manufacturability parameters) could yield interesting and valuable results.
Additionally, further advancement in AM techniques will only allow for further advance-
ment in the area of cellular and lattice material manufacture. Heat or chemical treatments
to modify the microstructure or roughness of strut-based lattices may be required to ensure
anticipated and consistent manufacture quality.

Topology Classification: Topology naming is sometimes inconsistent in the literature,
and with the introduction of new topologies, either through multi-objective or topological
optimization or as bio-inspired geometries, a robust classification and naming system
could help ensure better consistency and clarity when it comes to obtaining past research
and presenting current research on a given topology; defining new topologies versus
combinations or variations in existing topologies; and defining cellular materials based on
characteristics such as cell symmetry, hierarchy, and multiple materials.

Topology Design Software: Referencing the type of design software utilized is not the
norm within the literature, making it difficult to determine a robust and flexible program
that has the potential to generate a wide variety of topologies, either as unit cells or as
clusters. Even more lacking is the knowledge of which programs could be used to design
hierarchical lattices or lattices with non-circular or non-uniform cross-sections. Without
access to such technology, the collaborative research effort is limited.
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Truss Topology Cross-Section Shapes: There are very few pieces of literature that inves-
tigate strut-based lattices with anything other than a uniform cylindrical strut. Research
to-date suggests such changes are beneficial for mechanical and energy absorption proper-
ties, indicating further research could be valuable.

Experimental Test Standards: There are currently no standards developed with additively
manufactured materials in mind, making the repeatability and comparison of AM materials
difficult, particularly given the variety of process parameters that could be varied during
manufacture and that have an effect on the final performance of the part. Additionally, the
variety of initial conditions, boundary conditions, and general numerical model set-ups
can make result comparison between the literature difficult, if not impossible.

Test Strain Rates: The majority of the investigated literature explores only a quasi-static
strain rate response of the lattice material. With the knowledge of the energy absorption
capabilities of lattice materials, higher strain rates can yield additional information about
the types of applications these lattices, and given topologies, would be best suited for.

Impactor Shapes: Generally quasi-static and impact testing is performed such that the
surface contacting the cellular material specimen is flat. Further investigation into the
variation in performance under impact with non-flat surfaces could yield interesting energy
absorption and deformation behavior results.

Energy Absorption Trends: Due to some challenges encountered in extraction, in the
quantitative energy absorption data from all 100 papers of interest, only 76 had acceptable
data for plotting. Based on those results, the following are noted trends, though the graphs
could also be referenced to aid in the preliminary design process:

• Lattices manufactured from aluminum, steel, and titanium tend to have higher SEAvol
and SEAm as compared to nylon and other polymer or resin parts, though there is
a range of part densities where those results are comparable between metals and
non-metals.

• The additive manufacturing techniques of SLA, PBF/LPBF, and SLM have similar
SEAm results, while MJF/MJT and SLS tend to result in lower SEAm and SEAvol
energy absorption performance.

• The bending- and stretching-dominated topologies examined had similar energy
absorption results, though the Kelvin cell had a notably lower minimum SEAm than
other strut-based topologies.

• At higher part densities, the gyroid, diamond, primitive, and neovius TPMS topologies
all performed similarly in terms of SEAvol and SEAm results; at lower part densities,
the gyroid and diamond topologies still had similar performances, but the SEAm
and SEAvol for the primitive and neovius topologies dropped by a couple of orders
of magnitude.

• In examining SEAm versus relative density, it became apparent which topologies were
investigated at a wider range of relative densities; the Kelvin cell had no data below a
relative density of about 0.1, while the BCC and BCC-Z topologies had data collected
from as low as about 0.003. For the TPMS topologies, the gyroid had the largest range
investigated, while the neovius and primitive barely went below 0.04 and diamond
was only to a minimum of about 0.1.
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tion, A.R.B.; formal analysis, A.R.B. and M.S.A.E.; investigation, A.R.B.; resources, M.S.A.E.; data
curation, A.R.B.; writing—original draft preparation, A.R.B.; writing—review and editing, A.R.B.
and M.S.A.E.; visualization, A.R.B.; supervision, M.S.A.E.; project administration, M.S.A.E.; funding
acquisition, M.S.A.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Bombardier Inc. Montreal in collaboration with MITACS
Canada, grant number IT29280.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The Authors declare no conflict of interest.



Materials 2024, 17, 2181 35 of 60

Appendix A

Table A1. Summary of methods, materials, cell parameters, and loadings for papers of interest. Acronym definitions are provided at bottom of table. “Num.”
column refers to symbol type as listed in Figure 11 for Figures 12–17.
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1 Abou-Ali
[234] 2019 E PA1102 0.061–

0.254 8 mm Cl (5 × 5 × 5) TPMS skeletal (Diam, IWP,
Gyr, Fisher–Koch C(Y)) - SLS - C S 0.001/s

2 Abou-Ali
[117] 2020 F, E PA1102 0.061–

0.254 8 mm Cl (3 × 3 × 3,
5 × 5 × 5)

TPMS (Sheet: Schwarz
Diam, Schoen Gyr, Schoen
IWP; Skeletal: Schoen Gyr,

Schoen IWP)

- SLS Ab C S

0.1/s, 0.01/s,
0.05/s,

0.001/s,
0.0001/s

3 Abueidda
[331] 2017 F, E PA2200 0.048–

0.256 1.5 mm
Single, Cl
(2 × 2 × 2,
4 × 4 × 4)

TPMS (Schwarz Prim,
Schoen IWP, Neo) - SLS Ab C S 0.001/s,

0.01/s, 0.1/s

4 Ahmadi [17] 2015 E Ti6Al4V ELI 0.06–0.37 1.5 mm Cl (cyl.
~7 × 10)

SC, Diam, Tr-SC,
R-C-Octah, R-Dod,

Tr-C-Octah
Ci SLM - C S 1.8 mm/min

5 Alberdi [130] 2020 E SS316L, Vero
White 0.125,0.15 4 mm, 8 mm Cl BCC, octet Ci LBF, MJT - C S 5 × 10−3/s

6 Al-Ketan
[118] 2018 E Maraging steel 0.071–

0.22 7 mm Cl (6 × 6 × 6) TPMS sheet and skeletal
(IWP), BCC Ci SLS - C S 0.001/s

7 Al-Ketan
[115] 2018 E Maraging steel 0.05–0.25 7 mm Cl (6 × 6 × 6)

Kelvin, octet,
Gibson–Ashby, TPMS
(sheet: IWP, Prim, Gyr,

Diam; skeletal: Diam, IWP,
Gyr)

Ci PBF - C S 0.001/s
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Table A1. Cont.
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8 Al-Saedi
[142] 2018 F, E AlSi-12 FG (0.185

avg) 5 mm Cl (6 × 6 × 6) FBCC Ci SLM LS C S 0.05 mm/s

9 Andrew [154] 2021 E PlasGRAY

0.25–0.55
(constant

thck.
1 mm)

16 mm Cl (2 × 2 × 2)

(Plate-based) SC, BCC,
FCC, SC-BCC, SC-FCC,

SC-BCC-FCC (rotation of
unit cell)

- SLA - C D
1.54 m/s to
3.09 m/s (20

to 80 J)

10 Andrew [70] 2021 E
HDPE, PPR,

HDPE/MWCNT,
PPR/MWCNT

0.36
Unc.

(appears to
be 16 mm)

Cl (2 × 2 × 2)
(Plate-based) SC, BCC,
FCC, SC-BCC, SC-FCC,

SC-BCC-FCC
- FFF - C D

1.5 m/s to
4.2 m/s (20

to 150 J)

11 Bai [332] 2018 F, E, A Ti6Al4V 0.26 4 mm Cl (8 × 8 × 8) BCC, AFCC Ci SLM Ab C S 1 mm/min

12 Bai [333] 2020 F, E PA2200 0.179 (FG) 3.5 mm–
6.5 mm Cl BCC Ci SLS A/E C, T S 5 mm/min,

1 mm/min

13 Bernal [255] 2012 F, E
Thiol-ene,

Poly-urethane
foams

0.1
Unc. (strut to

dia. aspect
ratio of 8–9)

Cl (2 × 2,
appears

single layer)
Pyra-like/half-BCC Ci, Hier.

(foam) Unc. A/E C S 2 × 10−4/s

14 Bhat [170] 2023 E PA12 0.201–
0.308 14 mm Cl (2 × 2 × 2)

TPMS (Schwarz Prim)
combined with nested
BCC, R-Dod, and octet

Ci MJF - C S, D
5 mm/min,
50 mm/min,
100 mm/min

15 Bolan [334] 2023 E

Resin (aqua
blue,

nylon-green
tough)

0.02–0.74

Varies
(overall Cl
76.2 mm

edge)

Cl (3 × 3 × 3–
6 × 6 × 6) Octet Ci SLA - C S 0.01/s
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16 Bonatti [335] 2019 F, E SS316L 0.01–0.85 Unc.

Single, Cl
(approx.

3 × 3 × 3
and

7 × 7 × 7)

TPMS sheet-like
(SC, FCC, BCC) - SLM A/S,

A/E
C,
H S 0.0167/s

17 Campanelli
[336] 2014 E Ti6Al4V 0.2234–

0.5822

2.0 mm,
2.5 mm,
3.0 mm

Cl (approx.
8 × 8 × 8) FCC Sq SLM - C S 0.5 mm/min

18 Cao [10] 2018 F, E SS316L 0.06–0.15 10 mm Cl (3 × 3 × 3) R-Dod Ci (dia.
varies) SLM A/E C S 0.9 mm/min

19 Cao [253] 2020 F, E SS316L 0.12 8 mm Cl (3 × 3 × 3) R-Dod Ci (dia.
varies) SLM A/E C S, D

10−3/s,
750/s to
1250/s

20 Cao [254] 2020 F, A SS316L 0.05–0.2 8 mm Cl
(3 × 3 × 3) R-Dod Ci (dia.

varies) SLM A/E C S, D 0.001–3000/s

21 Carassus
[110] 2020 F Ti6Al4V 0.2–0.3 10 mm Cl (4 × 4 × 4) TPMS Sheet (Diam, Gyr),

TPMS skeletal (Diam, Gyr) - SLM R C D 20 m/s

22 Cetin [122] 2019 F, E AlSi10Mg

Unsp.
(strut dia.

1 mm–
5 mm)

17.14 mm–
40 mm

Cl (1 × 1 × 3,
1 × 1 × 4, 1
× 1 × 5, 1 ×
1 × 6, 1 × 1

× 7)

BCC, BCC-Z Ci DMLS Ab C S, D 2 mm/min,
10 m/s

23 Chen [337] 2018 F, A Al7075/AlSi10Mg 0.144–
0.199 Unc.

Cl (54 on
layer ×
9 layers)

NPR (Pyra re-entrant cell
variations) Ci, HC SLM LS C S Unc.



Materials 2024, 17, 2181 38 of 60

Table A1. Cont.

N
um

.

Fi
rs

tA
ut

ho
r

an
d

R
ef

er
en

ce

Ye
ar

M
et

ho
d

Material
Relative
Density

C
el

lS
iz

e

Single/Cluster Topology

C
ro

ss
-S

ec
ti

on

M
an

uf
.P

ro
ce

ss

So
ft

w
ar

e

Lo
ad

in
g

Ty
pe

R
at

e
Ty

pe

St
ra

in
R

at
e/

Sp
ee

d

24 Choy [197] 2017 E Ti6Al4V 0.083–
0.764

approx.
2 mm

Cl (varies,
overall size

approx. 11 ×
13 × 14 mm3)

SC, honeycomb Ci SLM - C S 0.05/min

25 Choy [196] 2017 E Ti6Al4V 0.35–0.62
(FG)

approx.
2 mm

Cl (varies,
overall size

14.2 × 13.0 ×
11.6 mm3)

SC, honeycomb Ci SLM - C S 0.05/min

26 Cui [244] 2018 F, E VeroWhite Plus
Unsp.
(thck.

1 mm)
4 mm Cl (4 × 4 × 4) SC/conventional

open-cell foam Sq Unsp. Ab C S 1 mm/min

27 Della Ripa
[338] 2021 F, E

Fabbrix
(nylon-CF),
AlSi10Mg

Unc. (dia.
1.5 mm) 9 mm Cl (3 × 3 × 3) Octet, variations in octet,

Kelvin Ci FDM, SLS R C S 1 mm/min

28 Dong [88] 2015 E Ti6Al4V 0.02–0.16
strut length

7 mm–
25 mm

Cl Octet Sq WJC - C S 3 × 10−4/s

29 Doty [339] 2012 E Photopolymer 0.064–
0.273

1.2 mm,
12.5 mm Cl (Unc.)

Pyra-like/half-BCC (small
scale, large scale,

hierarchical)
Ci Coll. UV - C S 8 × 10−4/s

30 Duan [156] 2020 F, E SS316L 0.1–0.3 5–16.2 mm Single, Cl
(5 × 5 × 5)

(Plate-based) Novel
design family - SLM A/S,

A/E C S 0.000444/s

31 Epasto [311] 2019 E Ti6Al4V ELI 0.09–0.23 2 mm–4 mm

Cl
(6 × 6 × 12,
8 × 8 × 16,
6 × 6 × 12)

R-Dod Ci EBM - C S, D 1 mm/min,
1–2 m/s
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32 Evans [340] 2010 F, E, A Ni 0.01–0.10
Unsp. (A/L2

=
0.0015–0.05)

Unsp. (single
layer) Pyra HC Coll. UV

and E-De A/E C S, D 0.0007/s, 100
m/s

33 Fan [237] 2021 E Ti6Al4V
FG (avg

0.30),
0.15–0.45

3 mm Cl (6 × 6 × 6) TPMS sheet (Gyr, Neo,
Schwarz Prim) - SLM - T, C S

2 mm/min
(T), 1

mm/min (C)

34 Gültekin
[268] 2022 F 6061T6

aluminum

Unc.
(strut dia.
1.18 mm)

Unc., appears
10 mm

Cl (unc.,
single layer)

Pyra, semicircle, cross
semicircle, Kagome, 2D

honeycomb
Ci, HC - R C D 3.5 m/s

35 Habib [143] 2018 F, E PA12 0.15 10 mm Cl (5 × 5 × 5)
Circ, Octag, strengthened
Octag, Kelvin, R-C-Octah,

SC
Ci MJF A/E C S 5 mm/min

36 Habib [144] 2019 F PA12 0.15 and
FG 5 mm

Cl (5 × 6 × 6
(honeycomb:

7 × 6
cluster))

Octag, Kelvin,
Honeycomb Ci MJF A/E C D 3.5 m/s

37 Hammetter
[341] 2013 F, A Thiol-ene 0.02–0.40 Unc. (L/D =

2.5–20) Cl (varies) Pyra, “Diamond”,
“Hourglass” Ci - Ab C S Unc.

38 Hao [342] 2019 E PA12, GFR
PA12

Unsp.
(dia. 1
mm)

10 mm Cl (4 × 4 × 4) Circ Ci SLS - C S Unsp.

39 Harris [343] 2020 F, E SS316L 0.115–
0.305 ~6.50 mm Cl (3 × 2 × 5) Origami (stacked

Miura-ori) - SLM A/S C S 0.001/s
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40 Jiang [344] 2021 F, E PA12 0.15–0.30 Unc. Cl (3 × 3 × 5)

Shell (uniform foam,
graded binder foam,

graded thickness foam,
hybrid graded foam)

- MJF A/E C S 5 × 10−4/s

41 Jin [129] 2019 F, E Ti6Al4V 0.027–
0.476 5 mm Cl (2 × 2 × 2) Dfcc, Dhex, octet, BCC Ci SLM LS C D 1000/s

42 Jin [100] 2021 F, E Ti6Al4V 0.119 5 mm Cl (4 × 4 × 4) BCC, octet Ci SLM An/LS C S 10−3/s

43 Kandasamy
[345] 2023 E PA12 0.1, 0.2,

0.3
strut length

5 mm

Cl (dim.: 50
× 50 ×

25 mm3)
Kelvin Ci SLS - C S

0.001/s,
0.013/s,
0.133/s

44 Kaur [78] 2017 F, E PLA, CFRPLA,
Nylon 618

Unsp.
(square 1

mm
diag.)

5 mm Cl (7 × 7 ×
10 mm3) Octet, Octah Sq FDM An C S 2 mm/min

(3 × 10−3/s)

45 Kohnen [99] 2018 E SS316L 0.33 2.8 mm Cl (5 × 5 × 5,
5 × 5 × 14) FCC-Z, hollow sphere Ci SLM - C, T,

F S
0.001/s (C),
0.001/s (T),
32 Hz (F)

46 Leary [120] 2016 F, E AlSi12Mg

0.085-
0.206

(const 1
mm dia.

strut)

7.5 mm Cl
(10 × 10 × 10)

BCC, BCC-Z, FCC, FCC-Z,
FBCC-Z Ci SLM Unc. C S 10−3/s

47 Leary [121] 2018 F, E Inconel 625 0.02–0.10 2 mm–4 mm Cl
(10 × 10 × 15) BCC, BCC-Z, FCC, FCC-Z Ci SLM Unc. C S 10−3/s

48 Lei [124] 2019 F, E AlSi10Mg 0.05–0.06 10 mm Cl (5 × 5 (×1,
×3, ×5, ×7)) BCC, BCC-Z Ci SLM A/E C S 0.5 mm/min
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49 Li [346] 2019 F, E AISI 4130 0.10–0.30 4 mm Cl (3 × 3 × 3,
5 × 5 × 5) SC-AFCC Ci SLM Au C S 0.001/s

50 Li [235] 2021 F, E SS316L 0.3 4 mm Cl (5 × 5 × 5) TPMS (Gyr) - SLM LS C S, D
2 × 10−5 m/s,

6.85 m/s,
5050 m/s

51 Liang [239] 2021 E SS316L 0.25–0.40 2.5 mm Cl (8 × 8 × 8) TPMS sheet (Prim, Gyr) - SLM - C S 0.001/s

52 Ling [133] 2019 F, E

Polymer
(“standard
grey” resin,
“durable”

resin)

0.13–0.45

Approx.
14 mm (strut

length
10 mm)

Cl (4 × 4 × 4) Octet Ci SLA Ab C S, D
5.7 mm/min

(0.0167/s),
3 m/s (53/s)

53 Lv [171] 2020 F, E PA2200/Nylon
12 0.15–0.20 89.2 mm Single Octet

Ci, Hier.
(tubular
re-entrant)

SLS A/E C S 0.2 mm/min

54 Ma [44] 2020 E CuCrZr 0.1–0.2 4 mm–6 mm Cl (4 × 4 × 4) TPMS (Diam) - SLM - C S 2 mm/min

55 Mahbod
[158] 2019 F, E, A Polymer

Unsp.
(rad. =
1 mm–

1.4 mm)

Unsp. (strut
length

3.4–5 mm)

Cl (approx.
3 × 3 × 3) Novel double Pyra Dod Ci SLA An/LS C S 0.5 mm/min

56 Maskery [49] 2016 E AlSi10Mg 0.22, FG 3 mm Cl (6 × 6 × 6) BCC Ci SLM - C S 0.03 mm/s

57 Maskery [98] 2017 E AlSi10Mg 0.22 3 mm–9 mm

Cl (2 × 2 × 2,
3 × 3 × 3,
4 × 4 × 4,
6 × 6 × 6)

TPMS (Double Gyr) - SLM - C S 0.009 mm/s
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58 McKown
[119] 2008 E SS316L 0.029–

0.166
1.5 mm,
2.5 mm

Cl (8 × 8 ×
(7, 8, 11) or 13
× 13 × (7, 11,

13))

BCC, BCC-Z Ci SLM - C S, D

0.5 mm/min
(El),

1 mm/min
(Plas), D

varies
(1–500 mm

/min,
17.1 m/s–
68.9 m/s)

59 Mieszala [48] 2017 E
IP-Dip polymer

and NiB
coating (E-De)

0.06–0.45 Approx.
5–10 um

Cl (approx.
4 × 4 × 4)

SC, cubic with braces x2,
hexagonal truss,
shape-optimized

honeycomb

Unc.,
appears

Ci
3D DLW - C S

Disp.-
controlled at

20 nm/s

60 Miralbes
[210] 2022 E ABS 0.3–0.5 5 mm Cl

(10 × 10 × 10)

TPMS sheet (Gyr, Diam,
Lidinoid, Neo, Schwarz

Prim, Split P)
- FFF - C S 5 mm/min

61 Mueller [177] 2018 E, A RGD525,
FLX9695

Rel. Vol.:
0.12

32.28 mm,
60.57 mm

Single, Cl
(3 × 3 × 3) Kelvin Ci MJT - C S 10 mm/min

62 Mueller [134] 2019 F Al-6101-T6 Unc. Unc. Cl (5 × 5 × 5
or 8 × 8 × 8)

Voronoi, octet, Delaunay,
SC Ci - A/E C D 10−6/s to

104/s

63 Nasrullah
[160] 2020 F AlSi-12 0.05–0.30 10 mm Single

Kagome, Tetra, Pyra, octet,
SC, Tr-Pyra, Octah,
R-C-Octah, R-Dod,

open-cell, twisted-octet

Ci - LS C D 9 m/s

64 Nazir [225] 2021 F, E PA12
0.1468–
0.1491,
0.1625

10 mm, 20
mm Single Kelvin, Modified Kelvin

(fillets) Ci MJF An C S 1–2 mm/min
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65 Novak [208] 2021 F, E SS316L 0.16–0.21 Unc. Cl (cyl. dia.
20 × 20 mm2)

TPMS (Schwarz Diam,
Schoen Gyr) - PBF LS C S 0.1 mm/s

66 Ozdemir
[245] 2016 E Ti6Al4V 0.137–

0.166 5 mm
Cl (1 × 5 × 5

and
5 × 5 × 5)

SC, Diam, Re-entrant
cubic Ci EBM - C S, D

0.1–0.2
mm/min,
5–21 m/s,

80–250 m/s

67 Ozdemir
[241] 2017 F Ti6Al4V 0.137–

0.166 5 mm
Cl (1 × 5 × 5
and 5 × 5 ×

5)
Diam, Re-entrant cubic Ci, Sq - LS C S, D

0.2 mm/min,
7.6 m/s,
178 m/s

68 Park [240] 2022 E CoCrMo 0.255–
0.281 2.5 mm Cl (2 × 2 × 2) TPMS sheet (Neo, IWP) - LPBF - C S 1 × 10−3/s

69 Schaedler
[347] 2011 E Ni alloy 0.0001–

0.007

Unsp. (strut
length

1–4 mm)
Cl BCC HC Coll. UV

and E-P - C S 10 um/s

70 Shen [123] 2009 E SS316L 0.05–0.06 2.5 mm

Cl (unc.,
appears
approx.

8 × 8 × 8,
40 × 8 × 8)

BCC, BCC-Z Ci SLM - B, C S, D

1 mm/min–
3 m/s (C),

0.25 mm/min–
4 m/s (B)

71 Shen [348] 2021 E Zirconia 0.067–
0.336 2–5 mm Cl (2 × 2 ×

2–5 × 5 × 5)
TPMS sheet (Prim, Gyr,

IWP, S14) - DLP - C S 0.02 mm/min

72 Smith [126] 2011 E SS316L 0.035–
0.159 1.25–2.5 mm

Cl (8 × 8 × 8,
10 × 10 × 10,
13 × 13 × 13,
15 × 15 × 15)

BCC, BCC-Z Ci SLM - C S, D

0.5 mm/min
(El),

1 mm/min
(Plat/Dens),

4.1 m/s–
32 m/s
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73 Smith [125] 2013 F, E SS316L 0.035–
0.16

1.25 mm–
2.5 mm

Cl (8 × 8 × 8,
10 × 10 × 10,
13 × 13 × 13,
16 × 16 × 15)

BCC, BCC-Z Ci SLM A/S C S

0.5 mm/min
(El),

1 mm/min
(Plat/Dens)

74 Song [132] 2019 F, E Photo-sensitive
resin

Various
(const.

1.11 mm
dia. strut)

8.282 mm Cl (3 × 3 × 3) Octet, variations in octet Ci SLA An C S, O 2 mm/min
(3 × 10−3/s)

75 Sun [232] 2022 F, E Ti6Al4V

0.096–
0.327
(four
thck.:

0.20–0.40
mm)

5 mm Cl (4 × 4 × 4) TPMS sheet (Prim, Gyr,
Diam) - SLM A/E C S 2 mm/min

76 Tallon [223] 2020 F, E Maraging steel 0.126 5 mm Cl (4 × 4 × 4) R-Dod Ci L-PBF LS C S 1.3 mm/min

77 Tancogne-
Dejean [251] 2016 F, E SS316L 0.05–0.50 3.08 mm Cl (7 × 7 × 7) Octet Ci (dia.

varies) SLM Ab C S, D 10−3/s, 103/s

78 Tancogne-
Dejean [252] 2018 F, E SS316L 0.1–0.3 3 mm Cl (7 × 7 × 7

or 5 × 5 × 5) BCC Ci (dia.
varies) SLM A/E,

A/S C S, D 3 mm/min,
10 m/s

79 Viccica [349] 2022 F, E PA2200/PA12 Fractal
design

Fractal
design

Cl (fractal
design)

3D Greek cross (fractal
design) Ci SLS R C S, D

5 mm/min
(S), 7.5 m/s

(D)

80 Wang [155] 2018 E, A PLA 0.174–
0.374

Approx.
7.5 mm

Cl (overall
dims 40 × 40
× 60 mm3)

(Plate-based) Random cell,
Tetrak, hexagonal prism,
Rect. prism, clipped Rect.

prism

- FDM - C S 0.001/s
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81 Wang [243] 2020 F, E, A PA12 0.054–
0.062

approx.
17 mm Cl (3 × 3 × 3) Cross-chiral honeycomb Sq SLS Ab C S, D

2 mm/min
(0.067/s), up

to 30 m/s

82 Wang [238] 2020 F, E SS304 0.2
Unc.

(appears to
be 6 mm)

Cl (approx. 1
× 4 in cyl.

shell shape
with outer

dia. 30 mm)

TPMS sheet (Gyr) - SLM A/E C S 1.4 mm/min
(0.001/s)

83 Wang [215] 2021 F SS316L 4 mm Cl (8 × 8 × 5) TPMS sheet (Schwarz
Prim, IWP, Neo) - - A/E C D 1 m/s

84 Xiao [329] 2015 F, E Ti6Al4V 0.129,
0.164

1.5 mm,
2.5 mm

Cl (6 × 6 × 6,
10 × 10 × 10) R-Dod Ci EBM An/LS C S 0.9 mm/min

(10−3/s)

85 Xiao [102] 2018 F, E Ti6Al4V FG (0.139
to 0.224)

3 × 3 × 2 to
3 × 3 × 4 mm3 Cl (8 × 8 × 9) R-Dod Ci SLM LS C S, D 103/s, 500/s,

1000/s

86 Xiao [43] 2018 E SS316L 0.10–0.30 2.25 mm Cl (8 × 8 × 8) ECC, FCC, VC - SLM Ab C S 1 mm/min

87 Yang [204] 2019 F, E SS316L 0.15, FG 4 mm Cl (4 × 4 × 4) TPMS (Gyr) - SLM De C S 0.02 mm/s
(0.001/s)

88 Yang [233] 2019 F, E Ti6Al4V approx.
0.04–0.3 8 mm–20 mm Cl (2 × 2 ×

2–5 × 5 × 5) TPMS (Gyr) - SLM - C S 4 mm/min

89 Yang [159] 2020 F
HSSG350,
AA6063,
Ti6Al4V

0.160–
0.341 7.5 mm Cl (3 × 3 × 3) CLL, octet, BCC-6H Ci - LS C D 1 m/s,

10 m/s

90 Yang [236] 2022 F, E SS316L 0.05–0.20
(FG) 4 mm Cl (5 × 5 × 5) TPMS (Gyr) - LPBF A/E C S 0.02 mm/s
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91
Yazdani

Sarvestani
[157]

2018 F, E, A PLA 0.30–0.50 1.8 mm,
3 mm

Cl (7 × 1 × 1,
7 × 2 × 2, 5
× 5 × 2)

Plate-based (octet, SC,
isomax (octet + SC)) - FDM Au B, C S, D

0.5 mm/min
(S, B), 10 kN

(22 kg
impactor, D)

92 Yin [112] 2020 F, E CX stainless
steel

Unsp.
(thck.
0.15

mm–0.75
mm)

4 mm Cl (4 × 4 ×
4–7 × 7 × 7)

TPMS sheet (Prim, FRD,
IWP, Gyr) - DMLS LS C S, D 2 mm/min,

5–50 m/s

93 Yu [172] 2022 F, E Tough2000
resin

0.1657–
0.2071 8 mm Cl (4 × 4 × 4) R-Dod, octet Ci SLA Ab C S 10−3/s

94 Yuan [350] 2019 E CNT/PA12 0.09–0.30 Unc. Cl (5 × 5 × 6) BCC-6H, BCC-12H - SLS - C S 6 mm/min

95 Zhang [111] 2018 F, E SS316L 0.11–0.39
2.5 mm

(BCC), 4 mm
(TPMS)

Cl (6 × 6 × 6
(BCC), 5 × 5
× 5 (TPMS))

TPMS sheet (Prim, Gyr,
Diam), BCC Ci SLM A/E C S 10−3/s

96 Zhang [205] 2020 F SS316L FG
(0.05–1) 3 mm Cl (2 × 2 × 2,

5 × 5 × 5) TPMS (IWP, Prim) - SLM De C S 1 mm/min

97 Zhang [351] 2021 F, E, A AlSi10Mg

Unc.
(four dia.:
1.2 mm,
1.6 mm,
1.9 mm,
2.2 mm)

10 mm Cl (5 × 5 × 5)

Var. on BCC with
decr./incr. in number of
struts, adding Z struts,

adding partial FCC struts

Ci SLM Ab C S 2 mm/min
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98 Zhao [101] 2018 E Ti6Al4V 0.10–0.30 4 mm Cl (4 × 4 × 4) BCC, TPMS (BCC) Ci SLM - C S 1 mm/min

99 Zhao [114] 2020 F, E Ti6Al4V FG (avg
0.20) 4 mm Cl (5 × 5 × 5) TPMS sheet (Prim, Gyr) - SLM A/S C S 2 mm/min

100 Zhong [50] 2019 F, E SS316L 0.125–
0.404 5 mm Cl (5 × 5 × 5) BCC, Diam, Unique Tetrak Ci SLM Ab C, T S 6 mm/min

(C and T)

Unc./Unsp.—Unclear/unspecified in paper; avg—average; cyl.—cylinder/cylindrical; dia.—diameter; dim.—dimensions; Rel.—relative; Thck.—thickness; Var.—varies/various/variations;
and Vol.—volume. Methods: F—FEA, E—experiment, A—analysis. Material: CFRPLA—Carbon Fiber Reinforced PLA, ELI—Extra Low Interstitial, GFR—Glass Fiber Rein-
forced, HDPE—High Density Polyethylene, MWCNT—Multi-Walled Carbon Nanotube, PPR—Polypropylene Random Copolymer. Relative Density: FG—functionally graded.
Single/Cluster: Cl—cluster. Topology: Circ—circular, Diam—diamond, Dod—dodecahedron, Gyr—gyroid, Neo—neovius, NPR—Negative Poisson’s Ratio, Octah—octahedron,
Octag—octagonal, Ori—origami, Prim—primitive, Pyra—pyramid/pyramidal, Rect.—rectangular, R-Dod—rhombic dodecahedron, R-C-Octah—rhombicuboctahedron, SC—simple
cubic (cubic), Tetra—tetrahedron, Tetrak—tetrakaidecahedron, Tr-C-Octah—truncated cuboctahedron, Tr-Pyra—truncated pyramid, Tr-SC—truncated simple cubic. Cross-section:
Ci—circle, HC—hollow circle, Sq—square, Hier.—hierarchical. Manuf. Process: SLM—Selective Laser Melting, EBM—Electron Beam Melting, SLS—Selective Laser Sintering,
SLA—Stereolithography, FDM—Fused Deposition Modeling, FFF—Fused Filament Fabrication, MJF—Multi-Jet Fusion, WJC—Water Jet Cutting, Coll. UV—Collimated UV, 3D
DLW—3D Direct Laser Writing, L-PBF—Laser Powder Bed Fusion, DMLS—Direct Metal Laser Sintering, E-P—Electroless-Plating, E-De—Electro-Deposition. Software: LS—LS-DYNA,
A/E—ABAQUS/Explicit, A/S—ABAQUS/Standard, Ab—ABAQUS, An—Ansys, Au—AUTODYN, R—RADIOSS, De—DEFORM. Load: C—compression, T—tension, H—hydrostatic,
F—fatigue, B—bending. Numerical Strain Rate/Speed: El—elastic, Plat—plateau, Plas—plastic, Dens—densification. Rate: S—static, D—dynamic, O—other.
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