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Abstract: As a key guarantee and cornerstone of building quality, the importance of deformation
prediction for deep foundation pits cannot be ignored. However, the deformation data of deep
foundation pits have the characteristics of nonlinearity and instability, which will increase the
difficulty of deformation prediction. In response to this characteristic and the difficulty of traditional
deformation prediction methods to excavate the correlation between data of different time spans,
the advantages of variational mode decomposition (VMD) in processing non-stationary series and a
gated cycle unit (GRU) in processing complex time series data are considered. A predictive model
combining particle swarm optimization (PSO), variational mode decomposition, and a gated cyclic
unit is proposed. Firstly, the VMD optimized by the PSO algorithm was used to decompose the
original data and obtain the Internet Message Format (IMF). Secondly, the GRU model optimized
by PSO was used to predict each IMF. Finally, the predicted value of each component was summed
with equal weight to obtain the final predicted value. The case study results show that the average
absolute errors of the PSO-GRU prediction model on the original sequence, EMD decomposition, and
VMD decomposition data are 0.502 mm, 0.462 mm, and 0.127 mm, respectively. Compared with the
prediction mean square errors of the LSTM, GRU, and PSO-LSTM prediction models, the PSO-GRU
on the PTB0 data of VMD decomposition decreased by 62.76%, 75.99%, and 53.14%, respectively.
The PTB04 data decreased by 70%, 85.17%, and 69.36%, respectively. In addition, compared to the
PSO-LSTM model, it decreased by 8.57% in terms of the model time. When the prediction step
size increased from three stages to five stages, the mean errors of the four prediction models on the
original data, EMD decomposed data, and VMD decomposed data increased by 28.17%, 3.44%, and
14.24%, respectively. The data decomposed by VMD are more conducive to model prediction and
can effectively improve the accuracy of model prediction. An increase in the prediction step size
will reduce the accuracy of the deformation prediction. The PSO-VMD-GRU model constructed
has the advantages of reliable accuracy and a wide application range, and can effectively guide the
construction of foundation pit engineering.

Keywords: deformation prediction of deep foundation pit; particle swarm optimization algorithm;
variational mode decomposition; gated recurrent unit

1. Introduction

With the rapid development of the economy, the pace of urban construction has
gradually accelerated, and much urban construction focuses on underground engineering,
and more and more underground projects such as subway projects, underground corridors,
and underground commercial buildings have appeared. In the process of foundation pit
excavation, on the one hand, with the increase in the excavation depth, the deformation
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data of the foundation pit present non-stationary and nonlinear deformation laws, and
the deformation laws of different sides of the same foundation pit are also different. On
the other hand, because the deep foundation pit is located in the central area of the city
and there are many building groups, the influence on the surrounding buildings should be
taken into account in the excavation process, and the deformation of the foundation pit
should be controlled dynamically.

At present, the deformation control of a foundation pit is based on the real-time
monitoring of the monitoring points, obtaining and analyzing the monitored data, and
comparing them with the deformation safety threshold set in the design. If the deformation
data of the foundation pit exceed the set threshold, measures should be taken to protect it
to avoid causing foundation pit accidents and unnecessary personnel and property losses.
However, the deformation of a foundation pit is affected by many factors such as geological
conditions, the surrounding environment, the support scheme, and the excavation form, so
it is worth exploring and solving to accurately predict the deformation of the foundation
pit. In the field of foundation pit deformation, generally, traditional methods rely on design
schemes and soil exploration reports, soil physical and mechanical parameter values, and
structural material parameters. Specifically, soil distribution, data related to soil physical
and mechanical properties, depth, width, the support structure form (such as pile walls, soil
nail walls, etc.), and parameters (such as pile diameter, pile length, spacing, etc.) of deep
foundation pits. However, the traditional finite element analysis has certain limitations.
The finite element method carries out mechanical simulations based on the preliminary
survey data, but the actual construction stage is far more complicated than the simulation,
and the deformation results obtained cannot be accurately mapped to a certain point in
the future. With the development of machine learning, it has been applied more and
more widely in different engineering fields [1], among which deep learning has achieved
good application effects in many fields, providing a new idea for deep foundation pit
deformation prediction. Compared with the shortcomings of traditional finite element
analysis, linear regression, the support vector machine, the BP neural network, and other
prediction methods are all static models. Although they can fit data to a certain extent,
they have poor performance for deformation data with non-stationary, non-linear, and
time-dependent characteristics [2]. In deep learning, the traditional Recurrent Neural
Network (RNN) model is more suitable for data with time-dependent characteristics, and
it can learn the internal change law of the time series [3,4], but it has problems of gradient
disappearance and gradient explosion in practical applications [5]. Hochreiter et al. [4]
proposed the Long Short-Term Memory (LSTM) network to solve this problem. Then
CHO et al. [6] adjusted the three gate structures of the LSTM network and proposed a
Gated Recurrent Unit (GRU) network consisting of an update gate and reset gate.

Based on the above, many scholars have carried out a lot of research on the prediction
of non-stationary and nonlinear data and time series data. In order to predict the surface
settlement caused by underground mining activities, Sepehri et al. [7] established a three-
dimensional finite element model, and the average relative error between the effect and
the measured data was 7.95%, which was in good agreement with the actual situation.
Xianglong Luo et al. [8] introduced Empirical Mode Decomposition (EMD) to process the
non-stationary data in view of the non-stationary and nonlinear characteristics of the struc-
tural deformation data. Shaoyi Yang et al. [9], in order to reduce the instability of short-term
wind speed data and further improve the model prediction accuracy, processed historical
data by Variational Mode Decomposition (VMD) and then further improved the prediction
accuracy. Aiming at short-term passenger flow data with nonlinear and non-stationary
characteristics, Liang D et al. [10] adopted a VMD-LSTM combined prediction model to
process and forecast the data and achieved good results. Hailin Li et al. [11] optimized the
LSTM prediction model by setting different algorithm strategies on the obtained monitoring
data, and came to the conclusion that the Adam optimization algorithm model had the
highest prediction accuracy. Considering the advantages and disadvantages of the GM(1,1)
model and BP neural network, Dongge Cui et al. [12] first used PSO-GM(1,1) to predict and
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extract the trend item of deformation data, and then used the PSO-BP network to correct
the residual sequence and superposition to obtain the predicted value of the PSO-GM-BP
model. Q Liu et al. [13] used the combined model of the wavelet transform and BP neural
network to predict the deformation of a deep foundation pit. Compared with the predic-
tion results of the original data, the relative error of the data after wavelet transform was
reduced, which verified that the processed data were more conducive to the improvement
of the model prediction effect. Jing Chuankui et al. [14] predicted the settlement data of
three foundation pits by different optimization algorithms combined with the Exponential
Power Product Model and obtained good model effects. ZHANG et al. [3] used the LSTM
algorithm, which is more suitable for time series, to predict the horizontal deformation
data of a foundation pit. Compared with the BP neural network and gray prediction
model, LSTM has a better prediction performance. According to the different excavation
stages, a phased prediction was made, and a similar model performance was obtained. Ma
Qingwen et al. [15] proposed the EWT-NARX prediction model by combining the empirical
wavelet transform (EWT) with the Nonlinear Auto-Regressive model with Exogenous
Inputs (NARX). The results show that compared with the EMD-NAR, EWT-NAR, and
NARX models, the proposed model has higher accuracy.

To sum up, the instability and nonlinearity of data will cause great obstacles to predic-
tion. Different scholars process nonlinear and unstable data through various decomposition
methods in order to achieve better model effects. The deformation data of a deep founda-
tion pit also have their own characteristics, and it is difficult to obtain a good prediction
effect by a direct prediction, so VMD is introduced to process the original data. As the
VMD algorithm needs to set parameters subjectively, the PSO algorithm is introduced to
optimize VMD parameters. Considering that the characteristics of deep foundation pit
deformation data are highly dependent on time, LSTM and GRU, as variants of RNN, are
very suitable for processing time series data.

At present, there are few pieces of research in the field of deep foundation pit defor-
mation predictions based on the GRU network. LSTM and GRU models are used to make
short-term and long-term predictions of deformation data, in order to achieve a better
prediction effect, so as to scientifically and safely protect deep foundation pit engineering.
With reference to the final prediction results, appropriate measures are taken in time to
avoid risks and ensure the safety and stability of the whole construction process. The
contributions of this paper are as follows:

(1) Propose an LSTM model optimized based on the PSO algorithm to predict deep
excavation deformation, and select hyperparameters of the LSTM network through
the PSO algorithm to avoid the limitations of manual parameter tuning.

(2) Propose to use VMD optimized by the PSO algorithm to process the deformation data
of deep foundation pits, so that non-stationary and unstable data can be better utilized
by the model. Introduce the PSO algorithm to optimize the K value of VMD and obtain
the decomposition number. In addition, the correctness of the decomposition number
obtained by energy difference verification was added, and the EMD decomposition
method was also added as a comparison. After VMD processing, the phenomenon of
mode mixing in the data was significantly reduced.

(3) Experiment with setting different prediction steps for the prediction model to meet
the application scenario requirements in different practical situations. The root mean
square error was used as an indicator to evaluate the performance of the prediction
model, and the results showed that increasing the prediction step size would increase
the prediction error.

(4) In order to verify the effectiveness of the proposed model, it was compared with
different models, such as traditional LSTM, GRU, and PSO-LSTM. The mean square
error of different models was calculated for model performance evaluation, and the
results showed that the model can make a better prediction performance.

The remaining parts of this article are organized as follows: Section 2 describes the
methods used to build the model and proposes a VMD-GRU prediction method based on
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PSO optimization, Section 3 applies the constructed model to a case study and analyzes it,
and finally, conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary computing technique. The
particles in the algorithm constantly update their position and velocity attributes according
to the individual local extremum and the global extremum of the population [16,17]. The
size, shape, and composition of particles are not the key attributes that algorithms focus on,
that is, particles are abstracted as massless entities in the parameter space to be optimized,
and their key attributes are position and velocity. Position: represents the current position
of the particle in the search space, which can be understood as the potential solution to the
problem. Velocity: determines the direction and step size of particle movement in search
space, used to update particle position.

If a population X = (X1, X2, . . . , XM) exists in a D-dimensional space, then the posi-
tion Si and the velocity Vi of the i particle in space can be expressed as{

Si = (Si1, Si2, . . . , SiD)
Vi = (Vi1, Vi2, . . . , ViD)

(1)

The individual local extreme value pi and the population total extreme value G can be
expressed as {

pi = (pi1, pi2, . . . , piD)
G = (G1, G2, . . . , GD)

(2)

The position Si and velocity Vi of each particle are iteratively updated according to
the local extremum pi of the individual and the total extremum G of the population. The
iterative updates of velocity and position can be expressed as{

vk+1
id = ωvk

id + c1η(Pk
id − sk

id) + c2η(Gk
d − sk

id)

sk+1
id = sk

id + vk+1
id

(3)

where i = 0, 1, . . .; k is the number of iterations and vk+1
in is the velocity of particle i in the

k + 1 iteration of n. The value ranges of inertia weights ω and η are [0, 1], and c1 and c2
are learning factors. Pk

in is the position of particle i at the individual extreme point of the
n dimension in the k iteration. Gk

n is the position of the global value point of the particle
swarm population in the n dimension in the k subiteration. When the particle swarm
algorithm initializes parameter settings, it will provide a random particle (which represents
a random solution to the problem), including basic position and velocity information.

2.2. Variational Mode Decomposition

Variational mode decomposition is a non-recursive and adaptive signal processing
method proposed by D et al. in 2014 [18]. It has a good anti-noise ability and can overcome
the frequency aliasing problem caused by EMD decomposition.

In this method, the time series data are decomposed into K mode uk(t) by iteratively
searching the optimal solution of variational modes. If the original signal f is decomposed
into K IMF components, the corresponding constraint variational model is expressed as

min
{uk},{wk}

{
∑
k

∥∥∥∥∂t

[
(δ(t) + j

πt )u(t)
]

e−jwkt
∥∥∥∥2

2

}
s.t ∑

k
uk = f

(4)

where f is the input signal; uk is the k modal components obtained after decomposition;
δ(t) is the pulse function; and wk is the center frequency of each modal component.
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The augmented Lagrange function is introduced to solve the above variational prob-
lem, expressed as

L({uk}, {wk}, λ) = α∑
k

∥∥∥∥[(∂t +
j

πt )u(t)
]

e−jwkt
∥∥∥∥2

2
+∥∥∥∥ f (t)− ∑

k
u(k)(t)

∥∥∥∥2

2
+

〈
λ(t), f (t)− ∑

k
uk(t)

〉 (5)

where α is the penalty parameter and λ is the Lagrange multiplier. The alternating direction
multiplier algorithm is used to iteratively find the optimal solution, and then the signal is
decomposed into different modal components uk.

un+1
k (ω) =

f (ω)− ∑
i ̸=k

ui(ω)+ λ(ω)
2

1+2α(ω−ωn
k )

2

ωn+1
k =

∫ ∞
0 ω|un+1

k (ω)|2dω∫ ∞
0 |un+1

k (ω)|2dω

λn+1(ω) = λn(ω) + ρ

(
f (ω)− ∑

k
un+1

k (ω)

) (6)

where ρ is the noise tolerance and un+1
k (ω), ui(ω), f (ω), and λ(ω) becomes un+1

k (t), ui(t),
f (t), and λ(t) after the Fourier change.

After repeating the above steps until the set error ε is satisfied, the iteration termination
condition is expressed as

∑
k

∥∥∥∥un+1
k − un

k

∥∥∥∥2

2
/
∥∥∥∥un

k

∥∥∥∥2

2
< ε (7)

The VMD algorithm is a signal decomposition method based on frequency domain
decomposition, and its basic steps are as follows. The flow chart is shown in Figure 1.

(1) Initialize the decomposition signal, (n = 0);
(2) Start the loop (n = n + 1);
(3) Update, uk, ωk, and λ in the loop according to Equation (6);
(4) According to Equation (7), determine whether the set error ε is satisfied. If it is not

satisfied, return to step 2. If it is satisfied, the iteration is stopped.
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2.3. PSO Optimizes VMD Parameters

Since the VMD algorithm needs to initialize many parameters before iteration [19], the
key is to determine the decomposition mode number K. According to the optimal theory of
VMD decomposition, the energy matched by the original signal should be consistent with
the energy sum of each component, and the unreasonable setting of the decomposition
number will lead to the mismatch between the component energy and the original energy.
The energy difference method formula can be expressed as [20]

El
u =

√√√√√ n
∑

i=1
x2

l (i)

n
, l = 1, 2, . . . , u (8)

Eu =
u

∑
l=1

El
u (9)

θu,u−1 =
|Eu − Eu−1|

Eu
(10)

where u is the decomposition number; xl is the l component sequence in the modified
resolution number; and Eu is the sum of energies when the decomposition number is u.
θu,u−1 is the ratio of the energy difference and when it changes significantly, the signal is
overdecomposed, and the best decomposition number is K = u − 1.

The decomposition result of the VMD algorithm is not only affected by the decom-
position number K, but also by the penalty parameter α. Generally, the experience value
of α is 1.5 to 2 times the length of the sampling point. In order to ensure objectivity and
avoid greater human interference, the particle swarm optimization algorithm is introduced
to optimize the parameter group [α, K] in the VMD algorithm. After determining the
parameter [α, K] to be optimized, an appropriate fitness function needs to be determined.
This paper refers to the method in reference [21] and uses the Minimum mean envelope
entropy (MMEE) as the fitness function for the PSO optimization of VMD. The MMEE and
the corresponding parameter set can be expressed as

〈
α̂, K̂

〉
= arg min

(α,K)

{
1
K̂

K̂
∑

i=1
Hen(i)

}
Hen(i) = −

K
∑

i=1
pi log2(pi)

(11)

where
〈
α̂, K̂

〉
is the parameter group corresponding to the minimum average envelope en-

tropy and Hen(i) is the envelope entropy of each mode uk. In order to ensure comparability,
it is necessary to normalize the envelope entropy uk of each mode, and pi is the normalized
envelope value of each mode uk.

2.4. Gated Recurrent Unit

The GRU has a gating structure similar to that of LSTM, through which the flow of
input information is controlled to better learn the dependence of larger time steps in the
sequence. The cell structure of GRU is shown in Figure 2. Compared with LSTM, GRU
has fewer parameters, faster convergence, and better performance in some small sample
datasets [22].

It can be seen from Figure 2 that the update gate zt and reset gate rt in each GRU
cell structure will select the input data at the current moment and then send it to the cell
structure at the next moment. This closely connected structure is more suitable for data
that are dependent on the current output of the sequence and the previous output.
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The update gate, by concatenating the output ht−1 of the previous time and the input
xt of the current time (the current time input has different meanings in different works and
it represents a numerical point in the time series used for deep excavation deformation
training), then, through the sigmoid function, the update gate is responsible for controlling
the influence of the state information of the previous moment on the current moment state.
The larger the update gate value is, the more the state information of the previous moment
is brought in; the smaller the update gate value is, the more information is forgotten. The
reset gate, consistent with the updates, will first concatenate the output ht−1 at the previous
time and the input xt at the current time, and then perform numerical transformation
through the sigmoid function. The reset gate is responsible for controlling the degree to
which the status information of the previous moment is ignored. The smaller the reset
gate value, the more the status information is ignored. The data through the reset gate
are multiplied with the matrix composed of the output ht−1 at the previous time and the
input xt at the current time, and then the state ĥt at this time is obtained by tanh function
transformation. At this time, ĥt is not the ht output by the cell structure, and ht is affected
by ĥt, zt, and ht−1 parameters, which can be expressed as

zt = σ(Wz · [ht−1, xt])

rt = σ(Wr · [ht−1, xt])

ĥt = tanh(W · [rt × ht−1, xt])

ht = (1 − zt)× ht−1 + zt × ĥt

(12)

In the formula, the value of zt can effectively control the retention of ht−1 in the cell
structure. In other words, the closer the value of zt is to 0, the information of ht−1 can be well
received by ht in the update. Studies show that, with appropriate parameter initialization,
the recurrent neural network can also learn the long-term dependence relationship well [23],
which alleviates the problem of gradient disappearance to a certain extent [24].

2.5. Particle Swarm Optimization of GRU Parameters

In deep learning, the efficiency and accuracy of the model are affected by the selection
of hyperparameters. Generally, in the network structure, the hidden layer is usually
composed of the simple stacking of cell structures, but the dependence of large time steps
in the sequence is difficult to learn. By increasing the number of layers, the network can
have stronger capabilities, but it will bring problems such as the overfitting of the model
and too long a training time. The structure of the two-layer GRU network is shown in
Figure 3.
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It can be seen from the figure that the sliding window in the network is 3, that is, the
data of every three periods in the data are taken as a set of data from the input layer to the
GRU of the first layer and the calculation starts. The size of the sliding window determines
the size of the time step t, where h∗0 , h∗1 , . . . represents the information transmission of the
GRU of the first layer and h∗∗0 , h∗∗1 , . . . represents the information transmission of the GRU
of the second layer. The Dropout layer is set within the adjacent GRU layer so that the
backward units in the hidden layer do not learn, which is highly dependent on previous
features, thus avoiding the overfitting of the model. y1, y2, y3, . . . , yt represents the output
data of the neural network. yt is the predicted value of the output of the last GRU layer.
In deep learning, the unreasonable setting of the Batch size may cause the model to fail to
converge. If you want to achieve a better model effect, selecting the right hyperparameter
is very important for the efficiency, structure, and accuracy of the model. In order to
determine the optimal hyperparameters more reasonably and accurately, the minimum
root-mean-square error is used as the fitness function of the PSO algorithm to optimize
GRU parameters. The list and range of PSO-GRU optimization parameters are shown in
Table 1.

Table 1. PSO algorithm optimizes the list and range of hyperparameters of GRU.

Parameter Num Units Num Layers Dropout Epochs Batch Size

Range (32, 200) (2, 5) (0.0, 0.5) (5, 25) (32, 128)

Here, Num units are the vector dimensions’ output in the network and Num layers
indicates the number of layers stacked by the GRU. When Num layers = 2, the GRU of
the second layer calculates the output result of the first layer as the input signal of the
second layer. In the constructed GRU model, only the dropout layer is added between
layers. When the Dropout is not 0, the data transmitted between layers of the network
will be discarded with a certain probability. Epochs is the number of iterations. If the
Batch size parameter is small, it is easily disturbed by noise, so the loss function cannot
converge. When the batch size parameter is large, the Epochs required will increase to
achieve the same model effect. When constructing the model in the paper, the scope of PSO
algorithm optimization is determined based on the size of the dataset in order to find a
suitable hyperparameter combination for the current task and model.
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The main idea used in particle swarm optimization to optimize the parameters of the
GRU model is to take the parameters that need to be optimized as PSO particles, and give
the range of this particle, which will help the algorithm converge. The five parameters are
set in Table 1, which means that these particles will find the optimal parameter combination
in a 5-dimensional space with the minimum fitness value as the standard.

2.6. PSO-VMD-GRU Model Prediction Process

The particle swarm optimization algorithm is used as the parameter optimization
algorithm of VMD and GRU, and the PSO-VMD-GRU deep foundation pit deformation
prediction model is established. The working flow of the model is shown in Figure 4.
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If the original time series data are set as f (t)(t = 1, 2, . . . , n), the steps to predict the
deformation value of foundation pit engineering are as follows.

(1) The original time series data f (t) are normalized.
(2) K IMF are obtained by the VMD method which is optimized by the PSO algorithm.
(3) The K IMF training set and test set are divided.
(4) The PSO algorithm is used to optimize the hyperparameters of the GRU prediction

model, and the optimized prediction model is obtained.
(5) The optimized prediction model is used to forecast the test set divided by IMF.
(6) The predicted value Y of foundation pit deformation is obtained by the summation of

equal weights and superposition. The formula is as follows

Y = IMF1 + IMF2 + . . . + IMFK (13)

where Y is the predicted value of foundation pit deformation and IMFi is the predicted
value of each intrinsic mode function, i = 1, 2, . . . , K.

2.7. Model Training

Before training the prediction model, it is necessary to divide the preprocessed data
into training, validation, and testing sets. The parameters of the prediction model are
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adjusted using the training and validation sets, and the optimal parameter combination
is selected to predict the test set. The data of deep excavation engineering have temporal
characteristics. If general cross validation is used for set partitioning, the problem of the test
set data appearing before the training set may occur. Therefore, this article assumes that the
monitoring point data have f (t) periods, and the prediction step of the prediction model is
m periods. The data used for training are processed according to a sliding window size of 3,
that is, data from periods 1 to 3 are used as network inputs, and data from period 4 are used
as model output target values. The data from period 2 to 4 should be taken as the network
input, period 5 as the model output target value, and so on. The training set and validation
set should be divided into 90% and 10% of f (t)-m-3 stages, respectively. The horizontal
displacement PTB01 monitoring point has a total of 355 periods of data after interpolation
processing, and 352 periods of data after sliding window processing. Therefore, the training
set, validation set, and test set of the prediction model with a prediction step size of 5
for the PTB01 monitoring point are 312 periods, 35 periods, and 5 periods, respectively.
The prediction model uses the Adam algorithm as the optimizer, the tan function as the
activation function, and the mean square error loss as the loss function for training.

2.8. Model Effect Evaluation Index

In order to comprehensively evaluate the model effect, the Root Mean Square Error
(RMSE) and the Mean Absolute Error (MAE) were used as the evaluation indexes of the
model effect. The root-mean-square error Ermse is expressed as

Ermse =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)

2

(14)

The mean absolute error Emae is expressed as

Emae =
1
N

N

∑
t=1

∣∣∣∣yt − ŷt

∣∣∣∣ (15)

where ŷt is the deformation value predicted by the model for phase t; yt is the actual
deformation value of phase t; and N is the total number of monitoring periods.

3. Simulation Verification and Results
3.1. Data Analysis

In order to verify the feasibility and effectiveness of the proposed method, data from
the east side (PTB01), north side (PTB04), and west side (PTB08) of a deep foundation pit
project between 26 May 2022 and 15 May 2023 were selected (obtained by equipment such
as level and total station, the data collection interval in the article is 1 day). Due to the
influence of monitoring technology and on-site conditions, there are some missing values
in the monitoring data. The linear interpolation method was used to process the missing
values, as shown in Figure 5. The detailed information about the raw data is shown in
Table 2.

Table 2. Raw Data Information Table.

Monitoring
Points

Data Acquisition
Start Time

Data Acquisition
End Time

Number of
Samples

Number of
Missing Values

Maximum
Value

Minimum
Value

PTB01 26 May 2022 15 May 2023 280 75 2.00 −23.00
PTB04 26 May 2022 15 May 2023 280 75 2.00 −22.00
PTB08 29 June 2022 15 May 2023 254 67 1.00 −13.00
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The set coordinates (tm, yn) and (tn, yn) and the deformation value y corresponding
to the number of monitoring periods t in the interval [tm, tn] can be expressed as

y = ym + (t − tm)
yn − ym

tn − tm
(16)

where ym is the deformation value corresponding to the time point where the number of
monitoring periods is n, and tm is the time point where the number of monitoring periods
is m.

Firstly, from the point of view of the maximum value of monitoring point data,
due to the influence of surrounding conditions and excavation construction, there are
certain differences in the maximum deformation value of different monitoring points.
The maximum deformation value of the east and north sides of the foundation pit is
−23 mm and −22 mm, respectively, and the maximum deformation value of the west side
is −13 mm. Secondly, from the perspective of the data change trend, the three groups of
data all show a large deformation amplitude and have the characteristics of being nonlinear
and non-stable. Due to the construction near the monitoring points of PTB01 and PTB04,
the deformation value continued to increase after stage 125, while the deformation data of
the monitoring point of PTB08 on the west side of the foundation pit gradually stabilized.
After considering the completeness of the deformation monitoring key points and point
data, the PTB01 monitoring point adjacent to the public building foundation on the east side
of the foundation pit and the PTB04 monitoring point adjacent to the residential building
foundation on the north side of the foundation pit were selected as the research object.
From the changes of the east and north monitoring points as a whole, the data were in a
relatively stable state during the period from 1 to 50. From the 51–200 period, the data
decreased significantly. From the 200th to 320th period, the data of the monitoring points
showed a sharp decline after a slight rebound, accompanied by local floating. After 320, the
data showed an obvious rebound trend. The rebound time of the PTB01 monitoring point
lags behind that of the PTB04 monitoring point due to factors such as phased excavation
and adjacent construction.
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3.2. Deformation Sequence Decomposition

On the whole, the data of the three monitoring points show similar nonlinear and
non-stationary changes. If the original time series data are used to construct the prediction
model, the model will learn the unnecessary change features, which will affect the overall
prediction effect of the model. Therefore, it is necessary to stabilize the original data to
make it easier for the model to learn the law of the data change and improve the prediction
effect of the model.

EMD based on time domain decomposition and VMD based on frequency domain
decomposition are used to stabilize the original data. Firstly, decomposition parameter
α is pre-set to 300, and then θu,u−1 under different decomposition numbers is calculated
according to Equations (8)–(10) of the energy difference method mentioned above. The
results are shown in Figure 6.
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As can be seen from Figure 6, with the increase in decomposition mode K, the ratio of
the energy difference mutates at K = 9, and the optimal decomposition number is eight.
However, this method still requires the artificial setting of parameter α. In order to make
up for the shortcomings in the subjective selection, α and K in VMD were optimized using
the PSO algorithm with the minimum mean envelopment entropy as the fitness function.
The fitness function changes at this time are shown in Figure 7.
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In this way, the values of parameter groups α and K of VMD are determined to be
[α, K] = [872.079, 8.094]. The IMF component and the corresponding spectrum obtained
from the original data after processing by the PSO-VMD method and EMD method are
shown in Figures 8 and 9.
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From Figure 8, it can be seen that the data after EMD decomposition exhibit certain
regularity, for example, the IMF1 component obtained after Fast Fourier Transform (FFT)
processing has multiple frequency components [25] and the amplitude values (Y-axis) of
the IMF1 component in Figure 8 are similar at frequencies of 22.00704, 45.11444, 101.78257,
and 138.09419 (X-axis), indicating the occurrence of a mode-aliasing phenomenon. From
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Figure 9, it can be seen that the data processed by the VMD method also exhibit good
regularity, and the phenomenon of modal aliasing is weakened on different components.
As shown in Figure 9, the IMF5 component has similar amplitudes (<0.01) obtained at
frequencies of 8.82768 and 13.24153, respectively. Compared with the decomposition results
of the EMD method, the mode mixing phenomenon is significantly reduced. This will be
beneficial for the prediction model to better capture and learn the characteristics of the data,
thereby improving the prediction performance.

3.3. Analysis of Model Prediction Effect

All experiments were carried out on computers equipped with AMD R7 cpu and
NVIDIA RTX4060 gpu. The model was based on python language, and the highly in-
tegrated and modular deep learning framework [26] Tensorflow2.10.0 was adopted to
build the model. The learning rate of LSTM and GRU models is 0.005, and the number of
iterations is 100.

(1) Experiment 1

In order to clarify the feasibility of the proposed model and the influence of different
types of signal processing methods on the model effect, four prediction models were built,
respectively, and the deformation values of the next 1 day (Prediction Step = 1) were
predicted using the data of each component decomposed above and the raw data without
processing, and the time spent for each model prediction was recorded. The average
absolute error of the forecast results and the consumption schedule are shown in Table 3.

Table 3. Mean absolute error and time consumed of model prediction (Prediction Step = 1).

Prediction Model
PTB01 PTB04

Time ConsumedRaw Data EMD VMD Raw Data EMD VMD
(mm) (mm) (mm) (mm) (mm) (mm) (Seconds)

LSTM 1.919 1.729 0.341 1.799 0.729 0.480 25.5
GRU 1.845 2.485 0.529 2.257 0.800 0.971 17.3

PSO-LSTM 0.829 0.794 0.271 0.832 0.672 0.470 882.3
PSO-GRU 0.502 0.462 0.127 0.580 0.647 0.144 806.7

As can be seen from Table 3, first of all, the four prediction models all show a certain
prediction ability for the deformation data. From the prediction error results of the PTB01
monitoring point data, it can be seen that after the data have been processed by VMD,
better prediction accuracy can be achieved in the model. At the PTB01 monitoring point,
the average absolute error of the PSO-GRU prediction model is 0.127 mm. Compared with
the original data and the data decomposed by EMD, the error is reduced by 0.375 mm and
0.335 mm, respectively. At the same time, the PTB04 monitoring point data also showed
similar results, and the error was reduced by 0.436 mm and 0.503 mm, respectively. In other
words, the deformation data after VMD processing is more conducive to improving the
prediction accuracy of the model compared with the original data and EMD method.

Secondly, according to the prediction results of different observation points, the LSTM
and GRU models optimized by the PSO algorithm have improved the prediction accuracy
compared with the single model. Compared with the single model, the prediction errors of
PSO-LSTM decreased by 13.7% and 2.1%, respectively, at different monitoring points, and
that of PSO-GRU decreased by 75.9% and 85.2%, respectively, at different monitoring points.

Finally, because the cell structure of GRU is simpler than that of LSTM, it is found that
the consumption time of GRU is reduced by 32.1% compared with that of LSTM. However,
the consumption of both the LSTM and GRU models optimized by the PSO algorithm
is greatly increased because the PSO algorithm consumes a lot of time in the process of
hyperparameter optimization, and the prediction time of PSO-GRU is 8.6% shorter than
that of PSO-LSTM.
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(2) Experiment 2

In order to further verify the effect of the model and the influence of the Prediction
step size on the model effect, the data of the PTB01 and PTB04 monitoring points were
selected to build four models, respectively, and the deformation values of the next 3 days
(Prediction step = 3) and the next 5 days (prediction Step = 5) were predicted. The predicted
results are shown in Table 4, and the percentage change of error in the prediction step size
from three to five is shown in Table 5.

Table 4. Root mean square error of model prediction (Prediction Step = 3 and 5).

Prediction Step Prediction Model
PTB01 PTB04

Raw Data EMD VMD Raw Data EMD VMD

3

LSTM 0.967 0.653 0.500 1.197 0.883 0.481
GRU 1.018 0.721 0.482 1.475 0.398 0.379

PSO-LSTM 0.504 0.849 0.361 0.873 0.663 0.242
PSO-GRU 0.973 0.753 0.239 0.872 0.269 0.106

5

LSTM 1.025 0.577 0.599 1.058 0.435 0.487
GRU 0.819 0.490 0.455 1.001 0.327 0.380

PSO-LSTM 1.703 0.804 0.512 0.975 0.926 0.238
PSO-GRU 0.976 0.925 0.380 1.158 0.491 0.105

Table 5. Percentage Change in Error (Prediction Steps from 3 to 5).

PTB01 PTB04 PTB01 and PTB04
Data Type Raw Data EMD VMD Raw Data EMD VMD Raw Data EMD VMD Mean Value

LSTM 6.00% −11.64% 19.80% −11.61% −50.74% 1.25% −2.81% −31.19% 10.52% −7.82%
GRU −19.55% −32.04% −5.60% −32.14% −17.84% 0.26% −25.84% −24.94% −2.67% −17.82%

PSO-LSTM 237.90% −5.30% 41.83% 11.68% 39.67% −1.65% 124.79% 17.18% 20.09% 54.02%
PSO-GRU 0.31% 22.84% 59.00% 32.80% 82.53% −0.94% 16.55% 52.68% 29.03% 32.75%

Mean value 56.16% −6.53% 28.76% 0.18% 13.41% −0.27% 28.17% 3.44% 14.24%

It can be seen from Tables 4 and 5 that the root-mean-square error of some models
will also increase when the prediction step size increases. For example, in PTB01, the
prediction error of PSO-GRU and PSO-LSTM increases from 0.239 and 0.361 to 0.380 and
0.512, respectively. It is noted that in PTB04, the prediction errors of PSO-GRU and PSO-
LSTM decreased from 0.106 and 0.242 to 0.105 and 0.238, respectively, with little variation
and basically maintained stability. Overall, the original data, as well as the data processed
by the EMD and VMD methods, showed a 28.17%, 3.44%, and 14.24% increase in prediction
errors when performing a prediction step of five compared to a prediction step of three.
When using raw data for different prediction steps, the prediction error of the prediction
model at the PTB01 monitoring point increased by 56.16%, while the prediction error at
the PTB04 monitoring point was 0.18%. The percentage increase in the prediction error
of the PTB01 data after EMD and VMD processing was −6.53% and 28.76%, respectively.
The percentage increase in the prediction error at the PTB04 monitoring point was 13.41%
and −0.27%, respectively. Observing the performance of the PSO-GRU data alone, the
prediction error increased by 59.00% in the PTB01 data and −0.94% in the PTB04 data. There
are also inconsistent changes in the prediction error. In addition, the percentage increase in
the error of the four prediction models on three types of data is −7.82%, −17.82%, 54.02%,
and 32.75%, respectively. It can be observed that the prediction errors of the PSO-optimized
prediction models have all increased to a certain extent, but the percentage increase in
the prediction errors of the unoptimized LSTM and GRU prediction models are −7.82%
and −17.82%, respectively. The reason for this situation may be that the parameter sets
of PSO-LSTM and PSO-GRU are only applicable to the training data when using PTB01
data for training, resulting in a decrease in the generalization ability. The unoptimized
parameter settings of LSTM and GRU are not too limited. In summary, from the perspective



Materials 2024, 17, 2198 16 of 20

of the percentage increase in the prediction error, it is believed that an increase in the
prediction step size will lead to an increase in the prediction error. The prediction results
with prediction steps of three and five are shown in Figures 10–13.
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by the EMD and VMD methods, showed a 28.17%, 3.44%, and 14.24% increase in predic-
tion errors when performing a prediction step of five compared to a prediction step of 
three. When using raw data for different prediction steps, the prediction error of the pre-
diction model at the PTB01 monitoring point increased by 56.16%, while the prediction 
error at the PTB04 monitoring point was 0.18%. The percentage increase in the prediction 
error of the PTB01 data after EMD and VMD processing was −6.53% and 28.76%, respec-
tively. The percentage increase in the prediction error at the PTB04 monitoring point was 
13.41% and −0.27%, respectively. Observing the performance of the PSO-GRU data alone, 
the prediction error increased by 59.00% in the PTB01 data and −0.94% in the PTB04 data. 
There are also inconsistent changes in the prediction error. In addition, the percentage 
increase in the error of the four prediction models on three types of data is −7.82%, 
−17.82%, 54.02%, and 32.75%, respectively. It can be observed that the prediction errors of 
the PSO-optimized prediction models have all increased to a certain extent, but the per-
centage increase in the prediction errors of the unoptimized LSTM and GRU prediction 
models are −7.82% and −17.82%, respectively. The reason for this situation may be that the 
parameter sets of PSO-LSTM and PSO-GRU are only applicable to the training data when 
using PTB01 data for training, resulting in a decrease in the generalization ability. The 
unoptimized parameter settings of LSTM and GRU are not too limited. In summary, from 
the perspective of the percentage increase in the prediction error, it is believed that an 
increase in the prediction step size will lead to an increase in the prediction error. The 
prediction results with prediction steps of three and five are shown in Figures 10–13. 
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In summary, when the original data and the data decomposed by EMD and VMD
methods are used for prediction, the data decomposed by VMD are more conducive to
the prediction of the model on the same model. LSTM and GRU models optimized by
particle swarm optimization are more accurate than those without parameter optimiza-
tion. Compared with LSTM, the prediction time of GRU is shorter because of its simpler
cell structure.

The VMD-GRU deep foundation pit deformation prediction model based on PSO
optimization parameters can reduce the error caused by the non-stationarity of original
data and the improper selection of hyperparameters, further improve the accuracy of
deformation prediction, and verify the feasibility and accuracy of the PSO-VMD-GRU
model in deep foundation pit deformation prediction. In addition, compared with the
PSO-LSTM deep foundation pit deformation prediction model, PSO-GRU showed better
results in terms of the root-mean-square error, average absolute error, and time spent.
Meanwhile, similar results were also shown on the deformation data of PTB04 located
in the same foundation pit, which verified the superiority of the model. In addition, a
comparison of the prediction results of different prediction models proposed in similar
articles is summarized in Table 6.

Table 6. Comparison of prediction accuracy (MAE).

Number Method Prediction Accuracy (MAE) Data Sources

1 Grey Wolf Optimization–Extreme learning machine model 0.2614 [27]
2 Auto-Regressive Moving Average Model 0.2006 [28]

3 Back Propagation Neural Network–Auto-Regressive
Moving Average Model 0.5762 [29]

4 Auto-regression Model 0.4250 [30]
5 Particle Swarm Optimization–Gate Recurrent Unit 0.1486 (PTB04) This paper
6 0.3336 (PTB01)

From Table 6, it can be seen that the prediction model proposed in this article has a
certain improvement in prediction accuracy (MAE) compared to similar articles (data are
taken from the mean absolute error of prediction steps one, three, and five), which can be
better applied in engineering.

4. Conclusions

The VMD optimized by PSO is used to decompose the non-stationary data of founda-
tion pit deformation, the parameters of GRU are optimized by PSO, and the VMD-GRU
deep foundation pit deformation prediction model based on the optimized parameters
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of PSO is constructed. Eight modal components were obtained by the optimized VMD
decomposition. Each component was predicted separately by PSO-GRU, and the final
predicted value of foundation pit deformation was obtained by equal weight summation.

Through the analysis of case studies, the results show that the VMD method optimized
by PSO is consistent with the results obtained by using the energy difference ratio method in
terms of the number of decomposed components. Regarding the PTB01 data decomposed
by VMD, compared to the prediction mean square errors of the LSTM, GRU, and PSO-LSTM
prediction models, the constructed models reduced their mean square errors by 62.76%,
75.99%, and 53.14%, respectively. Regarding the PTB04 data, it decreased by 70%, 85.17%,
and 69.36%, respectively. In addition, compared with the PSO-LSTM model, the model
time was reduced by 8.57%. When the prediction step size increased from three to five, the
average errors of the four prediction models in the original data, EMD decomposition data,
and VMD decomposition data increased by 28.17%, 3.44%, and 14.24%, respectively. The
constructed PSO-VMD method can obtain accurate component numbers.

Combining internal and external validation can provide more comprehensive and
reliable evaluation results. Based on the above analysis, in terms of internal validation, the
traditional K-fold cross validation effect is achieved by dividing the training set, validation
set, and test set. In addition, the PTB04 monitoring data are used for the external validation
of the constructed model, and the results verify that the model has a good prediction accu-
racy and certain generalization ability. In addition, by comparing the predictions obtained
by different prediction models proposed in different articles, the PSO-GRU prediction
model has better prediction accuracy. The increase in the prediction step size will reduce
the accuracy of the prediction model to varying degrees, and verify the feasibility and
superiority of the prediction model in deep excavation deformation predictions.

In future research, emphasis can be placed on the following aspects:

(1) Due to the relatively singular data of the model constructed, the deformation of deep
foundation pit engineering is influenced by multiple factors and it is possible to
enhance the dimensionality of the model training data by adding more factor features
that affect deformation.

(2) When constructing a network structure, the selection and range of hyperparameters
are subjective. Subsequent research can discuss the applicability of network structure
parameters in a specific problem through experiments.

(3) In terms of the data used in the prediction model, the impact of different sliding
window sizes for time series data on the prediction results can be explored.
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Nomenclature

Abbreviations
PSO Particle Swarm Optimization
VMD Variational Mode Decomposition
GRU Gated Cycle Unit
LSTM Long Short-Term Memory
IMF Internet Message Format
Symbols
f (t) Monitoring data sequence
α Penalty parameter
K Number of decompositions
y Interpolated data
Y Predictive value
θu,u−1 Energy difference ratio
m Prediction step
Si Particle Position
Vi Particle Velocity
Pi Individual Extremum
G Overall Extremum
Emse Mean Square Error
Emae Mean Absolute Error
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