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Abstract: Giga-casting, a revolutionary approach for manufacturing large, single-piece car body
components from aluminium, has emerged as a potential game-changer in the automotive industry.
However, these large, thin-walled castings are prone to distortions during solidification and heat
treatment processes. Straightening these distortions is crucial to ensure structural integrity, facilitate
downstream assembly, and maintain aesthetic qualities. This paper proposes a novel method for
straightening giga-cast components using a multi-pin straightening machine. The machine’s versa-
tility stems from its ability to adapt to various geometries through multiple strategically controlled
straightening pins. This paper introduces the concept of a “straightening stroke decision algorithm”
to achieve precise straightening and overcome the challenges of complex shapes. This algorithm
determines the stroke length for each pin, combining a polynomial model representing the global
stiffness of the component with a machine learning model that captures the stiffness changes arising
from the current geometry. The effectiveness of the proposed approach is evaluated through com-
prehensive numerical experiments using finite element analyses. The straightening performance
is assessed for the straightening algorithm with different machine learning models (deep neural
network and XGBoost) and compared to a traditional optimisation method. The proposed surro-
gate models decided the straightening strokes so that the maximum remaining distortion became
0.02% of the largest dimension of each target geometry. The results of the numerical experiment
showed that the proposed straightening method is suitable for straightening distortion in large
thin-walled components.

Keywords: distortion straightening; thin-walled structures; die-casting; giga-casting; machine
learning; finite element analysis

1. Introduction

The automotive industry witnessed a significant shift with the emergence of giga-
casting, a revolutionary approach pioneered by Tesla [1]. This technology utilises colossal,
high-pressure die-casting (HPDC) machines, aptly named Giga Presses, to manufacture
large, single-piece chassis components from aluminium [2,3]. Prior to giga-casting, car
bodies were traditionally constructed by welding together numerous smaller parts. By
eliminating the need for extensive welding processes, giga-casting offers the possibility
of significantly reduced production times and costs [4]. Additionally, using single-piece
components can enhance structural integrity and improve vehicle performance metrics
like weight and, potentially, fuel efficiency [5]. As the electric vehicle market continues its
rapid expansion, giga-casting’s ability to optimise production for lighter, more efficient car
bodies positions it as a potentially disruptive force [6].

Despite the numerous advantages of giga-casting, the process has its challenges. One
significant hurdle lies in the inherent tendency for these large, thin-walled components to
warp and distort during solidification or subsequent heat treatment processes [7]. Several
factors contribute to this phenomenon. The immense size of the castings creates uneven
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cooling rates across the part, leading to thermal stresses that can cause warping [8]. Addi-
tionally, the high pressures employed during casting and the potential for non-uniform
heating during heat treatment can induce residual stresses within the material [9]. These
combined effects can result in components that deviate from their intended geometry.

Straightening these distortions is crucial for several reasons. Firstly, deviations from
the designed shape can compromise the structural integrity of the component [10]. Uneven
load distribution and stress concentrations can arise due to warping, potentially leading to
safety hazards. Secondly, distorted components can create challenges during downstream
assembly processes. Misaligned components can require additional processing and can
even lead to production line disruptions [11]. Finally, deviations from the intended form
can negatively impact the aesthetic qualities of the final product.

Traditional straightening methods, which involve mechanical pressing, often rely
on custom-designed die blocks that match specific sections of the component. These die
blocks are expensive to manufacture and can only be used for a particular component
geometry [12]. This dependence on custom tooling renders traditional methods incapable of
addressing the general complex geometries encountered in giga-castings. The sheer variety
of shapes and sizes within these large components would necessitate an extensive and
costly collection of die blocks, making traditional straightening impractical for large-scale
production. In addition, most of the straightening process has been traditionally carried
out by workers’ manual handwork [13], and a systematic approach for the straightening
process has yet to be proposed.

Given the limitations of traditional techniques and the growing need for efficient
straightening solutions for versatile geometries, this paper proposes a novel approach
utilising a straightening machine with multiple straightening pins. This innovative method
offers several advantages over conventional methods. Unlike die blocks, which require a
custom design for each specific geometry, a straightening machine with multiple straighten-
ing pins can readily adapt to a wide range of complex shapes encountered in giga-castings.
By strategically pressing the component with each straightening pin, this method allows the
distortion to be removed after straightening. It enables the machine to address distortions
in specific areas of the giga-casting without introducing new ones elsewhere, making it a
highly versatile solution.

Machine learning has emerged as a powerful tool for tackling complex challenges
in various mechanical engineering domains [14]. This study utilised two prominent al-
gorithms, deep neural network (DNN) and XGBoost, to address the intricate problem
of giga-casting straightening. With their ability to learn complex relationships from vast
datasets [15], deep neural networks are well suited for capturing the non-linear interactions
of geometric variations in giga-castings. XGBoost, a robust gradient boosting algorithm, ex-
cels in handling high-dimensional data [16] and modelling intricate feature interactions [17],
making it suitable for predicting stiffness variations within the component. Compared
to traditional methods that rely on simpler models or that lack the ability to adapt to
complex geometries, incorporating DNN and XGBoost can enhance the straightening per-
formance, leading to more accurate and efficient correction of distortions in these large,
complex components.

Numerous researchers have successfully adopted machine learning algorithms for
mechanical engineering problems. Salb et al. [18] proposed a method for enhancing IoT
network security by combining CNNs for feature extraction with XGBoost for intrusion
detection. They further introduced a modified Reptile Search algorithm for hyperparameter
optimisation, leading to a more robust defence against emerging threats in IoT security.
Park et al. [19] proposed a method for designing patterns in tubular robots that utilises
deep neural networks to extract key features and metaheuristics optimisation to achieve
desired mechanical properties, surpassing previous designs in performance and efficiency.
Ref. [20] developed a system for the intelligent fault diagnosis of rotary machinery using
a convolutional neural network (CNN) with automatic hyperparameter optimisation via
Bayesian optimisation, achieving accurate fault detection without manual network configu-



Materials 2024, 17, 2241 3 of 21

ration. Lin et al. [21] combined finite element simulation to generate data on self-piercing
riveted joints and utilised the XGBoost algorithm to analyse it, achieving highly accurate
predictions of their cross-tension strength with an impressive error rate of only 7.6%, which
offered a significant advancement in predicting joint performance, potentially replacing tra-
ditional testing methods. Hashemi et al. [22] utilised machine learning to create surrogate
finite element models. The surrogate finite element models could efficiently predict the
dynamic response of mechanical systems, significantly reducing the time and resources
needed compared to traditional full-scale finite element analysis.

This paper introduces the concept of a “straightening stroke decision algorithm”
to achieve precise straightening and overcome the challenges associated with complex
geometries. This innovative algorithm plays a crucial role in determining the optimal
straightening stroke for each individual pin within a straightening machine. The algorithm
utilises the following two key components: The first component is a polynomial model
representing the global stiffness of the giga-casting component. This model provides a
baseline understanding of the component’s overall stiffness to the deformation. The second
component is a machine learning model that captures the stiffness changes arising from the
current geometry of the specific component being straightened. This model accounts for the
deviations of the stiffness of the current geometry from the global stiffness. By combining
these two models, the straightening stroke decision algorithm calculates the optimal stroke
length required for each straightening pin. The following sections will delve deeper into
the details of the straightening stroke decision algorithm, explaining the underlying models
and their role in achieving efficient and accurate straightening of giga-cast components.

This paper presents the results of comprehensive numerical experiments to evaluate
the effectiveness of the proposed straightening approach. Finite element analyses were
employed to simulate the straightening process for various target component geometries.
These target components included a simple box, a centre spine, and a side member, each
representing different levels of geometric complexity encountered in giga-castings.

The straightening performance was meticulously assessed by comparing the following
four different approaches: The first and second approaches are the straightening algorithms
with the deep neural network (DNN) and the XGBoost [23] models. These models utilise
machine learning algorithms to capture the intricate stiffness variations due to the geometry
deviations. The third approach is the straightening algorithm with only the polynomial
model for the global stiffness, which means that the model does not consider the effect of
the geometry deviations. The last approach is the naive L-BFGS-B method. It serves as a
benchmark representing a traditional optimisation technique commonly used for solving
engineering problems. By comparing the straightening performance of these approaches
across various component geometries, this paper aims to demonstrate the effectiveness of
the proposed straightening stroke decision algorithm.

2. Distortion Straightening Method
2.1. Straightening Machine Concept and Straightening Process

The design of the straightening machine suggested in this study is described in
Figure 1. The straightening machine has upper and lower dies and numerous straightening
pin modules attached to the dies. The lower and upper dies are stationary. The number of
straightening pin modules varies depending on the shape of the part to be straightened.
The feature of the straightening pin module is that the tip of the straightening pin can
move, which makes the machine able to handle various distortions. The component is
straightened by pressing it using the strokes of the straightening pins. The movement of
the straightening pin can be achieved electrically, pneumatically, hydraulically, or through
any other mechanism that can manage the height with enough precision; however, the
module system should have appropriate stiffness so that the height is not altered while
pressing the part.

The shape of the straightening pin’s tip can be any shape. It can be cylindrical,
hemispherical, the local geometry of the part, or any shape suitable for straightening. It is
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recommended for the straightening pins to be located at the positions where the part has
higher stiffness in the press direction. If a pin is located at a position with lower stiffness in
the press direction, unwanted local deformation can be generated to the part during the
straightening process.

Figure 1. Schematic concept of the straightening machine suggested in this study and its straighten-
ing stroke.

The procedure of the straightening process is depicted in Figure 2 in the form of a
flow chart. The straightening process aims to make the geometry of the distorted part as
close as possible to the target geometry so that the dimensional tolerance is satisfied. The
first procedure is to evaluate the distortion of the part by comparing the current geometry
of the part with the target geometry. If the distortion satisfies the dimensional tolerance,
the straightening does not need to be conducted, which means the process is finished.
However, if the distortion is out of the dimensional tolerance, the distortion should be
straightened. In this scenario, we should determine how much each pin should press the
distorted part based on the measured distortion. Once the strokes of each pin are decided,
the straightening stroke is conducted on each pin, and the distortion is straightened by
the pins pressing the part. When the straightening stroke is finished, the process moves
back to the distortion evaluation phase, and the straightening result is saved in the history
database to improve the straightening process.

Figure 2. Flow chart of the straightening process.

2.2. Quantification of Distortion

The distortion of a component can be defined in various ways. In this study, distortion
is defined and quantified in the following manner.

Consider a current geometry Ω and the target geometry Ωt shown in Figure 3. There
is a supporting fixture which prevents the rigid body motion of the geometries. From
the measurement origin Om, there are intersection points Q and Qt with Ω and Ωt in
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the direction of measurement q. Let the distances from Om to Q and Qt be d and dt,
respectively, and define these distances as the distortion measurements. Based on this
conceptualisation, in this paper, the distortion is quantified through the difference of the
distortion measurements d and dt as follows:

δt = dt − d. (1)

δt represents how the current geometry should be corrected at point Q in the direction
of q, which means that δt can represent how the current geometry is distorted from the
target geometry.

The suggested distortion measurement can be easily measured in real situations. A
tactile probe can be adopted as an example of a contacting measurement, and laser distance
or displacement sensors are examples of non-contacting measurements. In addition, laser
scanners could also be an example that rapidly measures the distortion over a wide range.

Figure 3. Schematic of a straightening stroke. The current geometry Ω is pressed by a straightening
pin in the direction p, and the geometry becomes the pressed geometry Ωp. After unloading, Ωp

becomes the straightened geometry Ωs due to spring-back.

2.3. Straightening Stroke Decision Algorithm

The decision process of the pins’ heights is one of the essential elements in the straight-
ening process since the pins’ heights determine how the part deforms. The straightening
stroke decision algorithm proposed in this study decides how much the part should be
pressed at the straightening pin locations. The following is a detailed description of the
straightening stroke decision algorithm.

Consider a straightening stroke that a straightening pin presses the current geometry Ω
from the origin Op with a direction p until the geometry becomes the pressed geometry Ωp
as shown in Figure 3. From the initial contact point P between the pin and Ω, the pin moves
the distance c until the contact point Pp of Ωp. The pressed geometry Ωp will be changed
to the straightened geometry Ωs after unloading due to spring-back. The straightening
stroke decision algorithm aims to find the distance c that makes the straightened geometry
Ωs as close as possible to the target geometry Ωt.

How the current geometry is corrected can be quantified using ds, which is the distance
between the measurement origin Om and the intersection point Qs. δ, the correction amount
at the measurement point Q, is defined as follows:

δ = ds − d. (2)

δ means how the distortion measurement changed at Q after a straightening stroke. It
can be said that the component is straightened correctly at the measurement point Q if
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the measured δ is close enough to δt, which is defined in Equation (1). We consider the
component straightened when all δ are close enough to their corresponding δt since there
are multiple straightening pins and measurement points. In other words, the algorithm
aims to find the set of c values that makes all δ as close as possible to their corresponding δt.

The straightening stroke decision algorithm utilises a surrogate model that approxi-
mates the correction amount δ for the distance c based on the current geometry. Say that
there are n measurement points and m straightening pins. In the surrogate model, at the
i-th measurement point, the correction amount δi is modelled as an N-th order polynomial
based on the assumption that δi is a function of the distance c and the current geometry.
The N-th order polynomial for δi can be expressed as follows:

δi = (ds)i − di =
N

∑
j=1

(
∑

j1+···+jm=j
aj1···jm cj1

1 · · · cjm
m

)
, (3)

where ck denotes the k-th pin movement distance, and a denotes a coefficient of the polyno-
mial. The parameter j in Equation (3) starts from one since the constant term is neglected in
the model. Equation (3) can be expressed as the following equation using vector notation:

δ = KC, (4)

where δ and C are the vectorised δi and polynomial combinations of ck, respectively, and K
is the matrix representing the polynomial coefficients. K is called the stiffness matrix in
this study since it represents the “stiffness” of the current geometry. δ has n components,
while the number of components of C varies which depends on the order N. The number
of components of C is calculated as follows:

dim(C) =
N

∑
r=1

(m + r − 1)!
(m − 1)!r!

, (5)

which is the sum of the combinations with repetition of r objects from m objects.
The stiffness matrix K strongly depends on the current geometry. It is assumed that

the stiffness matrix can be split into two terms, as follows, to consider the effect of the
current geometry:

K = Kglobal + ∆K, (6)

where Kglobal represents the global stiffness of the component, and ∆K represents the
change in the stiffness from the global stiffness for the current geometry. Figure 4 shows the
schematic representation of the global stiffness matrix Kglobal and the current geometry’s
stiffness matrix Kglobal + ∆K. The role of Kglobal is to represent the global stiffness of the
part regardless of how the current geometry differs from the target geometry. Assuming
that the material properties are constant, how the current geometry looks determines the
change in the stiffness matrix, which means that the stiffness matrix of the current geometry
can be represented as the sum of these two matrices.

The global stiffness matrix Kglobal is determined so that the following objective func-
tions f1, · · · , fn are minimised:

fi =
1
M

√√√√ M

∑
p=1

[
δmeasured

i,p −
(

KglobalCp

)
i

]2
, (7)

where i = 1, · · · , n is the distortion measurement number, p = 1, · · · , M is the observation
number, and the superscript “measured” denotes the measured value.
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Figure 4. Schematic representation of the global stiffness matrix and the stiffness matrix of the
current geometry.

∆K, the change in the stiffness matrix, is modelled as a function of the distortion
measurements of the current geometry since the distortion measurements can represent
the current geometry. We adopted machine learning algorithms for modelling ∆K since the
correlation between the current geometry and ∆K might be highly complex. The objective
functions g1, · · · , gn to be minimised for the training of the machine learning models are

gi =
1
M

√√√√ M

∑
p=1

[
δmeasured

i,p −
({

Kglobal + ∆K
}

Cp

)
i

]2
, (8)

where gi is the i-th objective function of the i-th machine learning model which is for an i-th
row of ∆K. Note that Kglobal is fixed during the training of the machine learning algorithm.
Two machine learning algorithms were adopted to model ∆K, and a detailed description
of these machine learning models is in Section 3.3.

The flow chart of the straightening stroke decision algorithm is depicted in Figure 5.
The algorithm starts with input d and the vectorised current distortion measurement di.
The algorithm determines ∆K from d with the machine learning model and calculates the
current stiffness matrix K. copt is the optimum c, where c is the vectorised pressure distance
ck, and the subscript “opt” denotes the optimum value. copt is determined through an
optimisation process with the following objective function fc:

fc = max
(∣∣∣δpred − δt

∣∣∣) = max(|KC − δt|), (9)

where δt is vectorised (δt)i, and the superscript “pred” denotes the predicted value from the
surrogate model. Plenty of optimisation algorithms can be used for the optimisation process
of fc. In this paper, L-BFGS-B [24] is utilised for the optimisation. The straightening stroke
is conducted with copt, and the distortion measurements of the straightened geometry come
into the algorithm. The straightening result is saved to the straightening database. Kglobal
and the machine learning model for ∆K are updated with the updated database, and the
algorithm ends. The proposed algorithm can be considered a self-learning algorithm since
it can improve its performance by itself.
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Figure 5. Flow chart of the straightening stroke decision algorithm. ML is an abbreviation of
machine learning.

3. Numerical Experiments
3.1. Target Components, Straightening Pins, and Distortion Measurement Locations

Three thin-walled components, shown in Figure 6, were adopted to show the perfor-
mance of the proposed distortion straightening method. The names of the components are
“simple box”, “centre spine”, and “side member” in the sequence of Figure 6a–c. The simple
box is a box shape with ribs, which was chosen to represent the very simple geometry
of a thin-walled die-cast component. Meanwhile, the centre spine and the side member
geometries are from the currently manufactured car frames using the die-cast process.

As the size of the component becomes larger, the possibility becomes higher that the
component has a substantial amount of distortion. As a result, the straightening process is
likely to be applied to large thin-walled structures; therefore, the die-cast products with
the largest dimension above 1200 mm were chosen as the target components. The simple
box shape has the largest dimension of 1200 mm and the most straightforward geometry
among the target components, so one would expect it to be the easiest part to straighten.
The centre spine has the largest dimension of 1400 mm. The centre spine is expected to
have intermediate difficulty since the height difference is less than the side member and has
symmetric geometry. The side member could be the most challenging component among
the target components because it has no symmetric geometry, and the height difference is
higher than the two other geometries.

The locations of the straightening pins and the distortion measurements are also de-
picted in Figure 6. Blue markers indicate the datum points for the distortion measurement.
Red and yellow markers indicate the locations of the straightening pins and distortion mea-
surements, respectively. In this study, we only considered cases in which straightening pin
locations and distortion measurement locations were identical. On each pin location, two
pins were located on the front and back sides so that the components could be pressed from
both sides. The distortion measurement direction q and the press direction q were parallel
to the direction of view of the diagrams describing the straightening pin and distortion
measurement locations in Figure 6 for all components. The locations were chosen at the
point of intersection of the ribs, which had higher stiffness, and the distance between the
straightening pins was greater than 80 mm so as to not make them too close to each other.
The number of locations was 12 for the simple box, 16 for the centre spine, and 18 for the
side member.
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(a)

(b) (c)
Figure 6. Geometries of the components adopted for the numerical experiments. (a) Simple box.
(b) Centre spine. (c) Side member.

3.2. Numerical Experiment Procedure

The numerical experiment procedure is depicted in Figure 7 as a flow chart. The first
procedure is to generate a straightening database for the surrogate model. The database
has 1500 straightening data points, which consist of 15 random straightening strokes of
each of 100 randomly distorted geometries. The random distortion of the geometry was
generated by pressing the part randomly with the straightening pins. Each randomly
distorted geometry’s maximum absolute distortion measurement ranges from 6 mm to
9 mm. Once the database is constructed, Kglobal is fitted, and the machine learning model
for ∆K is trained with the fitted Kglobal. The polynomial order for Kglobal was chosen as
N = 3. The number of data points in the database was chosen as 1500 since the minimum
required number of data points for 18 straightening pins with a third-order polynomial
model is 1329 according to Equation (5).

The performance of the constructed surrogate model was evaluated by comparing the
straightening results with naive L-BFGS-B as shown in the right side of the flow chart in
Figure 7. The L-BFGS-B algorithm is a quasi-Newton algorithm that aims to minimise a
scalar function f . For a given xk, the position at the k-th iteration, the quantities are defined
as follows:

sk = xk+1 − xk, (10)

yk = gk+1 − gk, (11)

ρk =
1

yT
k sk

, (12)
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where gk = ∇ f (xk) denotes the gradient of f at xk. The algorithm evaluates the approxi-
mate Newton’s direction dk as follows:

dk = −Hkgk, (13)

where Hk is the inverse of the Hessian matrix. At the k-th iteration, the algorithm finds the
step length which minimises the function f in the direction of dk. For the next iteration, the
update of the inverse of the Hessian matrix is conducted as follows:

Hk+1 =
(

I − ρkskyT
k

)
Hk

(
I − ρkyksT

k

)
+ ρksksT

k , (14)

where I denotes the identity matrix. Naive L-BFGS-B means conducting the L-BFGS-B
algorithm to find the optimum pressing distances copt by changing the pressing distances
in a finite element model, which can be a computationally costly and ineffective method.

Ten randomly distorted geometries, which are not included in the straightening
database, were generated and utilised for the performance evaluation of the proposed
straightening stroke decision algorithm. The geometries for the performance evaluation
also have maximum absolute distortion measurement ranges from 6 mm to 9 mm, which is
the same as the database.

Figure 7. Flow chart of the numerical experiment procedure.

The finite element models were established to conduct the simulations to make the
database, conduct the straightening stroke with copt calculated by the surrogate model, and
conduct the naive L-BFGS-B. The finite element models of the simple box, the centre spine,
and the side member are depicted in Figure 8. As shown in the figures and mentioned in
Section 3.1, there are pairs of straightening pins at each straightening pin location. The finite
element models were developed using the commercial finite element analysis software
Abaqus 2020 HF6. The simple box model (Figure 8a) has 4680 nodes and 4655 linear
quadrilateral shell with reduced integration (S4R) elements. The centre spine model
(Figure 8b) has 235,138 nodes and 767,196 linear tetrahedral (C3D4) elements. The side
member model (Figure 8c) has 48,182 nodes and 159,466 C3D4 elements. The straightening
pins are set as a rigid body.
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(a)

(b) (c)
Figure 8. Finite element models of the target components. Each straightening pin location has a pair
of straightening pins. (a) Simple box. (b) Centre spine. (c) Side member.

3.3. Machine Learning Models for ∆K

As mentioned in Section 2.3, ∆K, the change in the stiffness matrix, was modelled
using machine learning models. Two machine learning models, a deep neural network
(DNN) model and XGBoost [23] model, were adopted to model ∆K. The DNN and
XGBoost were chosen since these are known to have satisfactory performance on regression
problems [22,25].

The architecture of the developed DNN model is described in Figure 9. The DNN
model was established with Keras [26] on Python 3.9. The input of the DNN model is the
current distortion measurements d, and the output is a row of ∆K. There are three hidden
layers with sizes of 2×dim(C), 3×dim(C), and 2×dim(C). The number of hidden layers
was chosen as three based on the work of Asghari et al. [27] since the DNN model with
three hidden layers showed fine performance on the regression problem. The rectified
linear unit (ReLU) activation function [28] was adopted for the hidden layers. The ReLU
function is defined as follows:

f (x) = max(0, x). (15)

The training was conducted using Adam optimiser [29] with a learning rate of 0.0001
and a batch size of 100. The number of epochs was set as 1000. The loss function for the
training is Equation (8).

XGBoost is well suited for regression problems due to its inherent design and capabil-
ities. Its core functionality revolves around building an ensemble of decision trees, each
focusing on correcting the errors of its predecessors. This sequential learning approach
allows XGBoost to effectively capture complex relationships within data and accurately
predict continuous numerical values, making it a powerful tool for regression problems.
The XGBoost model for ∆K has the same input and output as the DNN model. The XGBoost
model utilised in this study adopted L1 and L2 regularisation terms, which were added to
the loss function. The L1 and L2 regularisation terms are defined as follows:
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L1 = α
T

∑
j=1

∣∣wj
∣∣, (16)

L2 =
1
2

λ
T

∑
j=1

w2
j , (17)

where T is the number of leaves in each tree, wj is the weight at the leaves, and α and λ are
the controlling parameters for the L1 and L2 regularisation terms, respectively. The model’s
parameters are as follows: the tree’s maximum depth is 8, the L1 regularisation term on
weights is 0.5, the L2 regularisation term on weights is 0.3, the number of estimators is
3000, and the learning rate is 0.01. The hyperparameters were obtained using the package
Hyperopt [30].

Figure 9. The deep neural network (DNN) architecture for modelling ∆K.

The XGBoost and DNN models were trained using the same straightening database,
and the surrogate models from each machine learning model were generated. The database
was partitioned for training, validation, and testing datasets. The ratios of the datasets
were 64%, 16%, and 20% for training, validation, and testing, respectively. Table 1 shows
the average loss of training, validation, and test datasets of the trained DNN and XGBoost
models for each target geometry, where the loss is defined in Equation (8). The average
losses show that the trained models can predict the change in the stiffness matrix without
loss of generality.

Table 1. Average loss of training, validation, and test datasets of the trained DNN and XGBoost
models for each target geometry.

Unit: 10−3 mm

Simple Box Centre Spine Side Member
Dataset DNN XGBoost DNN XGBoost DNN XGBoost

Training 0.4715 0.4648 7.0851 7.1964 8.4046 8.4928
Validation 0.4918 0.4937 7.0366 7.2356 8.5231 8.7319
Test 0.4779 0.4783 7.2750 7.2438 8.5846 8.5119

4. Results and Discussion

The numerical experiments were conducted for the three target components in Figure 6
as mentioned in the previous section. For each target component, 1500 straightening strokes
were simulated, and Kglobal and the machine learning models for ∆K were trained as shown
in the left side of Figure 7. Ten randomly distorted geometries, which are not included in
the training database, were generated for each component to evaluate the performance of
the proposed straightening stroke decision algorithm.
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The performances of the proposed algorithm with the machine learning model for
∆K and without it (which means only Kglobal was considered) were compared. The DNN
model was selected for the performance comparison with the algorithm with Kglobal only.

The maximum distortion measurements of the simple box, after the straightening
stroke decided using only Kglobal and the surrogate model with the DNN model, are
depicted in Figure 10. For all ten randomly distorted shapes, the surrogate model with the
DNN model showed better performance than the results that considered Kglobal only as
the maximum distortion measurements of the straightened geometries were low with the
surrogate model for all shapes. The average of the maximum distortion measurements after
the straightening stroke was 0.0935 mm for the model with Kglobal only and 0.0751 mm for
the surrogate model with the DNN model. The distortion measurement distributions of
the simple box Shape no. 10 after the straightening strokes are presented on the right side
of Figure 10. The distortion measurement distributions were considerably different since
the model that considered Kglobal only could not take account of the change in the stiffness
due to the geometry. In addition, this made the straightening stroke determined with only
Kglobal less effective than the one determined by the surrogate model with the DNN model.

Figure 10. Maximum distortion measurements of the simple box after the straightening stroke
decided using the global stiffness only and the surrogate model with the DNN model. The dis-
tortion measurement distributions of the initial and straightened geometries of Shape no. 10 are
presented as an example. The black circles denote the locations of the straightening pins and
distortion measurement.

Figure 11 shows the maximum distortion measurements of the centre spine after the
straightening stroke determined with only Kglobal and the surrogate model with the DNN
model. The average of the maximum distortion measurements after the straightening stroke
was 0.1156 mm for the model with Kglobal only and 0.0909 mm for the surrogate model with
the DNN model. Similar to the simple box cases, the straightening strokes determined with
the DNN model were more effective for all ten shapes. The magnitude of the distortion
measurements for the straightened geometries was higher than the simple box since the
centre spine has a complex geometry, and the number of straightening pins to determine is
greater than for the simple box. On the right side of Figure 11, the distortion measurement
distributions of the centre spine Shape no. 8 after the straightening are presented. Similar
to the simple box, the overall distributions were different from each other, and the DNN
model showed better performance than the model with only Kglobal.
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Figure 11. Maximum distortion measurements of the centre spine after the straightening stroke
decided using the global stiffness only and the surrogate model with the DNN model. The dis-
tortion measurement distributions of the initial and straightened geometries of Shape no. 8 are
presented as an example. The black circles denote the locations of the straightening pins and
distortion measurement.

Similar results were derived for the side member as shown in Figure 12. The average
of the maximum distortion measurements after the straightening stroke was 0.1550 mm for
the model with Kglobal only and 0.1192 mm for the surrogate model with the DNN model.
The side member showed the highest magnitude of the distortion measurements for the
straightened geometries since the geometry’s size and complexity were the most significant
among the target geometries. The distortion measurement distributions of the side member
Shape no. 1 are presented on the right side of Figure 12. As shown in the simple box and
the centre spine cases, the distortion measurement distributions were significantly different
from each other since there is a difference in whether the current geometry was considered
or not.

Figure 12. Maximum distortion measurements of the side member after the straightening stroke
decided using the global stiffness only and the surrogate model with the DNN model. The dis-
tortion measurement distributions of the initial and straightened geometries of Shape no. 1 are
presented as an example. The black circles denote the locations of the straightening pins and
distortion measurement.
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The straightening results derived from the model with only Kglobal and from the
surrogate model with the DNN model showed that the surrogate model was superior to
the model with only Kglobal. Considering the current geometry’s effect on the component’s
stiffness is crucial since the surrogate model provided more satisfactory straightening
results from all target geometries. The surrogate model showed that the average of the
maximum distortion measurements after the straightening stroke improved by 21.4% for
all target geometries compared with the model with only Kglobal. However, it should be
noted that establishing the global stiffness matrix Kglobal is also an essential part of the
surrogate model since the model is also based on global stiffness. An improper global
stiffness matrix will make the algorithm decide the straightening stroke inappropriately,
whether the effect of the current geometry is considered or not.

The straightening stroke determined from the naive L-BFGS-B mentioned in Section 3.2
could be treated as a local optimum solution since the naive L-BFGS-B does not utilise any
surrogate model and attempts to find the optimal point from the finite element analysis
results directly. In this study, the straightening results obtained from the naive L-BFGS-B
were considered global optimum solutions because the search space was too broad to
conduct a global optimisation process without a surrogate model. The performances of the
surrogate models with the DNN model and with the XGBoost model were evaluated by
comparing their results with those of the naive L-BFGS-B.

Figure 13 shows the maximum distortion measurements of the simple box after the
straightening stroke determined using the naive L-BFGS-B and the surrogate models with
the DNN model and with the XGBoost model. The average of the maximum distortion
measurements after the straightening stroke was 0.0609 mm for the naive L-BFGS-B and
0.0763 mm for the surrogate model with the XGBoost model. The DNN model showed
slightly better performance than the XGBoost model based on the straightening results of
the simple box. The distortion measurement distributions of the simple box Shape no. 8 are
presented on the right side of Figure 13. The surrogate models showed similar distortion
measurement distributions, whilst the distribution of the naive L-BFGS-B was dissimilar
from that of the surrogate models.

Figure 13. Maximum distortion measurements of the simple box after the straightening stroke decided
using the naive L-BFGS-B and the surrogate models with the DNN model and with the XGBoost
model. The distortion measurement distributions of the initial and straightened geometries of Shape
no. 8 are presented as an example. The black circles denote the locations of the straightening pins and
distortion measurement.

The maximum distortion measurements of the centre spine, after the straightening
stroke decided using the naive L-BFGS-B and the surrogate models with the DNN model
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and with the XGBoost model, are shown in Figure 14. The average of the maximum
distortion measurements after the straightening stroke was 0.0720 mm for the naive L-
BFGS-B and 0.0911 mm for the surrogate model with the XGBoost model. The DNN
model performance was slightly better than that of the XGBoost model. However, the
difference in the performance between the surrogate models was negligible. The distortion
measurement distributions of the centre spine Shape no. 1 are shown on the right side of
Figure 14. Similar to the simple box results, the distortion measurement distributions of the
DNN and the XGBoost model were similar to each other. In contrast, the naive L-BFGS-B
showed a different pattern of distribution.

Figure 14. Maximum distortion measurements of the centre spine after the straightening stroke
decided using the naive L-BFGS-B and the surrogate models with the DNN model and with the
XGBoost model. The distortion measurement distributions of the initial and straightened geometries
of Shape no. 1 are presented as an example. The black circles denote the locations of the straightening
pins and distortion measurement.

The side member’s maximum distortion measurements after the straightening stroke
decided using the naive L-BFGS-B and the surrogate models with the DNN model and
with the XGBoost model are shown in Figure 15. The average of the maximum distortion
measurements after the straightening stroke was 0.0886 mm for the naive L-BFGS-B and
0.1205 mm for the surrogate model with the XGBoost model. The magnitude of the
distortion measurements was the largest among the target geometries for the same reason
discussed above. Like the centre spine, the DNN model showed slightly better performance
than the XGBoost model. The distortion measurement distributions of the side member
Shape no. 2 are depicted on the right side of Figure 15. The straightening behaviour was
similar between the DNN and XGBoost models, whereas the naive L-BFGS-B showed
different behaviour.

The maximum distortion measurements after the straightening stroke for each method
and model are organised in Appendix A. Student’s t-tests were conducted to evaluate the
efficiency of each proposed model for the straightening process. The naive L-BFGS-B was
excluded from the tests since it was used to make reference results for each target geometry
because the naive L-BFGS-B can be considered to determine the optimum straightening
stroke. In the statistical analysis, the significance level was set to be α = 0.05 and the
standard deviations were assumed to be different.

Table 2 shows the p-values of the two-tailed tests with the null hypothesis of the same
mean for the surrogate models with the DNN and XGBoost. In Table 2, H0 is the null
hypothesis, and µ1 and µ2 are the means of the maximum distortion measurements after
the straightening stroke for the surrogate models with the DNN and XGBoost, respectively.
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For all geometries, the p-values are greater than the significance level α, which means
that the null hypothesis should not be rejected and the means of the maximum distortion
measurements were statistically identical.

Figure 15. Maximum distortion measurements of the side member after the straightening stroke
decided using the naive L-BFGS-B and the surrogate models with the DNN model and with the
XGBoost model. The distortion measurement distributions of the initial and straightened geometries
of Shape no. 2 are presented as an example. The black circles denote the locations of the straightening
pins and distortion measurement.

Table 2. p-values of the two-tailed tests with the null hypothesis of the same mean for the surrogate
models with the DNN and XGBoost.

Ha
0 : µ1 = µ2

Simple Box Centre Spine Side Member

p-value 0.8372 0.9718 0.8752

Table 3 shows the p-values of the left-tailed tests with the null hypothesis of Ha
0 :

µ1 ≥ µ2, where µ1 and mu2 are the means of the maximum distortion measurements after
the strengthening stroke for the surrogate model with the DNN and the model with the
global stiffness only, respectively. The p-values are less than the significance level for
all geometries, which means the null hypothesis should be rejected. It shows that the
straightening performances were statistically better with the DNN model since the mean is
smaller for the surrogate model with the DNN model.

Table 3. p-values of the left-tailed tests with the null hypothesis of Hb
0 : µ1 ≥ µ2, where µ1 and mu2 are

the means of the maximum distortion measurements after the strengthening stroke for the surrogate
model with the DNN and the model with the global stiffness only, respectively.

Hb
0 : µ1 ≥ µ2

Simple Box Centre Spine Side Member

p-value 0.0123 0.0009 0.0007

The surrogate model with global stiffness could only be used for straightening. How-
ever, the straightening performance can be improved when the DNN and XGBoost models
are utilised in the surrogate model with the global stiffness matrix, and the statistical
analysis results support this. In addition, the maximum distortion measurements after the
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straightening stroke were reduced by 26.6% on average when the DNN or XGBoost model
was adopted in the surrogate model.

Compared to the straightening results from naive L-BFGS-B, the maximum distortion
measurements after the straightening stroke from DNN and XGBoost models differed by
28.0% and 29.3%, respectively, on average. The surrogate models with the DNN model
and with the XGBoost model showed similar performances for the target geometries, while
the DNN model showed slightly better performance on average. On the other hand, it
cannot be said that the DNN model is always preferable to the XGBoost model since the
DNN model did not show better straightening performance for all cases. In addition, the
statistical analysis results indicate that the performances of the DNN and XGBoost models
were statistically identical. The straightening results showed that the DNN and XGBoost
models are adequate to model ∆K, the change in the component’s stiffness. In addition, the
surrogate models could decide the straightening strokes so that the maximum distortion
after the straightening becomes 0.02% of the largest dimension of each target geometry.

The distortion measurement distributions from the surrogate models were similar
for all target components, while the distribution from the naive L-BFGS-B was different.
This shows that the DNN and XGBoost models estimated ∆K similarly, whilst the naive
L-BFGS-B estimated it directly from the finite element analyses. The estimated stiffness
matrix can differ from the real stiffness matrix of the current geometry. However, the naive
L-BFGS-B is computationally expensive, which means that it cannot be utilised to operate
the straightening process. On the contrary, the surrogate model can provide admissible
solutions for the straightening process with an adequately fitted Kglobal and a trained
machine learning model.

5. Conclusions

This paper proposes a method for straightening distorted giga-cast thin-walled com-
ponents. The straightening process, which corrects the distorted part by pressing it with
numerous straightening pins, is described, and the concept of a straightening machine to
carry out the process is suggested. An algorithm which decides the straightening stroke
is suggested. The straightening stroke decision algorithm has two primary models: the
polynomial model representing the component’s global stiffness and the machine learning
model for the change in the stiffness due to the distorted geometry. Two machine learning
models, DNN and XGBoost, were selected to model ∆K. The numerical experiments,
which make distortion and straighten the component with the finite element analyses, were
conducted to evaluate the performance of the proposed algorithm. Three components
were adopted for the numerical experiments: the simple box, centre spine, and side mem-
ber. From the results of the numerical experiment, the conclusions can be summarised
as follows:

• The effect of the current geometry should be considered when deciding the straighten-
ing stroke to make the straightening strokes effective. The global stiffness matrix can
be used alone for straightening, but the determined straightening strokes might be
less effective.

• The proposed DNN and XGBoost models adequately modelled the stiffness change
due to the current geometry. Their performances on the straightening stroke decision
were similar; meanwhile, the DNN model showed slightly better performance.

• Regarding the straightening results from the naive L-BFGS-B as the optimum, the
maximum distortion measurements after the straightening strokes decided from the
surrogate models differed by 28.7% on average. The surrogate models could provide
admissible straightening stroke results, considering that the naive L-BFGS-B process
is computationally expensive, which means that it is not appropriate to operate the
straightening process.

• The surrogate models decided the straightening strokes so that the maximum remain-
ing distortion became 0.02% of the largest dimension of each target geometry for all
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target components. The suggested straightening method and algorithm were suitable
for straightening distorted large thin-walled components.

However, the proposed straightening method was only examined using numerical
experiments. As future work, we suggest developing a real straightening machine and
applying the straightening process to real large-sized thin-walled die-cast components
to examine the proposed method for actual application. In addition, we only considered
cases in which straightening pin locations and distortion measurement locations were
identical. In future work, cases with different straightening pin locations and distortion
measurements need to be considered and analysed.
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Appendix A. Tables for Maximum Distortion Measurements after the
Straightening Stroke

The following are the tables of maximum distortion measurements after the straight-
ening stroke decided using the naive L-BFGS-B, the global stiffness only, and the surrogate
models with the DNN and XGBoost models.

Table A1. Maximum distortion measurements after the straightening stroke for the simple box.

Unit: mm

Shape No. Naive L-BFGS-B Kglobal Only DNN XGBoost

1 0.0520 0.0774 0.0702 0.0681
2 0.0625 0.0917 0.0752 0.0778
3 0.0534 0.0800 0.0660 0.0642
4 0.0507 0.0690 0.0631 0.0637
5 0.0756 0.1185 0.0914 0.0918
6 0.0712 0.1140 0.0918 0.0844
7 0.0442 0.0710 0.0541 0.0567
8 0.0770 0.1035 0.0921 0.0979
9 0.0526 0.0927 0.0628 0.0712

10 0.0693 0.1177 0.0837 0.0877
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Table A2. Maximum distortion measurements after the straightening stroke for the centre spine.

Unit: mm

Shape No. Naive L-BFGS-B Kglobal Only DNN XGBoost

1 0.0862 0.1220 0.1116 0.1168
2 0.0652 0.1149 0.0780 0.0802
3 0.0617 0.1003 0.0833 0.0750
4 0.0628 0.0993 0.0785 0.0794
5 0.0776 0.1276 0.0993 0.0930
6 0.0694 0.1042 0.0869 0.0850
7 0.0696 0.1032 0.0837 0.0840
8 0.0891 0.1483 0.1166 0.1199
9 0.0738 0.1303 0.0923 0.0966

10 0.0647 0.1055 0.0785 0.0813

Table A3. Maximum distortion measurements after the straightening stroke for the side member.

Unit: mm

Shape No. Naive L-BFGS-B Kglobal Only DNN XGBoost

1 0.1021 0.1902 0.1375 0.1401
2 0.1040 0.1742 0.1425 0.1514
3 0.0992 0.1801 0.1255 0.1242
4 0.0715 0.1230 0.0984 0.0905
5 0.0815 0.1313 0.1102 0.1028
6 0.1024 0.1609 0.1493 0.1380
7 0.0872 0.1603 0.1086 0.1263
8 0.0758 0.1268 0.0998 0.1067
9 0.0776 0.1415 0.1085 0.1082

10 0.0844 0.1619 0.1117 0.1170
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