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Abstract: This research explores discrete element method analysis to investigate the wear of NiTi
Sand Screens in comparison to traditional materials. The study utilized Altair EDEM v2022.2 software
and employed Oka and Archard models to simulate the wear behavior of Nitinol, a well-established
Shape Memory Alloy (SMA). The mechanical properties considered include Poisson’s ratio, solid
density, shear modulus, and Young modulus. Results indicate significantly higher wear values and
deformations with the Oka model compared to negligible wear with the Archard model. The Oka
model’s emphasis on impact as the primary wear mechanism, supported by high normal cumulative
energy, better represents sand screen wear phenomena. Additionally, this study indicates that factors
such as particle size distribution and normal and tangential cumulative contact energy hold potential
as predictors of wear response and characteristics. The Oka model demonstrated that NiTi exhibited
reduced wear losses compared to SUS630 and Cr–Mn white cast iron, both of which are recognized
for their high toughness when subjected to an impact load. Experimental analysis validated the
simulation findings with morphological and graphical erosion plots. The limitation of observing
the shape memory effect through DEM (discrete element method) simulation was acknowledged.
Recommendations include characterizing post-wear microstructural changes, exploring the influence
of temperature on wear behavior, and further research to refine wear models and understand SMA
sand screen responses.

Keywords: NiTi; Oka model; Archard model; sand screens; wear; discrete element method

1. Introduction

Shape memory alloys are a class of smart materials that can undergo a reversible shape
change when subjected to an external stimulus. These materials are widely used in various
industries due to their unique properties such as excellent mechanical properties, high
corrosion resistance, and biocompatibility. In the oil and gas industry, several materials are
used as sand screens to prevent sand production during oil and gas extraction. However,
sand screen wear can significantly affect their performance, resulting in reduced efficiency
and increased operational costs. Therefore, this study suggests the use of Nitinol (NiTi), a
popular shape memory alloy based on its mechanical properties, and that it is essential to
analyze the wear behavior to improve their durability and reliability.

The unique features of SMAs make them an excellent material choice for sand screens.
SMAs are well known for their ability to restore their former shape following deformation,
making them a good candidate for use in sand screens [1–4]. When exposed to mechanical
stress or distortion, a sand screen can become damaged or deformed, reducing its efficacy
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in filtering sand particles [5]. Their ability to regain their previous shape even after defor-
mation indicates that sand screens manufactured with SMAs may have a longer lifespan
and be more effective at filtering sand particles. Furthermore, SMAs are known for their
great strength and corrosion resistance, both of which are crucial features for materials
used in sand screens [2,4,6]. SMAs are resistant to high temperatures and corrosive envi-
ronments, allowing them to be used in difficult situations without eroding or deteriorating
over time [7].

This study aims to analyze the wear behavior of Nitinol sand screens on both Oka
and Archard models using the Altair EDEM simulator to suggest what model is more
representative of the wear at the sandface of natural gas production wells.

1.1. Wear Control

Sand control is a critical issue in the oil and gas industry, and several techniques
have been developed to prevent sand production during well completion and production.
Sand screens made of different materials have been used to prevent sand particles from
flowing into the wellbore. SMAs are an emerging class of materials due to their unique
properties such as shape memory effect, superelasticity, and high corrosion resistance [2,8],
and they possess properties that make them fit for wear control when used as screens. How-
ever, damage from wear, abrasion, and corrosion can seriously impair their performance,
lowering efficiency and raising operating expenses [9–11].

Several researchers have studied the wear behavior of SMAs under different conditions.
The Oka wear test is a popular method mostly used to evaluate the wear behavior of
materials under indentation conditions.

The wear behavior of NiTi-based SMAs under dry sliding conditions was examined
and the results showed that the wear resistance of NiTi-based SMAs was affected by the
sliding speed and load [12]. The wear resistance increased with increasing sliding speed
and load. However, the wear resistance decreased with increasing sliding distance. The
authors also found that the wear mechanism of NiTi-based SMAs was mainly due to
adhesive wear and abrasive wear.

The wear behavior of SMAs under different conditions could be analyzed using wear
models to predict the wear behavior for the purpose of wear control. Results from studies
showed that the wear rate of SMAs is affected by the normal load, impact angle, velocity, and
hardness of the material [7,13,14]. The authors also found that the wear mechanism of SMAs
was mainly due to abrasive wear.

1.2. Wear Model

In describing the nature of material wear as shown in Figure 1, some parameters to
consider are the scratch hardness number and drag coefficient because of the scratch [15]. The
scratch hardness number (Hsc) can be defined as the resistance to surface penetration of a
solid surface by moving a stylus with a tip radius while applying a constant speed and
normal force. It is expressed mathematically as (ASTM: G171-03)

Hsc =
kP
w2 (1)

where k is a geometrical constant, w is the scratch width, and P is the applied normal force.
On the other hand, the drag coefficient D is the ratio of the scratching force (Fsc) to the
applied force. It is expressed as

D =
Fsc

P
(2)

However, there are instances where the environment (air, moisture), precision, and
bias can influence the nature of scratch hardness and drag [15]. In such cases, precautions
should be taken to control the environmental parameter, record the relative humidity, and
factor in tolerance for the bias.
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Figure 1. Surface wear design.

There are some models that have been developed to estimate the wear of solid surfaces.
The Archard wear model and the Oka wear model are established methods for assessing
wear [16–18]. In certain applications, a relative wear model that integrates elements of both
the Archard and Oka models is employed to provide a more comprehensive understanding
of wear phenomena [18–23]. While the Archard wear, as proposed by Archard in 1953,
was based on the assumption that the wear rate is proportional to the applied load and
the sliding distance and is mostly used during machining and grinding [24], the Oka wear
model is a modified version of the Archard wear model that takes into account the effect of
particle size and hardness on the wear rate [25,26]. It was proposed in 2004 by Oka and
Yoshida and has over time been used in oil and gas industrial applications. The Oka wear
test involves sliding a pin against a flat surface under a specific load and speed. The wear
rate is determined by measuring the weight loss of the pin [25]. The Archard wear model
is a widely used model to predict the wear behavior of materials. The Archard wear model
assumes that the wear rate is proportional to the load, sliding distance, and hardness of the
material [27].

The wear volume Q in the Archard equation is expressed as [28]

Q = WFndt (3)

where W is the wear constant of the material for Archard wear, dt is the tangential distance,
and Fn is the normal force.

On the other hand, the wear volume per unit mass E∝ for Oka wear is expressed as [25]

E∝ = 65W−k1
( v

104

)2.3H0.038
v

(
D

0.326

)0.19
(4)

where v is the velocity of the particle, D is the particle diameter, and Hv is the Vicker’s hardness.
Table 1 below shows some researchers that have applied Oka and Archard wear

models with their limitations. This suggests that applications of wear models in the oil
and gas environment could vary based on the target of the research; however, streamlined
targets could result in limitations that hinder the full representation of real-world scenarios.
The strain rate, surface finishing, composition, and environmental conditions are major
variables that could influence the wear and shape memory effect (SME) and they are
embedded in the Oka and Archer wear equations through the wear constant and geometry
hardness. However, in this study, the focus is on the wear, therefore, the SM changes due to
temperature were assumed not significant and were not considered. The Oka and Archard
wear tests are known to predict wear behavior [24,25,29,30]; therefore, they were adopted
in assessing the sand screen’s wear behavior during simulation. The normal load, distance,
and settling velocity were all considered in simulation with time to see how they affect the
wear rate as will be seen in the later sections of this paper.
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Table 1. Applications of Oka and Archard wear models.

Wear Model Focus Limitation Ref.

Oka wear

The influence of particle impact
angle, particle velocity, and

particle size distribution on wear
in a pipe bend.

The study adopted Oka, McLaury, Finnie, and Generic wear models in
its investigation of a pipe bend, suggesting that researchers are

constantly seeking models’ best fit for specific wear scenarios. However,
the clarification regarding whether the wear observed at the extrados of

the pipe near the bend exit was primarily influenced by impact and
abrasion was not explicitly addressed. Variation in particulate sizes of
spherical-shaped sand particles in the discrete phase model was rather

primary, potentially necessitating a critical review of the wear
mechanisms for a more comprehensive understanding of wear

phenomena in pipe bends.

[31]

To investigate the effect of particle
size on wear in turbulent slurry
flow using empirical (Oka and
Huang) and analytical (Cheng)

wear models.

Oka, Huang, and Cheng wear models were all used in the inverse
analysis study despite their similar impact-driven wear nature. The

scenario involved rotation which might have tilted towards abrasion
influence, but models like Archard were not considered. Though results
gave irregular impact velocities, the study still suggested the Oka wear
model as the most reliable in performance prediction. Other limitations

identified in the study were reference speed and removal of
plastic damage.

[32]

The focus was on the effect of
surface roughness on the velocity,
pressure, and particle trajectories

within a cyclone.

An increase in wall roughness resulted in a decreasing wear rate using
the Oka wear model in this case. The nature of the material used for the

cyclone was not specified or compared to help the researcher opine
whether there are microstructural characteristics necessary for the

resistance to wear as roughness increases. Particle size influence was
less significant. Unlike this [33], in the later part of this paper, the

present study characterized the SMA sample to reflect the response due
to wear.

[33]

Archard wear

The paper compares the critical
plane-based method and the

deviatoric strain amplitude-based
method for evaluating fretting

fatigue life and corrects for
surface wear damage using the

Archard wear model.

The limitation of the paper with respect to Archard wear is that the
authors assume a linear relationship between wear volume and time,

which may not hold for all materials, contact energies, and wear
conditions. The paper does not consider the effect of wear debris

accumulation and the potential for third-body abrasive wear, which can
significantly affect the fretting fatigue behavior of a material.

[34]

The paper uses numerical analysis
to simulate the wear behavior of a
die and applies the Archard wear
model to predict the wear volume

and wear rate of the die.

The limitation of this research was that the authors assumed a constant
wear coefficient for the titanium alloy material throughout the

simulations, which may not accurately reflect the wear behavior of the
material under different conditions. The paper does not consider the
effect of adhesive wear or abrasive wear, which can also contribute to

the wear of the die. Finally, the study is focused on a specific
application and material, so the findings may not be directly applicable

to other materials or applications.

[35]

The paper uses a combination of
finite element analysis (FEA) and
multi-body dynamics (MBD) to
simulate the contact and wear

behavior of the cervical total disc
arthroplasty and applies the

Archard wear model to predict
the wear volume and wear rate of

the ultrahigh-molecular-weight
polyethylene insert.

The authors assume a constant wear coefficient for the UHMWPE
material throughout the simulations, which may not accurately reflect

the wear behavior of the material under different conditions. Wear
predictions were made based on sliding distance and contact stresses as

unique to the Archard model. A comparison of other wear model
responses would have been more informative for the disc prosthesis

being studied. This study clarified that the wear models are not limited
to metals or alloys, making it evident to continuously investigate

unique responses of materials to wear.

[36]

2. Materials and Methods
2.1. Material Selection and Description

The material selected was NiTi and all key mechanical properties that contribute to its
shape memory nature were considered, as shown in Table 2. Figure 2 is a representation of
a standalone SMA sand screen experiencing sand particle collision on its surface, designed
for the purpose of this study.
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tair EDEM.

Together, Poisson’s ratio (v), solid density (ρ), shear modulus (G), and Young modulus (E)
offer a thorough insight into how a material will behave under various stresses and strains.
They are used to design and test materials for several purposes in a variety of engineering
and scientific applications. A measure of the elastic deformation of a material is known
as Poisson’s ratio (v). It is dimensionless, provides insights into the elastic properties of
a material, and represents the negative ratio of the transverse strain to the axial strain
resulting from uniaxial stress. Solid density is another important property that describes
the compactness of a material. It can reveal details about the material’s stiffness, weight,
and heat and electricity conducting properties. Understanding how a material will react
to bending or twisting depends on its shear modulus, which characterizes its resistance
to shearing pressures. The Young modulus measures a material’s resistance to deformation
under compression or tension and is significant in materials like metals and alloys where
shear stresses can result in plastic deformation and failure. It offers details regarding the
material’s capacity to support loads, withstand bending, and regain its original shape
after deformation.

For Nitinol, the following parameters shown in Table 2 were recommended as me-
chanical characteristics.

Table 2. Mechanical properties of NiTi.

Mechanical Property Review Ranges Simulation Parameter Reference

Poisson’s Ratio (v)
0.28–0.37

0.32
[37]

0.32 longitudinal & 0.47 transverse [38]
<0.499 [39]

Solid Density (ρ) 6.45–6.6 g/cm3 6.5 [40–42]
Shear Modulus (G) 16–45 GPa 35 [43,44]

Young Modulus (E)
68 GPa

69
[45]

70 GPa [46]
68.5 GPa [40]

To comprehensively account for the geometry interaction with the sand particles, the
study also incorporated the coefficient of restitution (0.5), which quantifies the elasticity of
colliding surfaces; static friction (0.7), representing the friction necessary to initiate motion
between stationary surfaces; and rolling friction (0.15), which opposes the rolling motion of
a surface. These considerations were essential to enhance the accuracy and completeness of
the analysis.
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2.2. Altair EDEM Simulation

Figure 3 is the flow process during the DEM (discrete element method) simulation of
Figure 2 on Altair EDEM. While the geometry of the sand screen and sand particle design
and distribution were considered, the physics suggested the models used to describe the
natural behavior of the sand particles as they collide with the walls of the sand screens.
Hertz–Mindlin (no slip) and standard rolling friction were considered based on frictional
behavior between contacting surfaces and two surfaces that are in relative motion due
to rolling, respectively. Also, while the frictional coefficient of surfaces is relied on for
Hertz–Mindlin, the sand particles are assumed to be free-flowing using standard rolling
friction. This approach is particularly noteworthy as DEM is not commonly considered in
describing geometry changes and continuous loading on tools, but the study demonstrates
how it can be effectively utilized to improve the accuracy of the simulation [28].
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Settling the velocity of sand particles
The ratio of sand production to gas production (in units of mass per volume) does

not provide enough information to directly calculate sand velocity; therefore, additional
information is needed, such as the particle size distribution and the fluid properties. This
simulation does not consider the presence of gas; therefore, to get a representative value of
the speed of sand particles, the study used an average settling velocity of sand particles in
a gas well.

Knowing sand particles have a density of about 2650 kg/m3 (typical for quartz sand),
the ratio of sand production to gas production can be used to calculate the sand velocity
assuming a certain fluid flow rate. The continuity equation can be used to calculate the
fluid velocity:

Q = A × V (5)

A = π × r2 (6)

where Q is the fluid flow rate, A is the cross-sectional area of the wellbore, r is the radius of the
wellbore, and V is the fluid velocity.

Using these values, fluid velocity can be solved with Equation (7):

V =
Q
A

(7)



Materials 2024, 17, 281 7 of 19

Knowing the sand particle diameter d, settling velocity can be further estimated by first
evaluating the Reynolds number (Re), which in this case is turbulent for gas. According
to [47], the movement of a spherical sand particle that is free-falling within a gaseous regime
is governed by drag force, and Schiller and Naumann describe a drag coefficient correlation
(Cd) that best describes the process, as shown below, incorporating the Reynolds number.

Cd =
24
Re

(
1 + 0.15Re0.687

)
+

0.42
1 + 25, 000Re

(8)

Furthermore, with the drag coefficient correlation, the settling velocity of the sand particles
assumed to wear the surface of the screen can be estimated using the equation below [48]:

Vs =
4
3
(ρ s − ρg

)
× g × d

Cdρg
(9)

where Vs is the settling velocity, ρs is the density of the sand particles, ρg is the density of the
gaseous fluid, g is the acceleration due to gravity, and d is the diameter of the sand particles.

This calculation assumes that the sand particles settle in still fluid, which may not be
the case in a flowing well. However, it gives an estimate of the settling velocity that can
be used for comparison to the fluid velocity, which depicts reality as the fluid contacts the
sandface. In this case, the settling velocity is much slower than the fluid velocity, suggesting
that the sand particles would be carried along with the fluid flow and would not settle.
However, in Altair EDEM, the sand velocity is calculated during particle tracking using the
equation of particle motion as shown below, making it easier, as our simulations neglected
the impact of gaseous fluids.

x(t) = x0 + v0t +
1
2

at2 (10)

where x(t) is the particle position at time t, x0 is the initial particle position, v0 is the initial
particle velocity, and a is the constant acceleration of the particle.

A 3D representation of the sand particles colliding with the cylindrical surface of the
sand screen (with circular perforations of 0.5 mm diameter) in a radial flow process during
DEM simulation using Altair EDEM can be seen in Figure 2.

3. Results and Discussion
3.1. Wear Analysis of SMAs

To understand the wear behavior of SMAs, numerical simulations using DEM
were employed.

In a recent study, DEM simulations were used to model abrasive material loss in soil
tillage via scratch tests [28]. It was found that the total wear volume was independent
of the mesh size used in the simulation and was only dependent on the calculation time.
This suggests that finer meshes do not necessarily lead to more accurate wear volume
predictions, and coarser meshes can be used to reduce computational costs without com-
promising accuracy. However, the wear track characteristics were found to be dependent
on the meshing of the geometry used, highlighting the importance of mesh quality in
wear analysis. The load was identified as the dominant factor that determines the wear
micro-mechanism and wear track characteristics in the simulations. This is consistent with
previous studies on erosive wear of SMAs, which have shown that the wear rate increases
with increasing load and abrasive particle size [14,49]. The wear behavior of SMAs can also
be influenced by their microstructure, chemical composition, and surface properties [50,51].

To optimize the wear performance of SMAs under erosive conditions, it is essential
to understand the underlying wear mechanisms and their dependence on the operating
conditions. Numerical simulations using DEM can provide valuable insights into the
wear behavior of SMAs and aid in the development of new materials with improved wear
resistance, especially in sand screens for natural gas production.
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3.2. Comparison of Wear Performance Using Oka and Archard on NiTi SMAs

According to Archard in 1953, the distribution and size of the total contact area,
duration of contact, the shape of worn particles (layer removal, lump removal), and
probability factor which demonstrates that not all contacts result in wear are necessary
assumptions to consider the mechanical wear of surfaces [27].

The DEM simulation on NiTi, shown in Figures 4 and 5, suggests that Oka wear is
more relevant in analyzing the response of the sand screens to wear since it experiences
higher wearing due to impact, while the Archard wear, which presents wearing due to
abrasion, was not significant. The probability factor as suggested by [27] reflected on both
the Archard and Oka wear on the screen as some parts of the screen were not affected by
wear; however, this can be attributed to both the sand particle properties, distribution, and
hardness, and the shape memory property of the geometry. The same wear response was
compared based on the particle size distribution to understand the behavior of the material
under fixed and mixed sand particle distribution. Figure 6 shows the distribution of the
mixed sand particles used (0.5 mm to 1.5 mm), Figure 7 shows the plot for the mixed sand
particles’ (0.5 mm to 1.5 mm) impact on the screen, while the plot in Figure 8 was for a
fixed particle size of 1 mm.
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The results of the wear response further revealed interesting findings regarding the
influence of particle size distribution on wear behavior. Figure 7 demonstrated an increased
wear effect when mixed grains (fine and coarse) were present, whereas Figure 8 indicated a
lower wear effect with a fixed fine grain. These observations highlight the significance of
particle size distribution in determining wear rates.

This can be attributed to the synergistic effect of different particle sizes causing more
severe abrasion and wear damage on the surface or that a more uniform particle size
distribution results in reduced abrasion and wear on the sand screen.

The results from Figures 7 and 8 provide support for the inference that in the scenario
of sand screen wear during gas production, the Oka wear model is more representative than
the Archard model. This conclusion is based on the comparison of the normal cumulative
contact energy to the tangential cumulative contact energy in both figures, which relates
to the drag coefficient discussed earlier. The dominance of the normal cumulative contact
energy over the tangential cumulative contact energy implies that the wear mechanism in
this case is predominantly driven by impact rather than abrasion. This suggests that the
particles impinging on the Nitinol sand screen during gas production cause more significant
wear through high-energy impacts rather than gradual abrasion due to tangential forces.
Also, supporting this, the tangential energy in Figures 7 and 8 suggested a higher effect
from fixed fine particles than coarse ones.

Overall, outcomes of the DEM simulation support earlier reviews from Table 1 that
suggested that wear models are better understood when the material, mechanism, and
particle activities are collectively investigated.

3.3. SMA Microstructural Nature of Nitinol Influencing Wear Resistance

The microstructure of Nitinol is primarily composed of nickel and titanium, which
play a crucial role in its unique mechanical properties and resistance to wear. Nitinol
typically exhibits a two-phase microstructure consisting of a matrix of B2 austenite and a
B19 martensitic phase [52].

In the annealed state, Nitinol has a fully austenitic microstructure, which provides it
with excellent ductility and formability [53]. When Nitinol is subjected to a temperature
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change or mechanical deformation, it undergoes a reversible phase transformation from
austenite to martensite and vice versa, known as the SME [52]. This phase transformation
gives Nitinol its remarkable superelasticity and shape memory properties.

It is safe to infer that Nitinol’s microstructure contributes to its favorable mechanical
properties to wear. The presence of the martensitic phase enhances its hardness and
strength, in combination with the self-healing effect, making it more resistant to plastic
deformation and wear [52,54].

Traditionally, steel has been used in fabricating sand screens due to its strength,
availability, and cost [55–57]. However, in comparison to Nitinol’s wear resistance, there are
several factors that contribute to Nitinol’s superior performance in certain wear scenarios,
and these could be its ductility and flexibility, its corrosion resistance, low friction coefficient,
and self-lubricating effect of its thin oxide layer. However, it is important to note that the
wear resistance of Nitinol can still vary depending on specific wear conditions, such as
load, contact area, velocity, and the nature of its surface and particles in contact. Therefore,
it is essential to consider the specific application and wear parameters when evaluating the
relative wear resistance of Nitinol and steel.

The grain boundaries could also play a crucial role in the wear resistance of Nitinol.
High-angle grain boundaries hinder dislocation movement, impeding wear deforma-
tion [58,59]. Furthermore, grain boundary sliding and grain refinement can enhance wear
resistance [60]. Also, the formation of intermetallic compounds at grain boundaries or
within the microstructure of Nitinol can affect its wear resistance. Studies have shown
that intermetallic phases, such as Ni4Ti3 and Ni3Ti, contribute to the material’s hardness
and resistance to wear [61,62]. Since these studies have provided evidence of the impact
of grain boundaries and the intermetallic phases on wear behavior, it can be inferred
that the characteristics that give nitinol its shape memory behavior also position it as a
wear-resistant material. The Hall Petch effect that suggests the presence of smaller grains
influencing hardness [61] also supports this inference. Also, a stable microstructure ensures
that the material maintains its wear-resistant properties over extended periods [63,64].
Therefore, the stability of Nitinol’s microstructure, including its phase composition and
crystal structure, can also contribute to its wear resistance.

In comparison to traditional materials as investigated by Liu and Li in 2001 using
Archard wear in Table 3, materials exhibit wear loss when in contact with an external
load. However, it has been observed that solely ranking materials based on their hardness
may not always be adequate because of the complexities of their microstructure. This is
primarily because the wear coefficient, denoted as K in Archard’s equation, tends to vary
among different materials [65]. Materials that possess high elasticity or pseudoelasticity
pose a challenge for Archard’s equation as seen in Table 3, as it fails to provide reasonable
predictions consistent with experimental observations.

Table 3. Comparison of experimental and theoretical wear losses [65].

Materials Wear Loss in an Experiment (mm) Wear Loss in Theory (mm)

Low Load Mid Load High Load Low Load Mid Load High Load

Stainless steel 12.00 19.00 29.00 11.95 19.46 27.15
Al alloy 19.00 30.00 42.00 23.66 34.51 43.67

NiTi 10.00 14.00 21.00 15.04 20.97 28.84

Finally, in the plastically formed ridges during geometrical change as seen in Figure 9,
both force and distance influence the nature of the plane in front of the particle. This
was possible due to the addition of a deformation option during the DEM simulation,
suggesting an elastic–plastic behavior of the material when impacted upon by the sand
particles [66]. The 3D visualization of the simulation displayed short drags, indicating the
formation of plastically deformed ridges on the surface of Nitinol. This finding further
supports Nitinol’s wear-resistant nature.
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Figure 9, as obtained from the Altair EDEM simulation, indicates that Nitinol exhibits
promising wear resistance when used as sand screens and analyzed using the Oka wear
model, which is more representative of wear action at the sandface. The minimal wear
observed suggests that Nitinol’s mechanical properties and microstructure contribute to its
ability to withstand erosive forces. The formation of short drags and plastically deformed
ridges at high settling velocities further supports the wear-resistant nature of Nitinol.
However, it is important to note that Altair EDEM does not include a shape memory
model, which limits the simulation’s ability to evaluate the SME of Nitinol and a laboratory
analysis will be needed to observe the response post-wear.

3.4. Validation of the Numerical Simulation with Experimental Findings

The numerical simulation compared the Oka and Archard wear models on a NiTi sand
screen to suggest the model that exhibits superior relevance for the mechanical analysis of
such systems. To further elaborate, reviews from the earlier sections suggest that the Oka
wear model is more significant when considering impact (indentation), while Archard’s
significance is on abrasion (scratch). However, the concurrent implementation of these wear
models in sand screen wear simulations to ascertain their respective applicability remains
notably absent. The simulation further identified both wear model effects on the screen,
but Oka proved more significant. Though there is no specific research that extensively
covers sand impact wear on NiTi used for screening, this section attempts to justify the
simulated result using experimental analysis of both scenarios considering morphological
responses, wear depth, and the suitability of NiTi as suggested by simulation for screens
over traditional screen metals.

Figure 10 suggests that impact wear, which is observed using the Oka wear model,
presents localized surface damage without extensive drag; however, that of abrasion, which
is measured using Archard wear, depicting the surface removal due to scratch presents
extensive drag on the surface. The study’s [67] investigation of NiTi’s performance in the
context of scratch and indentation wear reveals a noteworthy observation. This observation
corroborates the earlier simulation outcomes, which indicate high Oka wear and low
Archard wear on the sand screen. Also, under the impact, radial crack lengths (as seen in
“c” and “d”) are more prominent than drags [67], which support the propagation of deeper
and localized wear on the screen surface. Figures 10 and 11 further buttress the fact that
while traces of drag effects may persist within the context of an impact wear test, their
manifestation remains considerably subdued in comparison to the pronounced occurrence
of localized wear phenomena.
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Figure 11. Surface morphology of wear due to impact on NiTi at 90◦ (a), 45◦ (b), and 20◦ (c), showing
both indentations and drags [68].

Figure 11 showed a combined appearance of both indentation and drag in an impact
test on NiTi. According to [68], the surface wear behavior can be influenced by the angle of
impact, as seen in Figure 11, the indentations are seen more at 90◦ than 20◦, while scratch is
otherwise, which aligns with what happens to screens at the sandface at 90◦ radial impact.
This can also be validated by the study that confirms NiTi as an anisotropic intermetallic
compound that responds to particle impact at different angles [69]. The relationship
between indentation force and elastic modulus has been examined and demonstrated to be
directly proportional [70]. This observation is consistent with the outcomes of the present
investigation, which indicate that the Oka wear model, which focuses on impact-related
factors, more accurately represents the significant wear losses experienced during impact.
Fang, et al.’s study on wear on pipelines further supports this as it demonstrated the
Oka wear model to agree with simulated results of the impact of solid particles, while
the Archard wear model was adopted when locating the area of maximum wear due to
observed concentrated scratches on the pipe [71]. This underscores the distinct nature of
wear mechanisms under impact and abrasion conditions, thereby contributing to a more
comprehensive understanding of the intricate interactions between wear models and sand
screen wear dynamics.
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Since the focus is more on the surface material response to wear and not the overall
screen orientation, traditional materials used in screens that have been applied in different
facilities experiencing impact wear will be compared with the NiTi simulated results of this
study at similar erosion conditions.

Carbon steel undergoing impact wear by particles of 0.05 mm at flow velocities of
0.5 m/s, 1 m/s, and 2 m/s were compared with simulated NiTi results at the same condi-
tions, as shown in the figure below.

Figure 12 shows a comparison of carbon steel and NiTi; on the wear rate axis, a
logarithmic scale was used to show the exponential differences between both wear rates.
This suggested that the wear on surfaces of carbon steel is more significant when compared
to that of NiTi and increases as the impact velocity increases. Another result (Figure 13)
was derived from a research investigation into the wear characteristics of a centrifugal
pump under impact wear from sand particles. The data revealed that the average wear
depth observed on Cr–Mn white cast iron blades was more than that observed on the NiTi
material utilized in this study, which also experienced impact wear under sand particles
of the same size distribution. However, there were slight differences as the particle size
increased. In the case of NiTi, it has been observed that the average wear depth tends to
increase with an increase in particle size. However, with Cr–Mn white cast iron centrifugal
pump blades, the wear depth exhibits a reduction as the particle size increases. It can
be inferred that the observed changes in the surfaces of the Cr–Mn white blade and NiTi
screen may be attributed to the occurrence of dynamic rotatory operation in the former
and static operation in the latter. However, both surfaces were subjected to impact stress,
as shown by the Oka wear model. In contrast, the maximum wear depth for NiTi was
increasing at a higher rate with increasing particle diameter than the Cr–Mn with cast iron.
These comparisons agree with the simulated results of Figures 7 and 8, noting that the wear
depth during wear increases as particle diameter increases. Recall from simulated results
of Figures 7 and 8 that fixed fine particle size with higher cumulative contact energy had a
lower wear rate compared to mixed (which is a combination of fine and coarse), meaning
the prevalence of larger particle sizes in the mixed configuration led to an elevated wear
potential. Given the focal emphasis on wear depth within this comparative assessment, the
alignment with the principles of the Oka wear model becomes particularly conspicuous.
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Figure 13. Plot of (a) average wear depth and (b) maximum wear depth, against particle size (diameter)
of Cr–Mn white cast iron (redrawn from [73]) in comparison to the simulated result of NiTi for this
study at 1 mm, 2 mm, and 3 mm using Oka wear.

To justify the effectiveness of NiTi over steel, which is traditionally used for sand
screens, SUS630 was compared with NiTi under 0.3MPa as shown in Figure 14 and the
results suggested that NiTi experiences a lower wear rate than SUS630. From the plot, both
the results of NiTi wear during experimental analysis and that of this study’s simulation
were much lower than that of SUS630 wear. This can also be corroborated with findings
in Table 3, which suggest low wear when NiTi was used compared to stainless steel or Al
alloy [65].
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The study’s [74] microstructural analysis also opined that the hardness of NiTi at 90◦

and 45◦ increases (381 HV and 405 HV) more than that of SUS630 (311 HV and 334 HV)
post-wear. The difference in hardness provides compelling evidence that the hardness of the
eroded surface in NiTi surpasses that of SUS630, consequently establishing a plausible link
to heightened drag forces and augmenting wear resistance. Lastly, a study that compared
TiC–stainless steel and TiC–NiTi blend also corroborated that the NiTi blend revealed better
wear resistance of 0.4 mg/min over the TiC–stainless steel of 4.0 mg/min [75].

4. Conclusions and Recommendations
4.1. Summary of Key Findings, Significance, and Contributions of the Study

The present study posits the significance of the Oka wear model as a more pertinent
consideration in the investigation of sand screen wear. This assertion is based on the
observation of considerably higher wear values as seen on the plots and deformations
seen on the 3D views associated with Oka wear when compared to those attributed to
Archard wear, which is found to be negligible in this context and validatory information
from similar experimental analysis of Oka and Archard wear models. The rationale behind
the prominence of the Oka model lies in its emphasis on impact as the predominant wear
mechanism, as opposed to abrasion. Such a focus aligns with the activities occurring at the
sandface, thereby rendering the Oka model more representative of the wear phenomena
encountered in this domain.

The findings from reviews and application in simulation also place NiTi as a superior
material for wear resistance when compared to traditional screening materials. Further-
more, the microstructural nature of NiTi, including the presence of austenite and martensite
phases, grain boundaries, intermetallic compounds, drag response, and the SME, influences
its wear resistance. Understanding these microstructural elements, bonds, and behaviors is
vital for optimizing NiTi’s wear resistance properties. Further investigations should focus
on characterizing the microstructural changes post-wear, the effect of temperature, and
their influence on Nitinol’s wear behavior.

4.2. Limitations and Future Research Directions

One limitation of the present study is the inability to observe the SME within the
DEM simulation due to the inherent constraints of the Altair EDEM software (v2022.2).
Nonetheless, the investigation focused on exploring the mechanical properties of Nitinol, a
well-established SMA, as identified through literature reviews. The primary objective was
to determine if these SMEs play a role in influencing the material’s mechanical responses
when employed as sand screens and subjected to wear. Consequently, future investigations
could potentially capitalize on unveiling the SME post-wear by employing laboratory se-
tups supplemented with computed tomography (CT) scans to analyze the surface structural
deformation and possible recovery post-wear.
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