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Abstract: Polymer–metal hybrid structures combine the merits of polymer and metal materials,
making them widely applicable in fields such as aerospace and automotive industries. However, the
main challenge lies in achieving efficient and strong connections between the metal and polymer
components. This paper uses the jet electrochemical machining (Jet-ECM) method to customize the
surface morphologies on 6061 aluminum alloy (AA6061) sheets. The connection between AA6061 and
carbon fiber-reinforced PA66 (CF/PA66) is then achieved through hot pressure welding (HPW). The
effects of aluminum alloy surface morphology, welding force, and welding time on the mechanical
properties and microstructure of the joint are investigated. The optimal process parameters are
determined by the design of the experiment. The results show that the aluminum alloy surface
morphology has the greatest impact on the mechanical property of the welded joint. The optimal
process parameters are surface morphology with wider, shallower, and sparsely distributed grooves
on the aluminum alloy surface, the welding force is 720 N, the welding time is 12 s, the welding
temperature is 360 ◦C, the cooling time is 16 s, and the optimal peak load of the joint is 6690 N.
Under the optimal parameters, the fracture morphology in the AA6061 side is almost entirely covered
with CF/PA66. The joint experiences cohesive failure in most areas and fiber-matrix debonding in a
small area.

Keywords: hot-pressure welding; carbon fiber-reinforced thermoplastic composite; aluminum alloy;
process optimization

1. Introduction

Optimized lightweight designs often require the use of multi-materials, often with
different physical properties, such as different metals [1–3] or polymer composites and
metals [3,4]. Among different multi-material structures, the metal–carbon fiber-reinforced
polymer (CFRP) hybrid structure takes the advantages of both metal and CFRP and has been
proven to be superior in terms of fatigue performance, impact properties, and vibration
resistance [5]. In recent years, the metal/CFRP hybrid structure has been widely used in the
automobile and aerospace industries. For example, the BMW 7 series applied metal/CFRP
hybrid components to its various important structures such as the roof beam, B pillar, C
pillar, threshold beam, and central channel [6]. Lee et al. [7] demonstrated that a steel/CFRP
B-pillar exhibited 10% higher crashworthiness and was 44% lighter compared with the
tailor-welded steel B-pillar. Al/CFRP and Ti/CFRP hybrid structures are generally used in
wing panels, helicopter blades, fairings, fixed trailing edges, space optical benches, ship
hulls, and engine cowlings [8].
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Since the wide application of metal/CFRP structure, the demand for the joining
between metal and CFRP is increasing. However, due to the huge difference in the physical
and chemical properties between metal and CFRP, obtaining high-strength metal/CFRP
dissimilar joints has become a technical bottleneck. According to the polymer matrix,
CFRP can be divided into carbon fiber-reinforced thermoset composite (CFRTS) and carbon
fiber-reinforced thermoplastic composite (CFRTP). CFRTS can only be cured one time;
therefore, adhesive bonding and mechanical fastening are the main joining methods for
it [9,10]. In comparison with CFRTS, CFRTP has weldability, and welding is considered a
promising method for joining CFRTP and metal. The general principle of metal and CFRTP
welding is using a certain heat source to heat the metal workpiece to a temperature that is
above the melting point of the CFRTP. Heat is transferred to the metal/CFRTP interface
through heat conduction of the metal, and the CFRTP melts and moistens the metal surface.
After the welding is completed, the joint cools to room temperature, and a metal/CFRTP
joint forms. Figure 1 shows the general process of metal/CFRTP welding.
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The main welding methods of metal/CFRTP include laser welding [11–18], friction
welding [19–27], ultrasonic welding [28–34], hot pressure welding [35–41], and so on.
Among them, hot pressure welding (HPW) has the characteristics of simple equipment
structure, environmental friendliness, ease of automation, etc., and has a broad develop-
ment space and application prospect. A number of scholars have conducted studies on the
HPW of metal to CFRTP. Barrak et al. [35] prefabricated two holes on the aluminum alloy
sample and used HPW to connect the hybrid structure of aluminum alloy and polyamide.
The maximum tensile–shear strength of the joint was 2.5 MPa. Zou et al. [36] used hydroflu-
oric acid (HF) to etch Ti-6Al-4V alloy (TC4) to obtain low roughness surface and used HPW
to connect TC4 and poly(ethylene terephthalate) (PET). This study showed that roughness
is not a factor in determining joint strength. The factor that can improve the interfacial
bonding of metals and polymers is the synergistic effect of surface particle anchoring
and chemical bonding. Du et al. [37] used an anodizing method to prepare microporous
structures on the surface of aluminum alloy and used ultrasonic-assisted hot pressing
technology to weld polypropylene/aluminum alloy dissimilar materials. Liu et al. [38]
investigated the effect of laser texturing on the joint performance in HPW of TC4 titanium
alloy and CFRTP. The results showed that the textured TC4 surface improved the wettability
of molten CFRTP to TC4, thereby enhancing the tensile–shear force of the joint. Saborowski
et al. [39] used an Nd/YVO4 nanosecond laser system to create a pin structure with scalable
height through single-pulse drilling on 6082 aluminum alloy and connected it to polyamide
6 using HPW. The experimental results showed that pulse drilling pin structures show
excellent wetting behavior.

At present, the commonly used method to improve the strength of metal/CFRTP hot-
pressure welded joints is to increase the macro- or micro-mechanical interlocking between
both. The macro-mechanical interlocking is mainly conducted by prefabricating holes [35],
raised structures [38,39], or combined use [40] on the metal surface. During the HPW
process, the molten CFRTP matrix will flow into the holes, or the raised structures will
be inserted into the CFRTP matrix and form an interlocking structure after cooling. The
micro-mechanical interlocking is fulfilled by creating microporous structures [37] or groove
structures [41] on the metal surface. One difference between the two structures is that the
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microporous structure is highly random, while the groove structure can be customized
and, therefore, has better controllability. For example, Liu et al. [38] investigated the
influence of textured grid width on the tensile–shear force of the TC4/CFRP joint made
by HPW. The experimental results indicated that laser texturing obviously improved the
TC4 surface roughness and wettability of molten CFRP, which increased the interfacial
joining area and thus enhanced the shear force of the joint. Zhang et al. [41] investigated
the effect of a laser-textured surface on the HPW of 6061 aluminum alloy to glass fiber-
reinforced thermoplastic (GFRTP). The results showed that the higher the surface roughness
of aluminum alloy, the better the wettability of molten GFRTP and the stronger the joint
mechanical properties. Liu et al. [42] studied the effect of groove width and groove depth
on the joint strength of Al/CFRTP. The results show that the tensile–shear strength of
CFRTP/Al joints first increases and then decreases with the increase in groove width and
groove depth. Rodríguez-Vidal et al. [43] investigated the effect of textured groove structure
density, structure depth, and cavity angle on the laser-welded steel/PA6-GF30 joints. They
found that the textured groove structure density was the primary influencing factor for the
joint strength, while the structure depth and cavity angle had little effect. Liang et al. [44]
investigated the effect of texturing direction (0◦, 45◦, 90◦) on the Ti/GFRTP laser welded
joint strength. The tensile–shear strength could reach the maximum when the texturing
direction was perpendicular to the tensile direction (0◦ texturing). However, these studies
did not control the total surface areas of the textures to be equivalent, so it is difficult to
compare which structure is better.

This study takes 6061 aluminum alloy and carbon fiber reinforced nylon 66 composite
material (CF/PA66) as the research materials. Jet electrochemical machining (JET-ECM)
was used to customize the groove size and quantity on the aluminum alloy surface. To
better compare the effect of groove size on joint performance, this paper created four surface
morphologies under the premise that the textured surface areas are equivalent. Based on a
customized HPW machine, the effects of metal surface morphology, welding temperature,
welding time, and welding force on the joint performance were investigated.

2. Experimental Procedure

The experimental materials, methods, and equipment will be introduced in the follow-
ing part.

2.1. Experimental Material

In this study, 6061 aluminum alloy (AA6061) and CF/PA66 were used as the ex-
perimental materials. The dimensions of the aluminum alloy and CF/PA66 sheets were
100 mm × 40 mm × 1.5 mm3 and 100 mm × 40 mm × 3 mm3, respectively. Table 1 gives
the chemical composition of 6061 aluminum alloy. The CF/PA66 sheets were injection
molded by pellets provided by EMS (Grivory®GCL-4H, Suzhou, China). The physical
properties of the CF/PA66 are listed in Table 2. Since the CF/PA66 material is hygroscopic,
the CF/PA66 sheets were dried at 80 ◦C for 4 h before welding.

Table 1. Chemical composition of 6061 aluminum alloy (wt%).

Element Al Fe Cu Mn Mg Si Zn Ti Al

AA6061 96 0.7 0.25 0.15 1.0 0.6 0.25 0.15 Bal.

Table 2. Properties of AA6061 and CF/PA66 sheets.

Material Melting Point
(◦C)

Elastic Modulus
(GPa)

Tensile Strength
(MPa)

Elongation
(%)

AA6061 650 68.7 311 12.5
CF/PA66 260 29.5 335 1.4
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The microstructure of the cross-section (perpendicular to the injection direction) and
longitudinal section (parallel to the injection direction) of the CF/PA66 (taken by an optical
microscope, Zeiss Axio VerT.A1 produced by Carl Zeiss Suzhou Co., Ltd., Suzhou, China)
is shown in Figure 2. The gray part is the polymer matrix, and the white part is the carbon
fiber. It can be seen that most of the fibers are round in the cross-section and oval in the
longitudinal. This is because the fibers will flow along the injection direction.
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2.2. Experimental Methods
2.2.1. Aluminum Alloy Surface Treatment

The aluminum alloy surface was textured using jet electrochemical machining (Jet-
ECM) technology (Civil Aviation University of China, Tianjin, China), which removes
material using the principle of anodic oxidation dissolution by spraying electrolyte from
a cathode nozzle onto the anode workpiece. The schematic diagram of the processing
process is shown in Figure 3. The workpiece and tool were fixed on a self-developed
machining platform, and the electrolyte was passed through a rectangle nozzle. After
the groove processing in one direction was completed, the workpiece was rotated 90◦

and then processed the grooves in the other direction. The designed dimensions of the
grooves are given in Table 3. The design principle of the four surface morphologies is to
keep the total surface area of grooves approximately equal. According to the designed
dimensions of the grooves, a trial-and-error method was used to determine the Jet-ECM
processing parameters, as shown in Table 4. Figure 4 (taken by a mobile phone camera)
shows the macroscopic view of the four surface morphologies of the processed aluminum
alloy workpieces. Among them, the No. 1 surface morphology has the narrowest, deepest
grooves and the largest quantity of grooves, and the No. 4 surface morphology has the
widest, shallowest, and lowest quantity of grooves.
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Table 3. Designed groove dimensions of the four surface morphologies of aluminum alloy sheet.

No. 1 No. 2 No. 3 No. 4

Processing width (mm) 0.372 0.551 0.711 0.881
Processing depth (mm) 0.073 0.054 0.044 0.035

Spacing (mm) 0.372 0.551 0.711 0.881
Groove quantity in width (W) direction 46 32 25 20
Groove quantity in length (L) direction 19 14 11 9

Total surface area of grooves (mm2) 26.065 25.944 25.812 25.665

Table 4. Processing parameters for the four surface morphologies.

Surface
Morphology

Nozzle Thickness
(mm) Electrolyte Flow Rate

(m/s)
Processing

Time (s)
Processing
Current (A)

No. 1 0.1 20%NaCl 4.28 10 1.8
No. 2 0.2 20%NaCl 4.28 10 1.8
No. 3 0.3 20%NaCl 4.28 10 1.8
No. 4 0.4 20%NaCl 4.28 10 1.8
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2.2.2. Hot Pressure Welding

Figure 5 shows the schematic of the HPW setup. Two workpieces were placed in
a lap-shear configuration, where a 6061 aluminum alloy sheet was placed on top of a
CF/PA66 sheet. The size of the lap area was 20 mm × 40 mm. A copper block with size
of 20 mm × 40 mm was used to heat up the aluminum sheet and apply welding force to
the materials system. Two air-blowing pipes were distributed on both sides of the copper
block. After the welding is completed, air is blown to the welding position to cool the
weldment rapidly. After the air blowing was completed, the copper block was raised, and
the welding was completed.

Based on the preliminary tests, a four-level orthogonal array test with five factors
was designed, as shown in Table 5. Five samples were welded for each parameter, where
four samples were used for tensile–shear test, and one sample was used for cross-sectional
microscopy. After getting the tensile–shear test results, an online software, SPSS26.0
(Statistical Product and Service Software), was used to analyze the tensile–shear data.
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Table 5. Five four-level factors orthogonal array test.

Temperature
(◦C)

Welding Time
(s)

Welding Force
(N)

Cooling Time
(s)

Surface
Morphology

Level 1 320 6 460 10 No. 1
Level 2 340 8 720 12 No. 2
Level 3 360 10 980 14 No. 3
Level 4 380 12 1240 16 No. 4

The welding forces of 460, 720, 980, and 1240 N correspond to 0.2, 0.3, 0.4, and 0.5 MPa in the welding machine
settings, respectively.

According to the orthogonal array test results, the three parameters (surface mor-
phology, welding force, welding time) that have the greatest influence on the tensile shear
property were determined, and univariate tests were carried out. The experimental param-
eters are shown in Table 6.

Table 6. Univariate experiments.

Temperature
(◦C)

Welding
Time (s)

Welding Force
(N)

Cooling
Time (s)

Surface
Morphology

Group 1 360 12 720 16 Nos. 1, 2, 3, 4
Group 2 360 12 460, 720, 980, 1260 16 No. 4
Group 3 360 6, 8, 10, 12 720 16 No. 4

Tensile–shear tests were conducted on a microcomputer-controlled electronic universal
testing machine with 100 kN capacity (produced by Shenzhen Wance Testing Machine Co.,
Ltd., Shenzhen, China). The cross-head speed was 2 mm/min. During the test, two pads
with the same thickness as the workpieces were added to both ends of the workpieces to
ensure that the workpiece is subject to upward tensile force along the same straight line, as
shown in Figure 6.

Standard metallography specimen preparation method was used to reveal the cross-
section morphology of the joint. The surface of the metallographic specimens was polished
with sandpaper of different grits from 200# to 2000#. A PG-1A metallographic polishing
machine was used for polishing. The polished specimens were cleaned with alcohol. The
cross-section of the joints was observed by an optical microscope (Zeiss Axio VerT.A1
produced by Carl Zeiss Suzhou Co., Ltd., Suzhou, China). Energy spectrum analysis
(EDS) was used to analyze the chemical elements on the metal/CFRTP interface. The
joints’ fracture morphologies after tensile–shear test were observed by a tungsten filament
scanning electron microscope SU1510 (Hitachi High-Technologies Corporation, Tokyo,
Japan). Due to the poor electrical conductivity of the CF/PA66, a low vacuum coating
instrument (Leica EM ACE200, Leica Microsystems Limited, Hong Kong, China) was used
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to spray gold on the composite surface before conducting SEM observation, and the gold
spraying time was set to 50 s.
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3. Results and Discussion
3.1. Orthogonal Experimental Results

Table 7 shows the tensile–shear test results of the orthogonal array test. To explore
the degree of effect of each factor on the joint tensile–shear property and determine the
optimal level and combination of the process parameters, the orthogonal array test is
analyzed by range analyses. The range analysis has the advantages of easy calculation,
simple analysis, and intuitionistic data, which are always used in the theoretical analysis of
experimental results.

Table 7. Tensile–shear test results of the orthogonal array test.

No.
Temperature

(◦C)
Welding
Time (s)

Welding
Force (N)

Cooling
Time (s)

Surface
Morphology

Peak Load (N)

1 2 3 4

1 320 6 460 10 No. 1 4446.5 3555.8 3068.3 3681.5
2 320 8 720 12 No. 2 5415.1 4839.5 3718.7 5372.2
3 320 10 980 14 No. 3 5190.7 5668.5 4342.4 4025.5
4 320 12 1240 16 No. 4 5363.9 5963.8 4499.7 4732.3
5 340 6 720 14 No. 4 5541.1 5349.1 4281.3 5305.8
6 340 8 460 16 No. 3 4996.9 4890.1 5477.3 4363.1
7 340 10 1240 10 No. 2 3969.9 4253.9 4901.4 4152.9
8 340 12 980 12 No. 1 4455.7 4394.7 1508.8 4983.3
9 360 6 980 16 No. 2 5376.6 4052.1 3821.8 5417.5
10 360 8 1240 14 No. 1 4083.1 4118.8 3862.3 3963.6
11 360 10 460 12 No. 4 5381.3 5328.1 5131.8 4872.3
12 360 12 720 10 No. 3 6663.9 6343.9 5322.2 4899.1
13 380 6 1240 12 No. 3 3550.1 3860.2 5558.6 4058.8
14 380 8 980 10 No. 4 4726.9 4563.6 5198.6 4412.5
15 380 10 720 16 No. 1 4618.7 4819.9 3788.1 4546.9
16 380 12 460 14 No. 2 6088.5 6379.1 4176.9 3542.8
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Table 8 shows the range analysis of the orthogonal array test, where Ki is the sum
of all peak loads at level i of each factor. For example, K1 represents the sum of all peak
loads of experiments with a temperature of 320 ◦C. According to Ki, the optimal level and
combination can be obtained. R is the range (max(K1, K2, K3, K4)−min(K1, K2, K3, K4)) that
reflects the degree of effect of each factor and level on the tensile–shear force. The larger
the R value, the greater the degree of effect of this factor on the peak load. It shows that the
surface morphology has the greatest influence on the joint strength, followed by welding
force, welding time, welding temperature, and cooling time. The optimal parameters
were No. 4 surface morphology, welding force of 720 N, welding time of 12 s, welding
temperature of 360 ◦C, and cooling time of 16 s.

Table 8. Range analysis of the orthogonal array test.

Ki Temperature Welding Time Welding Force Cooling Time Surface
Morphology

K1 18,470.8 N 17,730.8 N 18,844.8 N 18,540.4 N 16,074.0 N

K2 18,306.0 N 18,500.4 N 20,206.4 N 18,207.2 N 18,869.6 N

K3 19,656.4 N 18,748.0 N 18,134.8 N 18,980.0 N 19,803.2 N

K4 18,472.4 N 19,929.6 N 17,723.2 N 19,182.4 N 20,163.2 N

R 1350.4 N 2198.8 N 2483.2 N 642.0 N 4089.2 N

Degree of effect surface morphology > welding force > welding time > welding temperature > cooling time

Optimal level 360 ◦C 12 s 720 N 16 s No. 4

Optimal process
parameters

No. 4 surface morphology, welding force 720 N, welding time 12 s, welding temperature 360 ◦C and
cooling time 16 s

A more intuitive display of the effect of each factor is shown in Figure 7. The most
important three factors (surface morphology, welding force, and welding time) will be dis-
cussed in Section 3.2. The cooling time has a limited influence on the peak load, indicating
that 10 s was enough for the joint to cool down. It is noted that temperature also has limited
influence in this study. A possible reason is that the welding temperature in this study refers
to the temperature of the heated copper block, not the temperature of the welding interface.
Therefore, no matter what welding temperature was used, the connection started when the
interface temperature reached the melting point of the CF/PA66. Our next work will use
more accurate test methods to study the impact of the welding interface temperature on
joint performance.
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Figure 8 shows the fracture morphologies under the optimal parameters. It can be
seen that the surface of AA6061 was entirely covered by the CF/PA66. More details about
the fracture behavior will be discussed in Section 3.2.4.
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Figure 8. Fracture morphologies: (a) CF/PA66; (b) AA6061.

Figure 9 shows the SEM cross-sectional morphology of a joint made by the optimal
parameters. A tight bonding between the AA6061 and CF/PA66 can be observed at the
interface. Some mechanical interlocking between the CF/PA66 and AA6061 can be seen in
the magnified view, as shown in Figure 9c. Note that some tiny pores can be observed in
the interior of the CF/PA66. These pores do not appear at the interface, so it is speculated
that these pores originally exist within the polymer matrix.
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3.2. The Influence of Process Parameters on the Joint Strength
3.2.1. The Influence of Surface Morphology

Figure 10 shows the macroscopic morphologies of joints made with different surface
morphologies. No obvious difference can be observed among the four joints.

Figure 11 shows the peak load of joints made with different aluminum alloy mor-
phologies. With a comparable total surface area of grooves, the aluminum surface had a
wider, shallower, and smaller quantity of grooves, resulting in stronger joints. From the
cross-section of the joint, the surface with a narrow, deeper, and larger quantity of grooves
will result in an unfilled or unbonded area, as shown in Figure 12a–c. One possible reason
is that when two surfaces with comparable surface areas are subjected to the same force, the
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surface with more densely arranged grooves will disperse the force applied to the grooves,
reducing the force that promotes the flow of molten CFPA66 into the grooves.
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3.2.2. Effect of Welding Force

Figure 13 shows the joints made with different surface morphologies welding forces.
As the welding force increased, the extrusion amount of CF/PA66 at the edge showed an
increasing trend.

Figure 14 shows the effect of welding force on the peak load of joints. The peak load
of joints increased first and then decreased with the increase in welding force. This can be
explained by the cross-sectional microstructures of Al/CFRTP joints, as shown in Figure 15.
When the welding force was relatively low, the grooves on the aluminum alloy surface
could not be filled completely, as shown in Figure 15a. This is because molten PA66 has a
large viscosity and requires sufficient welding force to cause it to flow. When the welding
force was optimal, no obvious defect could be seen in the joint (Figure 15b). When the
welding force is too high, as shown in Figure 15c,d, there will be a large area of unfilled
and unbonded metal surface in the joint because of the extrusion of molten CF/PA66. In
addition, the extrusion of CF/PA66 also led to the thinning of the CF/PA66 sheet, resulting
in a significant decrease in the peak load of the joint.
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3.2.3. Effect of Welding Time

Figure 16 shows the macroscopic morphologies of joints made with different welding
times. No obvious difference can be observed among the four joints.

Figure 17 shows the effect of welding time on the peak load of joints. It can be seen
that the peak load increased as the welding time increased. This can be explained by the
cross-sectional microstructures of Al/CFRTP joints, as shown in Figure 18. According to
the cross-sections of the joints shown in Figure 18, some unbonded areas can be seen in
the joints made with short welding time. This indicates that the wetting and bonding of
CF/PA66 to the AA6061 requires sufficient time.
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3.2.4. Analysis of Fracture Morphology

When the joint is subjected to external loads, stress concentration will occur in the
weak area at the interface, leading to the failure of the joint. Figure 19 shows the fracture
surface morphology of a joint with a relatively low peak load (~4000 N) (welding time 6 s,
temperature 320 ◦C, welding force 460 N, cooling time 10 s, No. 1 surface morphology). It
can be seen that when the joint strength was low, the molten resin could not completely
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cover the surface of the aluminum alloy, and the processed grooves can still be seen, as
shown in Figure 19a. Figure 19d shows a bare aluminum alloy surface. Its corresponding
fracture position on the CF/PA66 side is shown in Figure 19e. It can be seen that some
fibers were completely coated inside the resin. These phenomena indicate that this location
experienced adhesive failure, i.e., interfacial bond failure between the CF/PA66 and the
AA6061. In some locations, resin and fibers can also be observed on the AA6061 side, as
shown in Figure 19c. Its corresponding fracture position on the CF/PA66 side is shown in
Figure 19f. This failure is a cohesive failure since both sides were covered with a polymer
matrix. Generally, cohesive failure is considered the preferred failure mode in a tensile–
shear test because it means the bonding strength between the polymer and metal is stronger
than the shear strength of the polymer matrix. Since only a small area of the welded joint
experienced cohesive failure, leading to a relatively low peak load.
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Figure 19. Fracture morphology of a joint with relatively low peak load: (a) fracture on the aluminum
alloy side; (b) fracture on the CF/PA66 side; (c) area c on the aluminum alloy side; (d) area d on the
aluminum alloy side; (e) area e on the CF/PA66 side; (f) area f on the CF/PA66 side (AF stands for
adhesive failure; CF stands for cohesive failure).
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The fracture morphology of a joint made with the optimal parameters is shown in
Figure 20. It can be observed that the surface of the aluminum alloy was almost covered
with CF/PA66. Only a small area of the joint experienced adhesive failure, as shown in
Figure 20c. The aluminum alloy in most areas of the fracture (Figure 20d–g) was covered
in resin, indicating cohesive failure had occurred. A small amount of bared fibers was
observed in Figure 20h, indicating the occurrence of fiber-matrix debonding.

Materials 2024, 17, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 20. Fracture morphology of a joint with optimal peak load: (a) fracture on the aluminum 
alloy side; (b) fracture on the CF/PA66 side; (c) area c on the aluminum alloy side; (d) area d on the 
aluminum alloy side; (e) area e on the aluminum alloy side; (f) area f on the CF/PA66 side; (g) area 
g on the CF/PA66 side; (h) area h on the CF/PA66 side (CF stands for cohesive failure; FMD stands 
for fiber-matrix debonding). 

4. Conclusions 
This study employed HPW to join AA6061 and CF/PA66. Jet-ECM was used to make 

grooves on the aluminum alloy surface. The process parameters (welding temperature, 
welding time, welding force, cooling time, and surface morphology) were optimized 
through orthogonal experiments. The main conclusions are given as follows. 

(1) Aluminum alloy surface morphology had the greatest impact on the joint perfor-
mance, followed by welding force, welding time, welding temperature, and cooling time. 
With a comparable total surface area of grooves, the grooves with a wider width and shal-
lower depth contributed to higher joint strength. 

(2) There existed an optimal welding force that maximized the joint strength. A 
longer welding time facilitated the wetting and bonding of the molten resin to the alumi-
num alloy, resulting in a stronger joint. Welding temperature had limited influence on the 
joint performance. 

(3) Under the optimal parameters, the fracture morphology in the AA6061 side was 
almost covered with CF/PA66. Most of the joints experienced cohesive failure, and there 
was fiber-matrix debonding in a small area. 

One limitation of this study is that the welding temperature used in the experiment 
was the temperature of the heated copper block, not the temperature of the welding inter-
face, which may cause some deviations. Our next work will use more accurate test meth-
ods to study the impact of the welding interface temperature on joint performance. In 
addition, we will attempt to further improve the joint strength, such as further optimizing 

Figure 20. Fracture morphology of a joint with optimal peak load: (a) fracture on the aluminum
alloy side; (b) fracture on the CF/PA66 side; (c) area c on the aluminum alloy side; (d) area d on the
aluminum alloy side; (e) area e on the aluminum alloy side; (f) area f on the CF/PA66 side; (g) area g
on the CF/PA66 side; (h) area h on the CF/PA66 side (CF stands for cohesive failure; FMD stands for
fiber-matrix debonding).

4. Conclusions

This study employed HPW to join AA6061 and CF/PA66. Jet-ECM was used to make
grooves on the aluminum alloy surface. The process parameters (welding temperature,
welding time, welding force, cooling time, and surface morphology) were optimized
through orthogonal experiments. The main conclusions are given as follows.

(1) Aluminum alloy surface morphology had the greatest impact on the joint per-
formance, followed by welding force, welding time, welding temperature, and cooling
time. With a comparable total surface area of grooves, the grooves with a wider width and
shallower depth contributed to higher joint strength.

(2) There existed an optimal welding force that maximized the joint strength. A longer
welding time facilitated the wetting and bonding of the molten resin to the aluminum
alloy, resulting in a stronger joint. Welding temperature had limited influence on the
joint performance.
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(3) Under the optimal parameters, the fracture morphology in the AA6061 side was
almost covered with CF/PA66. Most of the joints experienced cohesive failure, and there
was fiber-matrix debonding in a small area.

One limitation of this study is that the welding temperature used in the experiment
was the temperature of the heated copper block, not the temperature of the welding
interface, which may cause some deviations. Our next work will use more accurate test
methods to study the impact of the welding interface temperature on joint performance. In
addition, we will attempt to further improve the joint strength, such as further optimizing
the surface morphology or using silane coupling agents to improve the bonding ability
between metal and polymer.
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